

is $\hat{f}(s) =$

.....

Abbrevs. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And \mathbb{X} = “*Contradiction*”.

IST: ‘*It Suffices to*’ as in ISTShow, ISTExhibit.Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. *inter alia*: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

C-Bonus: Wed. 19 Nov Operators $\mathbf{V}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ map from $\mathbf{C}^\infty \rightarrow \mathbf{C}^\infty$, and \mathbf{V} is linear. The other maps are

$$\begin{aligned}\mathbf{P}(f) &:= [t \mapsto f(t) + 3], & \mathbf{Q}(f) &:= [t \mapsto f(t + 3)], \\ \mathbf{R}(f) &:= [t \mapsto f(f(t))], & \mathbf{S}(f) &:= \mathbf{V}(\mathbf{V}(f)),\end{aligned}$$

Then... \mathbf{P} is linear: $\mathcal{T} F$. \mathbf{Q} is linear: $\mathcal{T} F$.
 \mathbf{R} is linear: $\mathcal{T} F$. \mathbf{S} is linear: $\mathcal{T} F$.

Q1.5: Mon. 01 Dec The Laplace transform of the function $f(t) := 5 + \mathbf{H}(t - 4)$
is $\hat{f}(s) =$

.....

Q2: Mon. 08 Dec Gamma fnc: $\mathbf{\Gamma}(5) =$ and $\mathbf{\Gamma}(\frac{5}{2}) =$

.....

For all real $x > 1$, our $\mathbf{\Gamma}()$ function satisfies recurrence relation $\mathbf{\Gamma}(x) =$

.....

That's All, Folks!

Hi. Rewritten, the-above operator \mathbf{P} is $\mathbf{P}(f) := 3 + f$.
The-above \mathbf{Q} is what familiar operator?
The-above operator \mathbf{R} is $\mathbf{R}(f) := f \circ f$.
The-above operator \mathbf{S} is $\mathbf{S} := \mathbf{V} \circ \mathbf{V}$. \square

Compare the preceding question with the Exam-C TF-question, and its solution, below:

C1c DiffOperators $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ are defined by

$$\begin{aligned}\mathbf{P}(f) &:= f(4) \cdot f', & \mathbf{Q}(f) &:= \cos(4) \cdot f^{(4)}, \\ \mathbf{R}(f) &:= [\cos(4) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(4) + [4f'].\end{aligned}$$

Then... \mathbf{P} is linear: $\mathcal{T} F$. \mathbf{Q} is linear: $\mathcal{T} F$.
 \mathbf{R} is linear: $\mathcal{T} F$. \mathbf{S} is linear: $\mathcal{T} F$.

Below, a quiz symbol such as Q1.4 refers to Quiz 1 of the 4th-period class.

Q1.4: Mon. 01 Dec The Laplace transform of the function $f(t) := \mathbf{H}(t - 2) - 3$