

D4: Fri. 18Sept a Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$. $\mathcal{L}(t^{26} \otimes e^{3t})(s) = \boxed{\dots}$.

Thus $\text{Im}\left(\frac{5-i}{2+3i}\right) = \boxed{\dots}$.

Determine the inverse-transform, please.

$\mathcal{L}^{-1}\left(\frac{3s+5}{s^2+2s+5}\right)(t) = \boxed{\dots}$.

b Let $U := 3 - 2i$ and $W := 4 + i$. The gen.soln to a CCLDE is $\boxed{y_{\alpha,\beta}(t) = \alpha \cdot e^{Ut} + \beta \cdot e^{Wt}}$. Thus, the CCLDE that every such $y()$ satisfies is

$$= 0.$$

That's All, Folks!

[Hint: Fill-in the blank with the appropriate sum of derivatives-of- y times various constants.]

D5: Mon. 05Oct Computing...

$[\mathbf{D} + 7\mathbf{I}]^3(t^7 \cdot e^{-7t}) = \boxed{\dots}$

D6: Fri. 09Oct DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is *exact*, where

$$\mathcal{N}(x, y) := x + 2y \quad \text{and} \quad \mathcal{M}(x, y) := 5 + y.$$

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where

$$\mathbf{F}(x, y) = \boxed{\dots}$$

L

D7: Mon. 12Oct The general soln $u = u(t)$ of

$$\frac{du}{dt} = 2 \cdot [u - 5]$$

is $u_\alpha(t) = \boxed{\dots}$.

D8: Fri. 16Oct DE $[2xy \cdot \frac{dy}{dx}] + [2 + 3x]y^2 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc $W(x) = \boxed{\dots}$

gives a *new* DE which is exact. Did you Check?

D9: Mon. 23Nov With $f(x) := x^2$ and $g(x) := e^{5x}$, then

$[f \otimes g](t) = \boxed{\dots}$

DA: Mon. 30Nov $\mathcal{L}(t^{26}e^{3t})(s) = \boxed{\dots}$