

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “*interval of integers*” $[b..c)$ means the intersection $[b, c) \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. $\text{poly}(s)$: ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and $\text{var}(s)$: ‘variable(s)’ and $\text{parm}(s)$: ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc : means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘left-hand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘**Polynomial-times-exponential**’. E.g, $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Factorial. Def: $n! := n \cdot [n-1] \cdot [n-2] \cdots 2 \cdot 1$; so $0! = 1$.

Rising Fctr: $\llbracket x \uparrow K \rrbracket := x \cdot [x+1] \cdot [x+2] \cdots [x+[K-1]]$,

Falling Fctr: $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$,

for natnum K and $x \in \mathbb{C}$. E.g, $\llbracket K \downarrow K \rrbracket = K! = \llbracket 1 \uparrow K \rrbracket$.

N.B: For $n \in \mathbb{Z}$: If $K > n$ then $\llbracket n \downarrow K \rrbracket = 0$.

Note $\llbracket x \uparrow K \rrbracket = \llbracket x + [K-1] \downarrow K \rrbracket$.

Summation function. Given a function f on \mathbb{N} , its **summation function** is

$$1a: \quad \widehat{f}(N) := \sum_{n \in [0..N]} f(n).$$

If f is a polynomial of degree $D \in \mathbb{N}$, then \widehat{f} is a polynomial of degree $D+1$.

To see this, define the K^{th} **binomial polynomial**, for $K \in \mathbb{N}$, by

$$1b: \quad \mathcal{B}_K(x) := \frac{x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]}{K!},$$

which we may also write as $\binom{x}{K} = \frac{\llbracket x \downarrow K \rrbracket}{K!}$. Rewrite the binomial identity $\binom{n}{K+1} = \binom{n-1}{K+1} + \binom{n-1}{K}$ as

$$\binom{n-1}{K} = \binom{n}{K+1} - \binom{n-1}{K+1}.$$

Summing over n , and using that $\binom{0}{K+1} = 0$ [since $K+1$ is positive] shows that

$$1c: \quad \widehat{\mathcal{B}_K} = \mathcal{B}_{K+1}.$$

The binomial polys $\{\mathcal{B}_K\}_{K=0}^{\infty}$ form a basis for the vectorspace of polys. Since the $f \mapsto \widehat{f}$ map is linear, we can compute the summation-poly of arbitrary polynomials.

[ASIDE: Stronger, collection $\{\mathcal{B}_K\}_{K=0}^{\infty}$ is a \mathbb{Z} -basis for the set of \mathbb{Z} -coeff polynomials; however, this fact isn’t obvious.]

Combinatorial graphs. Some notation:

General graphs, G, H, D, S . Empty graph: Emp_N .

Complete graph: K_N . Complete bipartite graph: $K_{3,5}$.

Cyclic graph: C_N . Wheel graph: W_{N+1} , is a vertex attached to each of the N vertices of C_N .

Path-graph P , which is a special case of a tree-graph, T_N .

Named graph, e.g, *Tetrahedron*.

Comb II quizzes so far...

PB: Fri. 19Jan With $a_n := 1 + n^2$, its

$$\text{OGF } A(x) := \sum_{n=0}^{\infty} a_n x^n = \dots$$

[Hint: *dddx-trick*]

PC: Wed. 31Jan *Am I in class today?*

circle one *“Yes!”* *“Of course!”*

PD: Mon. 05Feb Perm $\alpha \in \mathbb{S}_7$ is $\langle 7 \ 1 \ 4 \ 2 \ 6 \ 3 \ 5 \rangle$. A particular permutation β satisfying $\beta^3 = \alpha$, is

$$\beta = \langle 7 \ \dots \ 2 \rangle.$$

And $\text{Sgn}(\beta)$ is (circle): **+1** **-1**.

PE: Fri. 12Feb The coeff of $x^7 y^{12}$

in $[5x + y^3 + 1]^{30}$ is \dots .

[You may write in form number times multinomial-coeff. You can leave the multinomial-coeff as such, or write ITOf factorials.]

PF: Fri. 02Mar The # of (vertex-labeled)

forests on $[1..50]$ is \dots .

PG: Wed. 14Mar The number of (labeled) spanning trees

on $[1..7]$ is \dots .

On $[1..N]$, the number of (labeled) **rooted** spanning forests with ≥ 2 components is \dots .

PH: Wed. 28Mar The girls' prefs are:

$$G1 \begin{bmatrix} B2 \\ B1 \\ B5 \\ B4 \\ B3 \end{bmatrix}, \quad G2 \begin{bmatrix} B2 \\ B1 \\ B5 \\ B4 \\ B3 \end{bmatrix}, \quad G3 \begin{bmatrix} B5 \\ B2 \\ B3 \\ B4 \\ B1 \end{bmatrix}, \quad G4 \begin{bmatrix} B5 \\ B2 \\ B3 \\ B1 \\ B4 \end{bmatrix}, \quad G5 \begin{bmatrix} B2 \\ B5 \\ B4 \\ B3 \\ B1 \end{bmatrix}.$$

The boys' prefs are:

$$B1 \begin{bmatrix} G1 \\ G2 \\ G3 \\ G4 \\ G5 \end{bmatrix}, \quad B2 \begin{bmatrix} G4 \\ G5 \\ G3 \\ G2 \\ G1 \end{bmatrix}, \quad B3 \begin{bmatrix} G5 \\ G4 \\ G3 \\ G2 \\ G1 \end{bmatrix}, \quad B4 \begin{bmatrix} G3 \\ G5 \\ G1 \\ G4 \\ G2 \end{bmatrix}, \quad B5 \begin{bmatrix} G1 \\ G2 \\ G3 \\ G4 \\ G5 \end{bmatrix}.$$

Show the steps to compute a Stable-Matching, and the result, when the boys ask the girls. Ditto, when the girls ask the boys.

That's All, Folks! (Semester 2)

Comb I quizzes

P1: Wed. 27Sep Let G_n be the number of coin-flip sequences of length $2n$, with “first-return-to-zero” happening at time $2n$. Let F_n count those such sequences that start with HEADS.

Then $F_{50} =$

.....

P2: Mon. 02Oct The number of diagonal lattice-paths from $(0, 0)$ to $(31, 7)$ which *never* touch the $y=10$ line is

.....

P3: Wed. 04Oct Stirling's Formula says: $n! \sim$

.....

Am I in class today?

circle one “Yes!” “Of course!”

P4: Mon. 09Oct The 4th Bell number is 15. List, in number-of-atoms order, the 15 partitions of $\{1, 2, 3, 4\}$.

P5: Wed. 11Oct Permutation β has cycle-signature $\lceil 5^9 \rceil$.

It has many 4th-roots with sig $\lceil 5^9 \rceil$.

.....

and with sig $\lceil 20^2, 5^1 \rceil$.

.....

[Answers can be a product of multinomials, powers, numbers.]

P6: Wed. 25Oct *The Broken Problem:* Handedin = 30pts.

Permutation β has cycle-signature $\lceil 5^9 \rceil$.

The # of β -5th-roots with sig $\lceil 20^1, 15^1, 5^2 \rceil$ is

.....

P7: Fri. 27Oct Bipartite graph $K_{7,2}$ is Eulerian. $T \quad F$

The number of permutations of $[1..6]$ which have *neither* $\langle 4 \ 1 \rangle$

nor $\langle 6 \ 3 \ 2 \rangle$ is

.....

[Use Incl-Excl form: $\square - \square + \square - \square + \dots$ as appropriate.]

PBonus: Fri. 17Nov The chromatic-poly of a tree T with 5 vertices

is $\mathcal{P}_T(x) =$

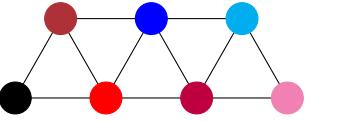
In $\Omega := [1..100]$, the number of elements which are a multiple of 3 or 5 (or both) is

.....

P8: Mon. 13Nov

Truss exercise: Graph has Chromatic poly $\mathcal{P}(x) =$

[Can be done by inspection. Express in *chromatic form*.]



P9: Mon. 27Nov *Bird with a broken wing:* Graph



has Chromatic

poly $\mathcal{P}(x) =$

[Can be done by inspection. Do not bother to multiply out.]

PA: Wed. 29Nov The number of labeled 6-vertex graphs of type shown on blackboard, is:

A:

.....

B:

.....

C:

.....

That's All, Folks! (Semester 1)