

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘*sequence*’. poly(s): ‘*polynomial(s)*’. irred: ‘*irreducible*’. Coeff: ‘*coefficient*’ and var(s): ‘*variable(s)*’ and parm(s): ‘*parameter(s)*’. Expr.: ‘*expression*’. Fnc: ‘*function*’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘*continuity*’. cts: ‘*continuous*’. diff’able: ‘*differentiable*’. CoV: ‘*Change-of-Variable*’. Col: ‘*Constant of Integration*’. Lol: ‘*Limit(s) of Integration*’.

Soln: ‘*Solution*’. Thm: ‘*Theorem*’. Prop’n: ‘*Proposition*’. CEX: ‘*Counterexample*’. eqn: ‘*equation*’. RhS: ‘*RightHand Side*’ of an eqn or inequality. LhS: ‘*left-hand side*’. Sqrt or Sqroot: ‘*square-root*’, e.g, “the sqroot of 16 is 4”. Ptn: ‘*partition*’, but pt: ‘*point*’, as in “a fixed-pt of a map”.

FTC: ‘*Fund. Thm of Calculus*’. IVT: ‘*intermediate-Value Thm*’. MVT: ‘*Mean-Value Thm*’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is $\exp()$. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘*Polynomial-times-exponential*’. E.g, $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Phrases. WLOG: ‘*Without loss of generality*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. Use iff: ‘*if and only if*’.

IST: ‘*It Suffices to*’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

R1: Wed.
20 Jan LBolt gives $G := \text{Gcd}(413, 294) = \boxed{\dots}$. And $413S + 294T = G$, where $S = \boxed{\dots}$ & $T = \boxed{\dots}$ are integers.

R2: Mon.
25 Jan Mod $K := 50$, the recipr. $\langle \frac{1}{21} \rangle_K = \boxed{\dots} \in [0..K]$.
[Hint: $\frac{1}{21} = \frac{1}{21} \cdot 1 = \frac{1}{21} \cdot (21 \cdot 1 + 1) = \frac{1}{21} \cdot 1 + \frac{1}{21} \cdot 21$] So $x = \boxed{\dots} \in [0..K]$ solves $4 - 21x \equiv_K 1$.

R3: Wed.
27 Jan LBolt: $\text{Gcd}(51, 85) = \boxed{\dots} \cdot 51 + \boxed{\dots} \cdot 85$.
So (LBolt again) $G := \text{Gcd}(51, 85, 15) = \boxed{\dots}$ and
 $\boxed{\dots} \cdot 51 + \boxed{\dots} \cdot 85 + \boxed{\dots} \cdot 15 = G$.

R4: Mon.
01 Feb Magic integers $G_1 = \boxed{\dots}$, $G_2 = \boxed{\dots}$,
 $G_3 = \boxed{\dots}$, each in $(-165..165]$, are st. mapping
 $g: \mathbb{Z}_6 \times \mathbb{Z}_5 \times \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{330}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \langle z_1 G_1 + z_2 G_2 + z_3 G_3 \rangle_{330}.$$

Verify for your map: $g((1, 1, 1)) = 1$ and $[5 \cdot 11] \bullet G_1$ and analogously for G_2 and G_3 .

R5: Fri.
12 Feb a Suppose $y \in \text{QR}_N$, where N is oddprime. You compute Bézout mults U and V st. $yU + NV = 1$. Then “ U is a mod- N square” is: AT AF Nei
b With $p := 323$, and $H := \frac{p-1}{2}$, note $66^H \equiv_p -2$. Thus p is

R6: Mon.
15 Feb Integer $M := 23$ is prime. each of the M -QRs, below. [Hint: At least two can be done by inspection.]

–1 6 7 19

R7: Fri.
26 Feb Since $4800 = 2^6 \cdot 3 \cdot 5^2$, it has many positive divisors. [Write ANS naturally as a product of integers.]

R8: Mon.
07 Mar The divisor-sum $\sigma(1500) =$.

Express your answer a product $p_1^{e_1} \cdot p_2^{e_2} \cdot \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

For a prime q and natnum N , the divisor-sum is

$\sigma(q^N) =$ $=$.

R9: Fri.
11 Mar Three Jacobi symbols: Two blanks are immed.:

$\left(\frac{4203}{2006}\right) =$ \cdot $\left(\frac{4203}{99}\right) =$ \cdot $\left(\frac{120}{27113}\right) =$ \cdot

Fix a prime q and natnums N and K . Then a closed-formula

for σ_N is: $\sigma_N(q^K) =$.

RA: Mon.
18 Apr The 1948 paper that introduced information-

theoretic entropy was written by **DNE**

Archimedes **Euler** **Fuchs** **Gauss**

Meshalkin **Shannon** **Sinai** **Ziv**