

Abbrevs. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Q1: Fri. 30 Aug Function $h()$ satisfies $h'' - 4h' - 5h = 0$,

and initial conditions $h(0) = 2$ and $h'(0) = 3$. So

$$h(t) = \alpha e^{At} + \beta e^{Bt}, \text{ for numbers}$$

$$\alpha = \boxed{\dots}, A = \boxed{\dots}, \beta = \boxed{\dots}, B = \boxed{\dots}$$

Q2: Wed. 04 Sep For $x > 0$, let $B(x) := x^{\sin(3x)}$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals

$\boxed{\dots}$
[Hint: How is y^z , for $y > 0$, defined ITOf the exponential fnc?]

Q3: Wed. 11 Sep Function y satisfies FOLDE

$$y' + [\frac{1}{x} \cdot y] = 6x.$$

Its gen.soln is $y(x) = \boxed{\dots}$

The specific solution satisfying $y(1) = 14$ is

$$y(x) = \boxed{\dots}$$

Q4: Wed. 18 Sep With $f(t) := \int_{\sin(5t)}^7 \log(\cos(x)) dx$, then $f'(t)$ equals

$\boxed{\dots}$
Simplified, $f'(0) = \boxed{\dots}$

[Hint: Chain rule and Fund. Thm of Calculus.]

Q5: Fri. 20 Sep DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is exact, where

$$\mathcal{N}(x, y) := [x^2 - 7] \quad \text{and} \quad \mathcal{M}(x, y) := 2xy + 3e^{3x}.$$

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where $\mathbf{F}(x, y) = \boxed{\dots}$

Q6: Mon. 23 Sep DE $[2xy \cdot \frac{dy}{dx}] + [2 + 3x]y^2 = 0$ is not, alas, exact. Happily, multiplying both sides by (non-constant) fnc $W(x) = \boxed{\dots}$

gives a new DE which is exact. Did you *Check*?

Q7: Mon. 30 Sep DE $[(2xy + 8y) \cdot \frac{dy}{dx}] + 4y^2 = 0$ is not, alas, exact. Happily, multiplying both sides by (non-constant) fnc $W(x) = \boxed{\dots}$

gives a new DE which is exact. Did you *Check*?

Q8: Wed. 02 Oct Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$

$$\text{Thus } \frac{5-i}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}.$$

$$\text{By the way, } |5-3i| = \boxed{\dots}.$$

Q9: Fri. 04 Oct Binomial coefficient $\binom{8}{5,3} = \boxed{\dots} = \boxed{\dots}$

Also,

$$\frac{7i}{4-3i} = \boxed{\dots} + i \cdot \boxed{\dots}.$$

Q10: Mon. 14 Oct DE $h'' - 2h' + 10h = 0$, has fund.-set of solns $\{e^{\alpha t}, e^{\beta t}\}$, for complex numbers $\alpha = \boxed{\dots}$ and $\beta = \boxed{\dots}$

Alternatively, we can write our fund.-set as

$$e^{Jt} \cdot \cos(Kt) \quad \text{and} \quad e^{Jt} \cdot \sin(Kt),$$

for real numbers $J = \boxed{\dots}$ and $K = \boxed{\dots}$

QB: Wed. 16Oct Number $6 \cdot \exp\left(i \cdot \frac{5\pi}{3}\right)$ equals $x + yi$ for reals

$$x = \text{_____} \quad \text{and } y = \text{_____}$$

With $v := \exp(-2 + 5i)$, then $|v| = \text{_____}$.

And $|v|$ lies in circle the correct interval

$$[0, \frac{1}{2}), \quad [\frac{1}{2}, 1), \quad [1, 2), \quad [2, 4), \quad [4, 8), \quad [8, \infty).$$

QC: Mon. 06Nov We can re-write function

$$f(t) := 2\cos\left(\frac{11}{6}\pi + 4t\right) + \sqrt{3}\cos(\pi + 4t)$$

as $f(t) = R\cos(\theta + 4t)$, for real numbers

$$R = \text{_____} \geq 0 \text{ and } \theta = \text{_____} \in [0, 2\pi).$$

[Hint: OYOP, write $\cos()$ as the real-part of $\exp(\text{something})$, and Draw Yourself a large Useful Picture in the complex plane.]

Soln. Let $\alpha = \frac{11}{6}\pi$ and $T := \sqrt{3}$. Note $f(0)$ equals the real part of

$$V := 2e^{\alpha i} + Te^{\pi i} \stackrel{\text{note}}{=} 2e^{\alpha i} - T \stackrel{\text{note}}{=} -i.$$

Thus $R = |-i| = 1$ and $\theta = \text{Arg}(-i) = \frac{3}{2}\pi$.

QD: Wed. 20Nov Matrix $G := \begin{bmatrix} 6 & -3 & 1 \\ 12 & -6 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

is nilpotent. Computing, $G^2 = \text{_____}$.

The $(1, 3)$ -entry of e^{Gt} is _____.

The $(2, 2)$ -entry of e^{Gt} is _____.

QE: Mon. 02Dec The Laplace transform of fnc $f(t) := \cos(7t)$ is $\hat{f}(s) = \text{_____}$.

For IVP $3y'' - y = \cos(7t)$ with $y(0)=2$ and $y'(0)=5$, then,

$$\hat{y}(s) = \text{_____}$$

That's All, Folks!