
NT-Cryptography
MAT4930 7554 Quizzes Q 29Sep2010

Q1:Wedn.
26 Jan N := ϕ(100)=

. . . . . . .
. So ϕ(N)=

. . . . . . .
.

EFT says that 3165 ≡N
. . . . . . . . . .

∈ [0 .. N). Hence (by

EFT) last two digits of 7[3
165] are

. . . .
.

Q2:Fri.28 Jan With M := 22 and J := [0 ..M), use repeated-

squaring to compute 64096 ≡M
. . . . . . .

∈ J . Since 4101

equals 212 + 22 + 20, the power 64101 ≡M
. . . . . . . . .

∈J .

[Hint: Compute with symm. residues, and use periodicity.]

Q3:Mon.
31 Jan Define G:[1 .. 12] � where G(n) is the number of

letters in the nth Gregorian month. So G(2) = 8, since
the 2nd month is “February”. The only fixed-point of G
is

. . . . . .
. The set of posints k where G◦k(12) = G◦k(7)

is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

[January, February, March, April, May, June, July, August, Septem-
ber, October, November, December]

Q4:Wedn.
2Feb With A := 29, B := 20, U := A·B = 580, let J

be ( 290 .. 290]. There is a ring-iso F :ZA×ZB→ZU send-
ing (((α, β))) to

〈
Gα+Hβ

〉
U
, using magic numbers

G=
. . . . . . . . . . . . . .

∈J and H=
. . . . . . . . . . . . . .

∈J. A

mod-U root of poly h(x) := 20·[x+ 10]3 + 29·[x− 2]

is
(((

. . . . . . .
,

. . . . . . .

))) F7−→
. . . . . . . . . . . . . .

∈J.

Q5:Wedn.
9Feb

i
Let L() := log2(). The distribution

entropy of probability-vector ((( 1
8 ,

1
32 ,

1
32 ,

1
32 ,

25
32)))

equals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

ii
With A := 29, B := 20, U := A·B = 580, let J

be ( 290 .. 290]. There is a ring-iso F :ZA×ZB→ZU send-
ing (((α, β))) to

〈
Gα+Hβ

〉
U
, using magic numbers

G=
. . . . . . . . . . . . . .

∈J and H=
. . . . . . . . . . . . . .

∈J. A

mod-U root of poly h(x) := 20·[x+ 10]3 + 29·[x− 2]

is
(((

. . . . . . .
,

. . . . . . .

))) F7−→
. . . . . . . . . . . . . .

∈J.

Q6:Wedn.
23Feb Bits 〈2〉0 〈3〉1 〈4〉0 〈3〉0 〈6〉1 〈0〉〈7〉 decode in

Idx-form, e.g 〈7〉1 〈3〉1 〈9〉0 . . . 〈3〉1 〈0〉〈4〉, to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

As 20 bits, it is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

having used Ziv seeded with 〈0〉=‘’, 〈1〉=‘1’, and 〈2〉=‘0’.
Employing our fivebit-code, the 20 bits decode

to symbols
. . . . . . . . . . . . . . . . . . . .

.

Q7:Mon.
28Feb Define the numeral map h:[1 .. 12] �, where

h(n) is the number of letters in the nth numeral. So h(12)
equals 6, since “twelve” has 6 letters.
Compute the convolution [h~ µ](10)=

. . . . . . . . . . . . . .
.

Let g := σ~ 1 [i.e, the convol-inverse of the divisor-sum fnc].
So g(2)=

. . . . .
, g(9)=

. . . . .
and g(18)=

. . . . . . . . . . . . .

Q8:Fri.4Mar Using 32-symbol alphabet “abc...z ’.?!,”
mapped to [0 .. 32), the 27-character phrase

“ bpqzinpr?zmpqlupe?x nkwnczg”

comes from cleartext which undoubtedly starts with
“a fine quiz”. The encryption affine-map is
thus α 7→

[[
. . . . .

· α
]
+

. . . . .

]
mod-32. Decryption is

β 7→
[[

. . . . .
· β
]
+

. . . . .

]
mod-32. The full cleartext is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q9:Mon.
21Mar Applying the Floyd cycle-finding

(Tortoise&Hare) to a finite orbit which has tail T := 3 and
eventual-period L := 4, yields hitting time H=

. . . . . . . .
.

Q10:Fri.4Mar Solve Some Of the World’s Problems.

§A Potential quiz problems

Some of these may appear on quizzes/exams; natu-
rally, with different data. Write DNE in a blank if
the described object does not exist or if the indi-
cated operation cannot be performed.
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PF
Use Pollard-ρ to find a non-trivial factor

of N := 250997, using seed s0 := 33287 and map
f(x) := 1+x2. Make a nice table, labeled

Time Tortoise Hare s2k − sk Gcd(??)

—but replace the “??” with the correct expression.
You found non-trivial factor E :=

. . . . . . . . . . . . . . . .
.

[Fact: Your table has 64 lines.]

rs1
Sequence ~s := (((sn)))

∞
n= ∞ is defined by recur-

rence

sn+2 = sn+1 + 3sn ,
with initial-conditions
s1 := 1 and s0 := 7.

With vn :=
[
sn+1

sn

]
, matrix M :=

. . . . . . . . . . . .
satisfies

∀k: vk = Mkv0. Henceforth in ring Z10 = [0 .. 10),
power M32 ≡

. . . . . . . . . . . . . . . . . .

and s40 ≡ . . . . . . .
.

cr0
With A := 29, B := 20, U := A·B = 580, let

J be ( 290 .. 290]. There is a ring-iso F :ZA×ZB→ZU
sending (((α, β))) to

〈
Gα+Hβ

〉
U
, using magic numbers

G=
. . . . . . . . . . . . .

∈J and H=
. . . . . . . . . . . . .

∈J. A

mod-U root of poly h(x) := 20·[x+ 10]3 + 29·[x− 2]

is
(((
. . . . . . .

,
. . . . . . .

))) F7−→
. . . . . . . . . . . .

∈J.

cr1
So z=

. . . . .
is the smallest natnum satisfying

z ≡7 2, z ≡8 1, z ≡11 5, z ≡15 12.

cr2
Magic integers G1=

. . . . . . . .
, G2=

. . . . . . . .
,

G3=
. . . . . . . . .

, each in ( 165 .. 165], are st. mapping

g:Z6×Z5×Z11→Z330 is a ring-isomorphism, where

g
(
(((z1, z2, z3)))

)
:=

〈
z1G1 + z2G2 + z3G3

〉
330

.

Verify for your map: g
(
(((1, 1, 1)))

)
= 1 and [5 · 11] •| G1

and analogously for G2 and G3.

cr3
Essay ques: Magic integers G1=

. .
, G2=

. .
,

G3=
. . . . . . . . .

, G4=
. . . . . . . . .

, each in [0 .. 1260),

are st. g:Z7×Z4×Z9×Z5→Z1260 is a ring-iso, where

g
(
(((z1, z2, z3, z4)))

)
:=
〈
z1G1 + z2G2 + z3G3 + z4G4

〉
1260

.

Now consider poly h(x) := [x+59][x− 1][x+83].
Find all solutions to congruences h(x) ≡M 0, forM =
7, 4, 9, 5, displaying the results in a nice table. (Do not
show work for this step.)

Now use your ring-iso to compute all solns x to�� ��h(x) ≡1260 0 , displaying the results in a table which
shows which 4tup each came from. There are (not
counting multiplicities) K:=

. . . . . . . . . . . . . .
many solns.

Explain your method well; then show one computa-
tion giving a root different (mod 1260) from 59, 1, 83.

sf
According to class defn,

�� ��circle those integers
which are square-free : 8, 4, 2, 0, 1, 12, 27, 65.

`
Poly h(x) :=

2∑
n=0

Vn x
n satisfies h(1)=4, h(2)=9,

h( 1)=6. Then V0=
. . . . .

, V1=
. . . . .

, V2=
. . . . .

.

m5
M :=

[
70 7
1 2

]
. Compute M 1 over these three

fields. [Write your Zp answers using symmetric residues.]

Over Z5: M 1=
. . . . . . . . . .

. Over Z7: M 1=
. . . . . .

.

Over Q: M 1=
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

mf1
Since 4800 = 26 · 31 · 52, it has

. . . . . . . . . . . .
many positive divisors. [Write ANS naturally as a product
of integers.]

mf2
The divisor-sum σ(1500) =

. . . . . . . . . . . . . . . .

.

Express your answer a product p1
e1 ·p2

e2 ·. . . of primes
to posint powers, with p1 < p2 < . . . .

Definitions, and their application

Use F for a general field, and V is an F-VS.

p1
The distropy (distribution entropy) of a probabil-

ity vector ~v = (((p1, p2, . . . , pN))) is H(~v) =
. . . . . . . . .

.

Filename: Classwork/NumberThy/NT2011g/quizzes.Cryp2011g.latex
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p1
A polynomial h(x) is monic IFF

. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.[Imagine 3 blank lines]

p2
A polynomial g(x, y, z) is homogeneous IFF

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.[Imagine 5 blank lines]

Coding

cH1
Suppose the letters A F H M N U have frequen-

cies 12
170 ,

46
170 ,

38
170 ,

18
170 ,

15
170 ,

41
170 , respectively. Construct

the unique Huffman prefix-code with these frequen-
cies; at each coalescing, use 0 for the less-probable
branch and 1 for the more-probable. Draw the Huff-
man tree (large!). Label the branches and leaves with
bits and letters. The name HUFFMAN encodes to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

Examining the tree, what kind of Being is HUFFMAN?
Answering the question “What’re y’all?”,

message 10100010101001110100110111010! decodes
to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!

cH2
The Huffman code with letter-probabilities

I :1266 M : 566 O : 766 R : 466 S :3266 T : 666

codes these to bitstrings: I :
. . . . . . . .

M :
. . . . . . . .

O :
. . . . . . . .

R :
. . . . . . . .

S :
. . . . . . . .

T :
. . . . . . . .

.

Bitstring 1101101110011001110 decodes to

. . . . . . . . . . . . . .
, answering: “What is Big Moose’s name?”

Essay1: Compute a Huffman code for these five symbols.
A: 4/27

. . . . . . . . . . . . . . . . . . . . .
B: 1/27

. . . . . . . . . . . . . . . . . . . . .
C: 14/27

. . . . . . . . . . . . . . . . . . . . .
D: 2/27

. . . . . . . . . . . . . . . . . . . . .
E: 6/27

. . . . . . . . . . . . . . . . . . . . .

When coalescing, use “0” to go to the smaller-prob. word.

And MECL( 4
27 ,

1
27 ,

14
27 ,

2
27 ,

6
27 )= . . . . . . . . . . . . . . . . . .

bits.

ii
Give the example (with picture) from class of a mini-

mum expected-length code which is not a Huffman code.
Argue that your code is indeed of MECL, and is not Huff-
man.

iii
State the Huffman Coding thm from class. Sketch a

proof of it; just show the main ideas. (And pictures)

As of 03Feb2011, we have not yet covered some
of the following coding material.

cE1
Bitstring “0001000101111111101101001”, via

the Elias code, decodes to
. . . . . . . . . . . . . . . . . . . . . . .

,

a sequence of natnums [hint: gun-blip-blip], followed by
noise-bits

. . . . . . .
.

Conv, Elias(84)=
. . . . . . . . . . . . . . . . . . . . . . . .

(bitstring)

cZ1
Using dictionary 0: ε, 1: “1′′, 2: “0′′, compute

EnZiv(11001010)=
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

,

in 〈7〉1〈34〉0 . . . notation. In bits, EnZiv(11001010) is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

cZ2
Bits 01001010100100001110001101101100111

decode in Idx-form, e.g 〈7〉1 〈3〉1 〈9〉0 . . . 〈3〉1 〈0〉〈4〉,
to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.

As 15 bits, it is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

having used Ziv seeded with 〈0〉=‘’, 〈1〉=‘1’, and
〈2〉=‘0’.

Employing our fivebit-code, the 15 bits decode
to symbols

. . . . . . . . . . . . . . .
.

Playing with fields

C1
Blanks∈R. So 1

2+3i= . . . . . . . .
+i ·

[
. . . . . . . .

]
.

Thus
7− 2i
2 + 3i

=
. . . . . . . . . . . . . .

+ i ·
[
. . . . . . . . . . . . . .

]
.

By the way, |5− 3i | =
. . . . . . . . . . . . . . .

.

Filename: complex-power.tex
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C2
Note [1 + i ]86=

[
. . . . . . . . .

]
+ i ·

[
. . . . . . . . .

]
.

[Hint: Multiplying complexes multiplies their moduli, and adds
their angles.]

Geometric series

GS1
Compute the sum of this geometric series:

∞∑
β=3

[ 1]β · [3/5]β =

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

GS2
For natural number K, the sum∑3+K

n=3
4n equals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

GS3 2∑
n=0

rn =
19

25
. So r=

. . . . . . . . . . .
or DNE.

GS4 ∞∑
k=1

rk =
5

8
. So r=

. . . . . . . . . . . . .
or DNE.

[Hint: The sum starts with k at one, not zero.]

GS5
Compute the sum of this geometric series:

∞∑
n=0

[ 4

2 + 3i

]n
=

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

GS6
Compute the sum of this geometric series:

∞∑
k=0

[2 + 3i
4

]k
=

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

Filename: Classwork/NumberThy/NT2011g/quizzes.Cryp2011g.latex


