
NT-Cryptography
MAT4930 7554 Quizzes Z 30Jan2013

Z1:Wed.
30 Jan

a
LBolt gives G := GCD(23, 413)=

.
. And

23S + 413T = G, where S=
. . . . . . . . .

& T=
. . . . . . . . .are integers.

b
Euler ϕ(121000) =

. . . . . . . . . . . . . . . . . . . . . . . . . .
.

Express your answer as a product p1
e1 ·p2

e2 · . . . of primes
to posint powers, with p1 < p2 < . . . .

Z2:Mon.
11Feb Magic integers G1=

. . . . . . . .
, G2=

. . . . . . . .
,

G3=
. . . . . . . . . . . .

, each in ( 165 .. 165], are st. mapping

g:Z6×Z5×Z11→Z330 is a ring-isomorphism, where

g
(
(((z1, z2, z3)))

)
:=
〈
z1G1 + z2G2 + z3G3

〉
330

.

Verify for your map: g
(
(((1, 1, 1)))

)
= 1 and [5 · 11] •| G1 and

analogously for G2 and G3.

Z3:Wed.
13Feb With A := 13, B := 15, U := A·B = 195, let J

be [ 97 .. 97]. There is a ring-iso g:ZA×ZB→ZU sending
(((α, β))) to

〈
Gα+Hβ

〉
U
, using magic numbers

G=
. . . . . . . . . . . . . .

∈J and H=
. . . . . . . . . . . . . .

∈J. A

mod-U root of poly f(x) := 15·[x+ 10]3 + 13·[x− 2]

is
(((

. . . . . . .
,

. . . . . . .

))) g7−→
. . . . . . . . . . . . . .

∈J.

Z4:Mon.
18Feb Consider the four congruences C1: z ≡8 1,

C2: z ≡18 15, C3: z ≡21 18 and C4: z ≡10 3. Let zj be
the smallest natnum satisfying (C1) All. . . (Cj). Then
z2=

. . . . . . . . . . .
; z3=

. . . . . . . . . . .
; z4=

. . . . . . . . . . .
.

(z1 = 1), z2 = 33, z3 = 249, z4 = 753 .

Z5:Wed.
27Feb Alice’s RSA code has modulus is N = 143,

and encryption exponent E := 37, both public. Bob
has a message that can be interpreted as a number m
in [0 .. N). Since Alice knows the secret factorization
N = p·q into primes, p=13, q=11, she can compute the
decryption exponent d=

. . . . . . . . . . . .
∈ Z+. Bob’s en-

crypted message µ :=
〈
mE
〉
N

= 141. Alice decrypts it
to
〈
µd
〉
N

=
. . . . . . . . . . . . . . . . . . .

∈ [0 .. N).

Bonus:Fri.01Mar

i
Prof. King wears bifocals, and cannot read small hand-

writing.
�� ��Circle one: True! Yes! Who??

ii
Modulo Q := 72, poly h(x) := x2 + 16x− 17 has

. . . . . . . . . . . . . .
many roots.

Z6:Mon.
18Mar Bits 〈2〉0 〈3〉1 〈4〉0 〈3〉0 〈6〉1 〈0〉〈7〉 decode in

Idx-form, e.g 〈7〉1 〈3〉1 〈9〉0 . . . 〈3〉1 〈0〉〈4〉, to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

As 20 bits, it is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

having used Ziv seeded with 〈0〉=‘’, 〈1〉=‘1’, and 〈2〉=‘0’.
Employing our fivebit-code, the 20 bits decode

to symbols
. . . . . . . . . . . . . . . . . . . .

.

Z7:Fri.22Mar Bits 01001010100100001110001101101100111

decode in Idx-form, e.g 〈7〉1 〈3〉1 〈9〉0 . . . 〈3〉1 〈0〉〈4〉, to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

As 15 bits, it is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

having used Ziv seeded with 〈0〉=‘’, 〈1〉=‘1’, and 〈2〉=‘0’.
Employing our fivebit-code, the 15 bits decode

to symbols
. . . . . . . . . . . . . . .

.

Z8:Wed.
27Mar Using dictionary 0: ε, 1: “1′′, 2: “0′′, compute

EnZiv(11001010)=
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,

in 〈7〉1〈34〉0 . . . notation. In bits, EnZiv(11001010) is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

§A Potential quiz problems

Some of these may eventually appear on
quizzes/exams; naturally, with different data. (And
some quiz problems may appear that are not here.) Write
DNE if the object does not exist or the operation
cannot be performed. NB: DNE 6= {} 6= 0.

Phi1: N := ϕ(100)=
. . . . . . . .

. So ϕ(N)=
. . . . . . . .

.
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EFT says that 3165 ≡N
. . . . . . . . . .

∈ [0 .. N). Hence (by

EFT) last two digits of 7[3
165] are

. . . .
.

Phi2: Write 272009 ≡7
. . . . . . . . . . . .

(i.e, working mod 7)

and 935 ≡7
. . . . . . . . . . . . . . . .

, each as a value in [0 .. 7).

[Hint: This can be done by inspection.]

RS1: With M := 22 and J := [0 ..M), use repeated-
squaring to compute 61024 ≡M

. . . . . . .
∈ J. Since 1033

equals 210 + 23 + 20, power 61033 ≡M
. . . . . . . . . . . . .

∈J.

[Hint: Compute with symm. residues, and use periodicity.]

CRT and Fusion problems. The fun stuff!

CRT1: With A := 29, B := 20, U := A·B = 580, let J
be ( 290 .. 290]. There is a ring-iso g:ZA×ZB→ZU sending
(((α, β))) to

〈
Gα+Hβ

〉
U
, using magic numbers

G=
. . . . . . . . . . . . . .

∈J and H=
. . . . . . . . . . . . . .

∈J. A

mod-U root of poly f(x) := 20·[x+ 9]3 + 29·[x− 4]

is
(((

. . . . . . .
,

. . . . . . .

))) g7−→
. . . . . . . . . . . . . .

∈J.

CRT2:
i

Show all steps, except the  tables, to
compute a magic tuple G so that g:Z5×Z6×Z7→Z210 is a
ring-isomorphism, where

g
(
(((z1, z2, z3)))

)
:=
〈
z1G1 + z2G2 + z3G3

〉
210

.

ii
Consider poly h(x) := [x− 2][x− 32][x− 8]. Find

all solutions to congruences h(x) ≡M 0, for M = 5, 6, 7,
displaying the results in a nice table. (Do not show work for
this step.)

Now use your ring-iso to compute all solns x to�� ��h(x) ≡210 0 , displaying the results in a table which shows
which 3tup each came from. There are (not counting multi-
plicities) K:=

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
many solns.

Explain your method well; then show one computation
giving a root different (mod 210) from 2, 32, 8.

CRT3: Consider the three congruences C1: z ≡21 18,
C2: z ≡15 3, and C3: z ≡70 53. Let zj be the smallest
natnum [or DNE ] satisfying (C1) All. . . (Cj). Then
z2=

. . . . . . . . . . . . . . . . . . . . . .
; z3=

. . . . . . . . . . . . . . . . . . . . . .
.

CRT4: Consider the four congruences C1: z ≡8 1,
C2: z ≡18 15, C3: z ≡21 18 and C4: z ≡10 3. Let zj be
the smallest natnum satisfying (C1) All. . . (Cj). Then
z2=

. . . . . . . . . . .
; z3=

. . . . . . . . . . .
; z4=

. . . . . . . . . . .
.

CRT5: Let f(x) := x2 − 9x+ 14, and N := 30425
note
===

p · 25, where p := 1217 is prime. The number of solns
x ∈ [0 .. N) to

�� ��f(x) ≡N 0 is K=
. . . . . . . . .

. A number

Z ∈ [0 .. N) such
that f(Z) 6= 0 yet f(Z) ≡N 0 is

. . . . . . . . . . . . . .
.

[Hint: Find solns mod-p and mod-25, then use CRT.]

Misc problems. For Miss Cellaneous.

Mod1: For a posint K, let ≡ mean ≡K .
Defn: Expression “x ≡ y” means. . . .

Please prove: Thm:For all b, β, g, γ ∈ Z, if b ≡ β and
g ≡ γ then [b · g] ≡ [β · γ].

Orb1: Define G:[1 .. 12] � where G(n) is the number of
letters in the nth Gregorian month. So G(2) = 8, since the
2nd month is “February”. The only fixed-point of G is

. . . .
.

The set of posints k with G◦k(12) = G◦k(7)

is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

[Symbol G◦k is the composition-kth-power of G. So G◦3(n) means
G
(
G(G(n))

)
].

[January, February, March, April, May, June, July, August, Septem-
ber, October, November, December]

mf1: Since 4800 = 26 · 31 · 52, it has
. . . . . . . . . . . . . . . .

many positive divisors. [Write ANS naturally as a product of
integers.]

mf2: The divisor-sum σ(1500) =

. . . . . . . . . . . . . . . . . . . . .

.

Express your answer a product p1
e1 · p2

e2 · . . . of primes to
posint powers, with p1 < p2 < . . . .

Cyc1: Applying the Floyd cycle-finding (Tortoise&Hare)
to a finite orbit which has tail T := 3 and eventual-period
L := 4, yields hitting time H=

. . . . . . . . . . . . . . . . . . . . . .
.

Coding

cH1
Suppose the letters A F H M N U have frequen-

cies 12
170 ,

46
170 ,

38
170 ,

18
170 ,

15
170 ,

41
170 , respectively. Construct

the unique Huffman prefix-code with these frequen-
cies; at each coalescing, use 0 for the less-probable
branch and 1 for the more-probable. Draw the Huff-
man tree (large!). Label the branches and leaves with
bits and letters. The name HUFFMAN encodes to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

Filename: code-enhuff.E.tex
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Examining the tree, what kind of Being is HUFFMAN?
Answering the question “What’re y’all?”,

message 10100010101001110100110111010! decodes
to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!

cH2
The Huffman code with letter-probabilities

I :1266 M : 566 O : 766 R : 466 S :3266 T : 666

codes these to bitstrings: I :
. . . . . . . .

M :
. . . . . . . .

O :
. . . . . . . .

R :
. . . . . . . .

S :
. . . . . . . .

T :
. . . . . . . .

.

Bitstring 1101101110011001110 decodes to

. . . . . . . . . . . . . .
, answering: “What is Big Moose’s name?”

Essay1: Compute a Huffman code for these five symbols.
A: 4/27

. . . . . . . . . . . . . . . . . . . . .
B: 1/27

. . . . . . . . . . . . . . . . . . . . .
C: 14/27

. . . . . . . . . . . . . . . . . . . . .
D: 2/27

. . . . . . . . . . . . . . . . . . . . .
E: 6/27

. . . . . . . . . . . . . . . . . . . . .
When coalescing, use “0” to go to the smaller-prob. word.

And MECL( 4
27 ,

1
27 ,

14
27 ,

2
27 ,

6
27 )= . . . . . . . . . . . . . . . . . .

bits.

ii
Give the example (with picture) from class of a mini-

mum expected-length code which is not a Huffman code.
Argue that your code is indeed of MECL, and is not Huff-
man.

iii
State the Huffman Coding thm from class. Sketch a

proof of it; just show the main ideas. (And pictures)

cE1
Bitstring “0001000101111111101101001”, via

the Elias code, decodes to
. . . . . . . . . . . . . . . . . . . . . . .

,

a sequence of natnums [hint: gun-blip-blip], followed by
noise-bits

. . . . . . .
.

Conv, Elias(84)=
. . . . . . . . . . . . . . . . . . . . . . . .

(bitstring)

cZ1
Using dictionary 0: ε, 1: “1′′, 2: “0′′, compute

EnZiv(11001010)=
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,

in 〈7〉1〈34〉0 . . . notation. In bits, EnZiv(11001010) is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

cZ2
Bits 01001010100100001110001101101100111

decode in Idx-form, e.g 〈7〉1 〈3〉1 〈9〉0 . . . 〈3〉1 〈0〉〈4〉,
to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

As 15 bits, it is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

having used Ziv seeded with 〈0〉=‘’, 〈1〉=‘1’, and
〈2〉=‘0’.

Employing our fivebit-code, the 15 bits decode
to symbols

. . . . . . . . . . . . . . .
.

Playing with fields

C1
Blanks∈R. So 1

2+3i= . . . . . . . . .
+i·
[
. . . . . . . . .

]
.

Thus
7− 2i
2 + 3i

=
. . . . . . . . . . . . . . .

+ i·
[
. . . . . . . . . . . . . . .

]
.

By the way, |5− 3i| =
. . . . . . . . . . . . . . .

.

C2
Reals x=

. . . . . . . . . . . .
and y=

. . . . . . . . . . . .
where x+ iy = [1 + i]86. [Hint: Multiplying complexes
multiplies their moduli, and adds their angles.]

Filename: Classwork/NumberThy/NT2013g/quizzes.Cryp2013g.latex


