

Q1: Wedn.
26 Jan $N := \varphi(100) = \lfloor \dots \rfloor$. So $\varphi(N) = \lfloor \dots \rfloor$.
EFT says that $3^{165} \equiv_N \lfloor \dots \rfloor \in [0..N]$. Hence (by EFT) last two digits of $7^{[3^{165}]} \lfloor \dots \rfloor$ are $\lfloor \dots \rfloor$.

Q2: Fri.
28 Jan With $M := 22$ and $J := [0..M]$, use repeated squaring to compute $6^{4096} \equiv_M \lfloor \dots \rfloor \in J$. Since 4101 equals $2^{12} + 2^2 + 2^0$, the power $6^{4101} \equiv_M \lfloor \dots \rfloor \in J$.
[Hint: Compute with symm. residues, and use periodicity.]

Q3: Mon.
31 Jan Define $G:[1..12] \circlearrowright$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is $\lfloor \dots \rfloor$. The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is $\lfloor \dots \rfloor$.

[January, February, March, April, May, June, July, August, September, October, November, December]

Q4: Wedn.
2 Feb With $A := 29$, $B := 20$, $U := A \cdot B = 580$, let \mathbf{J} be $(-290..290]$. There is a ring-iso $F: \mathbb{Z}_A \times \mathbb{Z}_B \rightarrow \mathbb{Z}_U$ sending (α, β) to $\langle G\alpha + H\beta \rangle_U$, using magic numbers

$G = \lfloor \dots \rfloor \in \mathbf{J}$ and $H = \lfloor \dots \rfloor \in \mathbf{J}$. A mod- U root of poly $h(x) := 20 \cdot [x + 10]^3 + 29 \cdot [x - 2]$ is $(\lfloor \dots \rfloor, \lfloor \dots \rfloor) \xrightarrow{F} \lfloor \dots \rfloor \in \mathbf{J}$.

Q5: Wedn.
9 Feb Let $L() := \log_2()$. The **distribution entropy** of probability-vector $(\frac{1}{8}, \frac{1}{32}, \frac{1}{32}, \frac{1}{32}, \frac{25}{32})$ equals $\lfloor \dots \rfloor$.

Q6: Wedn.
23 Feb Bits $\langle 2 \rangle 0 \langle 3 \rangle 1 \langle 4 \rangle 0 \langle 3 \rangle 0 \langle 6 \rangle 1 \langle 0 \rangle \langle 7 \rangle$ decode in Idx-form, e.g. $\langle 7 \rangle 1 \langle 3 \rangle 1 \langle 9 \rangle 0 \dots \langle 3 \rangle 1 \langle 0 \rangle \langle 4 \rangle$, to

Q7: Mon.
28 Feb Define the **numeral map** $h:[1..12] \circlearrowright$, where $h(n)$ is the number of letters in the n^{th} numeral. So $h(12)$ equals 6, since “twelve” has 6 letters. Compute the convolution $[h \circledast \mu](10) = \lfloor \dots \rfloor$.

Let $g := \sigma^{\otimes -1}$ [i.e, the convol-inverse of the divisor-sum fnc]. So $g(2) = \lfloor \dots \rfloor$, $g(9) = \lfloor \dots \rfloor$ and $g(18) = \lfloor \dots \rfloor$.

Q8: Fri.
4 Mar Using 32-symbol alphabet “**abc...z ,?!,**” mapped to $[0..32]$, the 27-character phrase

“**bpqzinpr?zmpqlupe?x nkwnczg**”

comes from cleartext which *undoubtedly* starts with “**a fine quiz**”. The encryption affine-map is thus $\alpha \mapsto \left[\lfloor \dots \rfloor \cdot \alpha \right] + \lfloor \dots \rfloor$ mod-32. Decryption is $\beta \mapsto \left[\lfloor \dots \rfloor \cdot \beta \right] + \lfloor \dots \rfloor$ mod-32. The full cleartext is

Q9: Mon.
21 Mar Applying the Floyd cycle-finding (Tortoise & Hare) to a finite orbit which has tail $T := 3$ and eventual-period $L := 4$, yields $\text{hitting time } H = \lfloor \dots \rfloor$.

Q10: Fri.
4 Mar Solve *Some Of* the World’s Problems.

§A Potential quiz problems

Some of these may appear on quizzes/exams; naturally, with different data. *Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.*

PF

Use Pollard- ρ to find a non-trivial factor of $N := 250997$, using seed $s_0 := 33287$ and map $f(x) := 1+x^2$. Make a nice table, labeled

Time | Tortoise | Hare | $s_{2k} - s_k$ | Gcd(??)

—but *replace the “??” with the correct expression*. You found non-trivial factor $E :=$

[Fact: Your table has ≤ 4 lines.]

rs1

Sequence $\vec{s} := (s_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$s_{n+2} = s_{n+1} + 3s_n, \quad \text{with initial-conditions}$$

$$s_1 := -1 \text{ and } s_0 := 7.$$

With $\mathbf{v}_n := \begin{bmatrix} s_{n+1} \\ s_n \end{bmatrix}$, matrix $\mathbf{M} :=$ satisfies

$\forall k: \mathbf{v}_k = \mathbf{M}^k \mathbf{v}_0$. Henceforth in ring $\mathbb{Z}_{10} = [0..10]$,

power $\mathbf{M}^{32} \equiv$ and $s_{40} \equiv$

cr0

With $A := 29$, $B := 20$, $U := A \cdot B = 580$, let \mathbf{J} be $(-290..290]$. There is a ring-iso $F: \mathbb{Z}_A \times \mathbb{Z}_B \rightarrow \mathbb{Z}_U$ sending (α, β) to $\langle G\alpha + H\beta \rangle_U$, using magic numbers $G =$ $\in \mathbf{J}$ and $H =$ $\in \mathbf{J}$. A

mod- U root of poly $h(x) := 20 \cdot [x+10]^3 + 29 \cdot [x-2]$ is $($, $) \xrightarrow{F}$ $\in \mathbf{J}$.

cr1

So $z =$ is the smallest natnum satisfying

$$z \equiv_7 -2, \quad z \equiv_8 -1, \quad z \equiv_{11} 5, \quad z \equiv_{15} 12.$$

cr2

Magic integers $G_1 =$, $G_2 =$, $G_3 =$, each in $(-165..165]$, are st. mapping $g: \mathbb{Z}_6 \times \mathbb{Z}_5 \times \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{330}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \langle z_1 G_1 + z_2 G_2 + z_3 G_3 \rangle_{330}.$$

Verify for your map: $g((1, 1, 1)) = 1$ and $[5 \cdot 11] \bullet G_1$ and analogously for G_2 and G_3 .

cr3

Essay ques: Magic integers $G_1 =$, $G_2 =$, $G_3 =$, $G_4 =$, each in $[0..1260)$,

are st. $g: \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \rightarrow \mathbb{Z}_{1260}$ is a ring-iso, where

$$g((z_1, z_2, z_3, z_4)) := \langle z_1 G_1 + z_2 G_2 + z_3 G_3 + z_4 G_4 \rangle_{1260}.$$

Now consider poly $h(x) := [x+59][x-1][x+83]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 7, 4, 9, 5$, displaying the *results* in a nice table. (Do **not** show work for this step.)

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{1260} 0$, displaying the results in a table which shows *which* 4tup each came from. There are (not counting multiplicities) $K :=$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 1260) from $-59, 1, -83$.

sf

According to class defn, circle those integers which are **square-free**: $-8, -4, -2, 0, 1, 12, 27, 65$.

l

Poly $h(x) := \sum_{n=0}^2 V_n x^n$ satisfies $h(1)=4, h(2)=9, h(-1)=6$. Then $V_0 =$, $V_1 =$, $V_2 =$

m5

$\mathbf{M} := \begin{bmatrix} 70 & 7 \\ 1 & 2 \end{bmatrix}$. Compute \mathbf{M}^{-1} over these three fields. [Write your \mathbb{Z}_p answers using symmetric residues.]

Over \mathbb{Z}_5 :

$$\mathbf{M}^{-1} = \begin{bmatrix} \dots & \dots \end{bmatrix}.$$

Over \mathbb{Q} :

$$\mathbf{M}^{-1} = \begin{bmatrix} \dots & \dots & \dots \end{bmatrix}.$$

mf1

Since $4800 = 2^6 \cdot 3^1 \cdot 5^2$, it has many positive divisors. [Write ANS naturally as a product of integers.]

mf2

The divisor-sum $\sigma(1500) =$

Express your answer a product $p_1^{e_1} \cdot p_2^{e_2} \cdot \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

Definitions, and their application

Use \mathbb{F} for a general field, and \mathbf{V} is an \mathbb{F} -VS.

p1

The **distropy** (distribution entropy) of a probability vector $\vec{p} = (p_1, p_2, \dots, p_N)$ is $\mathcal{H}(\vec{p}) =$

p1 A polynomial $h(x)$ is **monic** IFF
 [Imagine 3 blank lines].

p2 A polynomial $g(x, y, z)$ is **homogeneous** IFF
 [Imagine 5 blank lines].

Coding

cH1 Suppose the letters A F H M N U have frequencies $\frac{12}{170}, \frac{46}{170}, \frac{38}{170}, \frac{18}{170}, \frac{15}{170}, \frac{41}{170}$, respectively. Construct the unique Huffman prefix-code with these frequencies; at each coalescing, use **0** for the less-probable branch and **1** for the more-probable. **Draw** the Huffman tree (large!). Label the branches and leaves with bits and letters. The name HUFFMAN encodes to

Examining the tree, what kind of *Being* is HUFFMAN?
 Answering the question “What’re y’all?”, message **10100010101001110100110111010!** decodes to !

cH2 The Huffman code with letter-probabilities
 $I: \frac{12}{66}$ $\mathcal{M}: \frac{5}{66}$ $O: \frac{7}{66}$ $\mathcal{R}: \frac{4}{66}$ $S: \frac{32}{66}$ $T: \frac{6}{66}$
 codes these to bitstrings: $I: \dots$ $\mathcal{M}: \dots$
 $O: \dots$ $\mathcal{R}: \dots$ $S: \dots$ $T: \dots$
 Bitstring **1101101110011001110** decodes to , answering: “*What is Big Moose’s name?*”

Essay1: Compute a Huffman code for these five symbols.
 A: 4/27 \dots
 B: 1/27 \dots
 C: 14/27 \dots
 D: 2/27 \dots
 E: 6/27 \dots

When coalescing, use “**0**” to go to the smaller-prob. word.
 And $\text{MECL}(\frac{4}{27}, \frac{1}{27}, \frac{14}{27}, \frac{2}{27}, \frac{6}{27}) =$ bits.

ii Give the example (with picture) from class of a minimum expected-length code which is **not** a Huffman code. Argue that your code is indeed of MECL, and is not Huffman.

iii State the **Huffman Coding thm** from class. Sketch a proof of it; just show the **main ideas**. (And pictures)

As of 03Feb2011, we have not yet covered some of the following coding material.

cE1 Bitstring “**000100010111111101101001**”, via the Elias code, decodes to , a sequence of *natnums* [hint: gun-blip-blip], followed by noise-bits .

Conv, Elias(84)= (bitstring)

cZ1 Using dictionary 0: ϵ , 1: “**1**”, 2: “**0**”, compute $\text{EnZiv}(11001010) =$, in $\langle 7 \rangle 1 \langle 34 \rangle 0 \dots$ notation. In bits, $\text{EnZiv}(11001010)$ is

cZ2 Bits **01001010100100001110001101101100111** decode in **Idx-form**, e.g $\langle 7 \rangle 1 \langle 3 \rangle 1 \langle 9 \rangle 0 \dots \langle 3 \rangle 1 \langle 0 \rangle \langle 4 \rangle$, to

As 15 bits, it is having used *Ziv* seeded with $\langle 0 \rangle = \epsilon$, $\langle 1 \rangle = '1'$, and $\langle 2 \rangle = '0'$.

Employing our fivebit-code, the 15 bits decode to symbols

Playing with fields

C1 Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \dots + i \cdot \left[\dots \right]$.

Thus $\frac{7-2i}{2+3i} = \dots + i \cdot \left[\dots \right]$.

By the way, $|5-3i| =$

C2 Note $[1 + i]^{86} = \left[\dots \right] + i \cdot \left[\dots \right]$.

[Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

Geometric series

GS1 Compute the sum of this geometric series:

$$\sum_{\beta=3}^{\infty} [-1]^{\beta} \cdot [3/5]^{\beta} = \dots$$

GS2 For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n \text{ equals } \dots$$

GS3 $\sum_{n=0}^2 r^n = \frac{19}{25}$. So $r = \dots$ or DNE.

GS4 $\sum_{k=1}^{\infty} r^k = \frac{5}{8}$. So $r = \dots$ or DNE.

[Hint: The sum starts with k at **one**, not zero.]

GS5 Compute the sum of this geometric series:

$$\sum_{n=0}^{\infty} \left[\frac{4}{2+3i} \right]^n = \dots$$

GS6 Compute the sum of this geometric series:

$$\sum_{k=0}^{\infty} \left[\frac{2+3i}{4} \right]^k = \dots$$