

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b..c)$ means the intersection $[b, c) \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g., “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘Polynomial-times-exponential’. E.g., $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Prefix nt- means ‘**non-trivial**’. E.g. “a nt-soln to $f' = 5f$ is $f(t) := e^{5t}$; a trivial soln is $f \equiv 0$.”

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Factorial. Def: $n! := n \cdot [n-1] \cdot [n-2] \cdots 2 \cdot 1$; so $0! = 1$.

Rising Fctr: $\llbracket x \uparrow K \rrbracket := x \cdot [x+1] \cdot [x+2] \cdots [x+[K-1]]$,

Falling Fctr: $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$,

for natnum K and $x \in \mathbb{C}$. E.g, $\llbracket K \downarrow K \rrbracket = K! = \llbracket 1 \uparrow K \rrbracket$.

N.B: For $n \in \mathbb{Z}$: If $K > n$ then $\llbracket n \downarrow K \rrbracket = 0$.

Note $\llbracket x \uparrow K \rrbracket = \llbracket x + [K-1] \downarrow K \rrbracket$.

DfyQ quizzes so far...

Q1: Mon. 22Jan U.F $y = y(t)$ satisfies $y'' + 3y' + 2y = 0$, with $y(0) = 2$ and $y'(0) = 11$. So $y(t) = Ae^{\alpha t} + Be^{\beta t}$ where

$$\alpha = \lfloor \dots \dots \rfloor, \beta = \lfloor \dots \dots \rfloor, A = \lfloor \dots \dots \rfloor, B = \lfloor \dots \dots \rfloor.$$

Q2: Fri. 26Jan Fnc $y_\alpha(t) := \lfloor \dots \dots \dots \rfloor$ is the general soln to $\frac{dy}{dt} = 4y^2 t$. [Hint: SoV.]

The fnc satisfying init.-cond. $y_\alpha(1) = 1/5$ has

$$\alpha = \lfloor \dots \dots \rfloor$$

Q3: Mon. 29Jan Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \lfloor \dots \dots \rfloor + i \cdot \lfloor \dots \dots \rfloor$.

$$\text{Thus } \text{Im}\left(\frac{5-i}{2+3i}\right) = \lfloor \dots \dots \dots \rfloor.$$

$$\text{By the way, } |5-3i| = \lfloor \dots \dots \dots \rfloor.$$

Q4: Wed. 31Jan For $t > 0$, fnc $y_\alpha(t) := \lfloor \dots \dots \dots \rfloor$

is the gen.soln to $y' + \left[\frac{5}{t} \cdot y\right] = t$. [Hint: FOLDE.]

$$\text{Changing topics, } \text{Im}\left(\frac{3+2i}{7-i}\right) = \lfloor \dots \dots \dots \rfloor.$$

Q5: Fri. 02Feb For $t > 0$, fnc $y_\alpha(t) :=$ is the gen.soln to $y' + \left[\frac{8}{t} \cdot y\right] = t^9$. [Hint: FOLDE.]

Changing topics: Number $[i + \sqrt{3}]^{70} = x + iy$, for real numbers $x =$ and $y =$.

Q6: Mon. 05Feb A particular soln $p = p(t)$ to

$$p' + 2p = 6t^2 + 8t + 1$$

is $p(t) =$ $\cdot t^2 +$ $\cdot t +$.

With $v := \exp(-2 + 5i)$, then $|v| =$.

This $|v|$ lies in [circle the correct interval]

$$[0, \frac{1}{2}), [\frac{1}{2}, 1), [1, 2), [2, 4), [4, 8), [8, \infty).$$

Q7: Fri. 09Feb A particular soln to

$y' + y = 2t e^t$ is $y(t) =$.

Q8: Mon. 12Feb **A** soln (use PolyExp) to

$y'' + y = [4t - 2] e^t$ is $y(t) =$.

Q9: Wed. 14Feb **A** soln (use PolyExp) to

$y'' + y = 2t^2 e^{-t}$ is $y(t) =$.

QA: Fri. 16Feb DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is *exact*, where

$$\mathcal{N}(x, y) := [x^2 - 7] \quad \text{and} \quad \mathcal{M}(x, y) := 2xy + 3e^{3x}.$$

Its solns $y = y(x)$ satisfy $\mathbf{F}(x, y(x)) = \text{Const}$, where

$\mathbf{F}(x, y) =$.

QB: Mon. 19Feb For CCLDOp $\mathbf{L} := \mathbf{D}^3 - 3\mathbf{D} + 2\mathbf{I}$ and thrice diff'able fnc f , note $\mathbf{L}(f \cdot e^{2t}) = \mathbf{V}(f) \cdot e^{2t}$, where CCLDOp \mathbf{V} is

$$\mathbf{V} = \mathbf{D}^3 + \mathbf{D}^2 + \mathbf{D} + \mathbf{I}.$$

[Put the correct number in *each* of the four blanks; zero, one, fractions, and negative numbers are allowed.]

QC: Wed. 21Feb Bacteria with birth-multiplier $\mathbf{B} := \frac{1}{\text{min}}$ are in a petri dish with carrying capacity $\mathbf{C} := \text{oz}$. The population, $p(t) := \text{oz}$, satisfies the Logistic DE.

The DE is

For *Hysteria* bacteria, $\mathbf{B} = \frac{1/5}{\text{min}}$. This petri dish has $\mathbf{C} = 16\text{oz}$, with initial population $p_0 = 2\text{oz}$. The time when *Hysteria* has reached half the carrying capacity

is min \approx min.

[NB: You may use `exp()` and `log()` to express your answer.]

QD: Fri. 02Mar With $f(x) := x^2$ and $g(x) := \sin(3x)$, then

$[f \circledast g](5) =$. "For all cts h and φ :

$$[h + \varphi]^{\circledast 2} = h^{\circledast 2} + 2[h \circledast \varphi] + \varphi^{\circledast 2}.$$

T F

QE: Mon. 12Mar With $G(x) := \sin(\sin(x))$, a soln to

$$y'' - y = G$$

is $y := f \circledast G$,

where $f(x) =$.

For all integrable g and h , it is

the case that $g \circledast h = h \circledast g$: T F

QF: Wed. 14Mar With $G(x) := \sin(\sin(x))$, a soln to $5y''' = G$

is $y := f \circledast G$,

where $f(x) =$.

Matrix-product $\begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} 7 & 0 \\ 2 & 3 \end{bmatrix} =$.

QG: Fri. 16Mar Let $\mathbf{S} := \begin{bmatrix} x+1 & 2x \\ 1-x^2 & 3 \end{bmatrix}$ and $\mathbf{B} := \begin{bmatrix} 5 & 2 & 3 \\ -1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$.

Then

$\text{Det}(\mathbf{S}) =$ & $\text{Det}(\mathbf{B}) =$.

QH: Fri.
23Mar

Acting on $y=y(t)$, DiffOp $E(y) := t^2y'' - ty' + y$ is linear. Fnc $Y(t) := t$ satisfies $E(Y) = 0$. Then ROO gives us a $Z(t) =$

.....
satisfying $E(Z) = 0$ and Z is L.I of Y .

ROO also produces a function

$$\varphi(t) = \text{.....} \text{ s.t } E(\varphi) = t^{1/2}.$$

QI: Wed.
18Apr Let $J := \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ and $C := \begin{bmatrix} 3 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Note

$$C^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

So

$$e^{Jt} = \text{.....} \text{ and } M := CJC^{-1} = \text{.....}$$

Finally, $(2,3)$ -entry of $e^{Mt} =$

End of Quizzes Q