

By the way, $|5 - 3i| =$.

Q4: Wed. 12 Sep Value $\text{Im}(\frac{1}{4-3i}) =$.

Suppose $[C + Di]^2 = -4i$, where $C, D \in \mathbb{R}$. Then $C =$ and $D =$.

Q5: Fri. 14 Sep For $t > 0$, fnc $y_\alpha(t) :=$

is the gen.soln to $y' + \left[\frac{2}{t} \cdot y\right] = t^3$. [Hint: FOLDE. The coefficient and target fncs are $C(t) := \frac{2}{t}$ and $G(t) := t^3$.]

Q6: Mon. 17 Sep DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is exact, where

$\mathcal{N}(x, y) := [x^2 - 7]$ and $\mathcal{M}(x, y) := 2xy + 3e^{3x}$. Its solns $y = y(x)$ satisfy $\mathbf{F}(x, y(x)) = \text{Const}$, where

$\mathbf{F}(x, y) =$.

Q7: Fri. 21 Sep A particular soln $p = p(t)$ to

$$p' + 2p = 6t^2 + 8t + 1$$

is $p(t) =$ $\cdot t^2 +$ $\cdot t +$.

The general soln is $y_\alpha(t) = \alpha e^{Mt} + p(t)$, where $M =$. [Put correct numbers in the four blanks.]

Q8: Mon. 24 Sep The DOp in $y' - 2y \stackrel{*}{=} [4t + 3]e^{3t}$ is $\mathbf{L} := \mathbf{D} - 2\mathbf{I}$.

It's associated op $\mathbf{V} = \mathbf{V}_{\mathbf{L}, 3}$ satisfies $\mathbf{L}(f e^{3t}) = \mathbf{V}(f) e^{3t}$, where $\mathbf{V}(f) =$. Thus $y := G(t) e^{3t}$ satisfies (*), for polynomial $G(t) =$.

Q9: Fri. 05 Oct A soln (use PolyExp) to

$y'' + y = [4t - 2]e^t$ is $y(t) =$.

QA: Mon. 08 Oct For CCLDOP $\mathbf{L} := \mathbf{D}^3 - 3\mathbf{D} + 2\mathbf{I}$ and thrice diff'able fnc f , note $\mathbf{L}(f \cdot e^{2t}) = \mathbf{V}(f) \cdot e^{2t}$, where CCLDOP \mathbf{V} is

$$\mathbf{V} = \mathbf{L} \cdot \mathbf{D}^3 + \mathbf{L} \cdot \mathbf{D}^2 + \mathbf{L} \cdot \mathbf{D} + \mathbf{L} \cdot \mathbf{I}.$$

[Put the correct number in each of the four blanks; zero, one, fractions, and negative numbers are allowed.]

QB: Mod. 19 Nov U.F. $x = x(t)$ satisfies

$$2x^{(3)} + 5x^{(2)} - x = 0.$$

Then $\mathbf{Y} := \begin{bmatrix} x \\ x' \\ x'' \end{bmatrix}$ satisfies $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$, where \mathbf{M} is this 3×3 matrix of numbers:

$$\mathbf{M} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

QC: Mod. 26 Nov Gamma fnc: $\Gamma(5) =$ and $\Gamma(\frac{5}{2}) =$.

For all real $x > 1$, our $\Gamma()$ function satisfies recurrence relation

$$\Gamma(x) =$$
 .

Last DfyQ quiz of semester...