

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

An “**interval of integers**” $[b..c)$ means the intersection $[b, c) \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $| -6 | = 6 = | 6 |$ and $| -5 + 2i | = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘left-hand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is $\exp()$. For

$x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’; e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Prefix nt- means ‘*non-trivial*’. E.g “a nt-soln to $f' = 5f$ is $f(t) := e^{5t}$; a trivial soln is $f \equiv 0$.”

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. *inter alia*: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Factorial. Def: $n! := n \cdot [n-1] \cdot [n-2] \cdots 2 \cdot 1$; so $0! = 1$.

Rising Fctril: $\llbracket x \uparrow K \rrbracket := x \cdot [x+1] \cdot [x+2] \cdots [x+[K-1]]$,

Falling Fctril: $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$, for natnum K and $x \in \mathbb{C}$. E.g, $\llbracket K \downarrow K \rrbracket = K! = \llbracket 1 \uparrow K \rrbracket$.

N.B: For $n \in \mathbb{N}$: If $K > n$ then $\llbracket n \downarrow K \rrbracket = 0$.

Note $\llbracket x \uparrow K \rrbracket = \llbracket x + [K-1] \downarrow K \rrbracket$.

DfyQ [2020g] quizzes so far...

Q1: Fri. 24 Jan $\left[\left[\sqrt[3]{2}\right]^{\sqrt{2}}\right]^{\sqrt{8}} = \text{_____}.$ $\log_8(4) = \text{_____}.$

Q2: Fri. 24 Jan U.F $y = y(t)$ satisfies $y'' + 3y' + 2y = 0$, with $y(0) = 2$ and $y'(0) = 11$. So $y(t) = Ae^{\alpha t} + Be^{\beta t}$ where

$$\alpha = \text{_____}, \beta = \text{_____}, A = \text{_____}, B = \text{_____}.$$

Q3: Mon. 27 Jan Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \text{_____} + i \cdot \text{_____}.$

Thus $\text{Im}\left(\frac{5-i}{2+3i}\right) = \text{_____}.$

By the way, $|5-3i| = \text{_____}.$

Q4: Wed. 29 Jan A particular polynomial $p=p(t)$ satisfying

$$*: \quad p' + 2p = 6t^2 + 8t + 1$$

is $p(t) = \text{_____} \cdot t^2 + \text{_____} \cdot t + \text{_____}.$

The general soln has form $y_\alpha(t) = \alpha e^{Mt} + p(t)$, where $M = \text{_____}$. [Put correct numbers in the four blanks.]

Q5: Fri. 31 Jan For CCLDOp $L := D^3 - 3D + 2I$ and thrice diff'ble fnc f , note $L(f \cdot e^{2t}) = V(f) \cdot e^{2t}$, where CCLDOp V is

$$V = \text{_____} D^3 + \text{_____} D^2 + \text{_____} D + \text{_____} I.$$

[Put the correct number in *each* of the four blanks; zero, one, fractions, and negative numbers are allowed.]

Q6: Mon. 03 Feb For $t > 0$, fnc $y_\alpha(t) := \text{_____}$

is the gen.soln to $ty' + 2y = t^4$. [Hint: FOLDE. The coefficient and target fncs are $C(t) := \frac{2}{t}$ and $G(t) := t^3$.]

Q7: Fri. 07 Feb For $t > 0$, fnc $y_\alpha(t) := \text{_____}$

is the gen.soln to $y' + \left[\frac{2}{t} \cdot y\right] = t^3$. [Hint: FOLDE. The coefficient and target fncs are $C(t) := \frac{2}{t}$ and $G(t) := t^3$.]

Q8: Wed. 19 Feb DE $[N(x,y) \cdot \frac{dy}{dx}] + M(x,y) = 0$ is *exact*, where

$$N(x,y) := [x^2 - 7] \quad \text{and} \quad M(x,y) := 2xy + 3e^{3x}.$$

Its solns $y = y(x)$ satisfy $\mathbf{F}(x, y(x)) = \text{Const}$, where

$$F(x,y) = \text{_____}.$$

Q9: Fri. 21 Feb DE $[(2x+8)y \cdot \frac{dy}{dx}] + 4y^2 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc $V(y) = \text{_____}$ gives a *new* DE which is exact.

Solving the exact-DE, every (non-zero) soln $y = y(x)$ satisfies $F(x, y(x)) = \alpha$, for some constant α , where

$$F(x,y) = \text{_____}.$$

QA: Fri. 28 Feb A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses. Circle:

Yes

True

Darn tootin'!

QB: Mon. 09 Mar With 1() the constant-1 fnc and $F(x) := \sin(5x)$, then, convolution

$$[1 \otimes F](x) = \text{_____}.$$

QC: Wed. 11 Mar Solve some of the World's Problems.