

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $| -6 | = 6 = | 6 |$ and $| -5 + 2i | = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘Polynomial-times-exponential’. E.g, $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Prefix nt- means ‘*non-trivial*’. E.g “a nt-soln to $f' = 5f$ is $f(t) := e^{5t}$; a trivial soln is $f \equiv 0$.”

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Factorial. Def: $n! := n \cdot [n-1] \cdot [n-2] \cdots 2 \cdot 1$; so $0! = 1$.

Rising Fctr: $\llbracket x \uparrow K \rrbracket := x \cdot [x+1] \cdot [x+2] \cdots [x+[K-1]]$,

Falling Fctr: $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$,

for natnum K and $x \in \mathbb{C}$. E.g, $\llbracket K \downarrow K \rrbracket = K! = \llbracket 1 \uparrow K \rrbracket$.

N.B: For $n \in \mathbb{Z}$: If $K > n$ then $\llbracket n \downarrow K \rrbracket = 0$.

Note $\llbracket x \uparrow K \rrbracket = \llbracket x + [K-1] \downarrow K \rrbracket$.

DfyQ quizzes so far...

Q1: Wed. 27Sep A particular soln $y = y(t)$ to

$$\ddot{y} - 5y = e^{5t} + e^{3t}$$

is $y(t) =$

Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} =$ + $i \cdot$

Q2: Fri. 29Sep A particular soln $y = y(t)$ to

$$\ddot{y} - 6\dot{y} + 9y = e^{3t} + 5 \cdot e^{7t}$$

is $y(t) =$

Q3: Mon. 02Oct A particular soln $y = y(t)$ to

$$\ddot{y} - 8\dot{y} + 16y = t^5 e^{4t} + 2e^t$$

is $y(t) =$

Q4: Wed. 04Oct Blanks $\in \mathbb{R}$. So $\frac{1}{3-4i} =$ + $i \cdot$

Thus $\frac{1-i}{3-4i} =$ + $i \cdot$

By the way, $|5-3i| =$

Q5: Mon. 09Oct *Am I in class today?*

circle one **“Yes!”** **“Of course!”**

Q6: Fri. 13Oct A tank initially has 80gal of salinity $2 \frac{\text{lb}}{\text{gal}}$ brine.

Pipe-1 feeds the tank, at rate $3 \frac{\text{gal}}{\text{min}}$, with salinity $1 \frac{\text{lb}}{\text{gal}}$ brine.

Pipe-2 feeds at $2 \frac{\text{gal}}{\text{min}}$ with salinity $2 \frac{\text{lb}}{\text{gal}}$. The tank discharges brine at $9 \frac{\text{gal}}{\text{min}}$. Until the tank empties, it holds

$$W(t) = \left[\text{_____} \right] \text{gal}; \text{ it empties in } \text{_____} \text{ min.}$$

The amount, $y(t)$, of lb of salt in the tank at time t , satisfies FOLDE $\frac{dy}{dt} + C(t) \cdot y = G(t)$, where

$$C(t) = \text{_____} \quad \text{and} \quad G(t) = \text{_____}.$$

QBonus: Mon. 23Oct Operators $\mathbf{V}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ map from $\mathbf{C}^\infty \rightarrow \mathbf{C}^\infty$, and \mathbf{V} is linear. The other maps are

$$\mathbf{P}(f) := [t \mapsto f(t) + 3], \quad \mathbf{Q}(f) := [t \mapsto f(t+3)],$$

$$\mathbf{R}(f) := [t \mapsto f(f(t))], \quad \mathbf{S}(f) := \mathbf{V}(\mathbf{V}(f)),$$

Then ... \mathbf{P} is linear: $\mathcal{T} F$.

\mathbf{R} is linear: $\mathcal{T} F$.

\mathbf{Q} is linear: $\mathcal{T} F$.

\mathbf{S} is linear: $\mathcal{T} F$.

$$[x^3 \circledast x^2] = \text{_____}. \quad [x^K \circledast x^N] = \text{_____}$$

Q7: Wed. 25Oct In Lake Alice, the population, $p(t) \text{ : lb}$, of algae follows the logistic model. The carrying-capacity of Alice is 50 lb, and the initial algae population is 12 lb.

The birth-rate-mult, \mathbf{B} , has units

ITOF 12 lb, \mathbf{B} , and 50 lb, the DE that $p()$ satisfies is

Q8: Mon. 06Nov Determinant of $\mathbf{M} := \begin{bmatrix} 3 & 4 \\ 7 & 5 \end{bmatrix}$ is

Op $\mathbf{L}(y) := t^2 y'' + 5t y' + 3y$ is equidimensional. A fnc $y \neq 0$ satisfying

$$\mathbf{L}(y) = 0, \text{ is } y(t) = \text{_____}.$$

Q9: Wed. 08Nov By defn, $[f \circledast g](2017) =$

Op $\mathbf{L}(y) := 3t^2 y'' + 5t y' - y$ is equidim'nal. The

gen.soln to $\mathbf{L}(y)=0$ is $y(t) = \alpha \cdot$ + $\beta \cdot$

QA: Fri. 17Nov Please compute Wronskian

$$\mathcal{W}(t, t+5, e^{2t}) = \text{_____}$$

QB: Mon. 27Nov From the integral defn,

$$\Gamma(\sqrt{7}) := \int_{\text{_____}}^{\text{_____}} \text{_____} dt$$

As a product
(no integrals): $\mathbf{\Gamma}\left(\frac{9}{2}\right) =$.

QC: Wed.
29Nov Let $A := \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$, $M := \begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$ and $R := MAM^{-1}$. Then

the $(2, 2)$ -entry of e^{Rt} is .

QD: Fri.
01Dec Ameliorate some of the World's Problems.