

Abbrevs. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Q1: Wed. 05 Sep In \mathbb{R}^3 , the closest point to $\mathbf{v} := (1, 2, 3)$ on the line through $\mathbf{0}$ and $\mathbf{q} := (-2, 7, 0)$, is $\alpha\mathbf{q}$, where $\alpha =$

In \mathbb{R}^2 , with $\mathbf{s} := (1, 8)$ and $\mathbf{w} := (4, -2)$, compute $\text{Orth}_{\mathbf{w}}(\mathbf{s}) =$

.....

Q2: Wed. 12 Sep **a** Consider distinct $\mathbf{p}, \mathbf{q} \in \mathbb{R}^3$. Using set-builder notation,

$\text{Line}(\mathbf{p}, \mathbf{q}) =$

b The unit 2-sphere, $\mathbb{S}^2 \stackrel{\text{def}}{=} \{\mathbf{u} \in \mathbb{R}^3 \mid \langle \mathbf{u}, \mathbf{u} \rangle = 1^2\}$, is a convex set.

Q3: Fri. 14 Sep In \mathbb{R}^3 , let $\mathbf{u} := (3, 0, -2)$, $\mathbf{v} := (1, 1, 1)$ and

$\mathbf{w} := (3, -3, -7)$. **Circle**: Then $\mathbf{w} \in \text{Line}(\mathbf{u}, \mathbf{v})$: **T F**

Then $\mathbf{w} \in \text{Span}(\mathbf{u}, \mathbf{v})$: **T F**

Then $\text{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbb{R}^3$: **T F**

Q4: Wed. 19 Sep Cross-product $[2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}] \times [3\hat{\mathbf{i}} + 5\hat{\mathbf{k}}]$ equals

$\hat{\mathbf{i}} +$ $\hat{\mathbf{j}} +$ $\hat{\mathbf{k}}.$

For $\mathbf{p}, \mathbf{v} \in \mathbb{R}^3$: $\mathbf{p} \times \mathbf{v} = \mathbf{v} \times \mathbf{p}$. **AT AF Nei**

For $\mathbf{u}, \mathbf{q} \in \mathbb{R}^3$: $[\mathbf{u} \times 2\mathbf{q}] \perp 3\mathbf{u}$. **AT AF Nei**

Q5: Fri. 21 Sep Let $\mathbf{p} := (2, 1, 2)$, $\mathbf{q} := (1, 2, 3)$ and $\mathbf{r} := (1, 1, 1)$.

Then $\mathbf{n} := [\mathbf{p} - \mathbf{r}] \times [\mathbf{q} - \mathbf{r}] =$ The pt

on $\text{Plane}(\mathbf{p}, \mathbf{q}, \mathbf{r})$ closest to $\mathbf{0}$ is

Q6: Tue. 25 Sep Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. **Circle** one:

True! **Yes!** **What's a sentence?**

A multivariate polynomial, where each monomial has the same degree, is **circle**

monogamous	atrocious	gregarious
monic	expialadocious	homogeneous
manic	unitary	Unitarian
		utilitarian

Q7: Fri. 28 Sep Consider sets Ω and B and fnc $f: \Omega \rightarrow B$. Then

$\text{Graph}(f) =$ (Set-builder notation)

Suppose $g: \mathbb{R}^L \rightarrow \mathbb{R}^N$ is continuous. Then

$\text{Dim}(\text{Graph}(g)) =$

For points $\mathbf{T}_k, \mathbf{S} \in \mathbb{R}^3$, the phrase “[$\lim_{k \rightarrow \infty} \mathbf{T}_k$] = \mathbf{S} ” means $\lim_{k \rightarrow \infty}$ =

Q8: Wed. 03 Oct The matrix-product $\begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 1 \\ -2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 \\ 3 & 0 \\ 2 & -1 \end{bmatrix}$ equals

.....

Q9: Mon. 26 Nov Inside polar-curve $\text{RadialDist}(\theta) = \theta^3$, the area from ray $\theta = 0$ to $\theta = \frac{\pi}{2}$ is

QA: Fri. 30 Nov The gradient of $h(x, y) := 2^x y + \sin(xy^2)$ is $\hat{\mathbf{i}} +$ $\hat{\mathbf{j}}.$

QB: Tue. 04 Dec *Are you in class today?* ANSWER: “*Of course!*”

§A Potential quiz problems

Some of these may appear on quizzes; naturally, with different data. *Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.* [N.B: Question numbers starting with ‘T*’ are too long for microquizzes, but might appear on exams.]

Note: The next few questions may appear on nearby microquizzes, but the later questions need us to study further material first.

Line1: In \mathbb{R}^3 , let $\mathbf{u} := (8, 5, -1)$, $\mathbf{v} := (1, 0, -4)$ and $\mathbf{w} := (13, 10, 10)$. **Circle**: Then $\mathbf{w} \in \text{Line}(\mathbf{u}, \mathbf{v})$: **T F**

Then $\mathbf{w} \in \text{Span}(\mathbf{u}, \mathbf{v})$: F

Then $\text{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbb{R}^3$: F

CS1: Use $\langle \cdot, \cdot \rangle$ for the inner-product on \mathbb{R}^N . State the Cauchy-Schwarz Inequality Thm, fully stating the IFF-condition for equality.

.....

blank lines].

TI1: State the Triangle-inequality thm, fully stating the IFF-condition for equality. [Imagine 5 blank lines].

.....

Ang1: A pyramid over a 100ft \times 100ft base has height 20ft. Then $\cos(\beta) =$, where β is the angle between an apex-edge and a base-edge.

L2: The point $P := (5, -2)$, in the plane, has orthogonal projection $Q := ($, $)$ on \mathbb{L} , the line $y = 1 + 3x$. [Check that $Q \in \mathbb{L}$ and $[P - Q] \perp \mathbb{L}$.]

L3: In \mathbb{R}^3 , the point $P := (2, -1, 3)$ has orthogonal projection $\text{Proj}(P) = ($,, $)$ on the line passing through $(2, 2, 4)$ and the origin.

IP: Points $\mathbf{B}, \mathbf{C} \in \mathbb{R}^3$ are distinct. Show that the set $\Omega := \{ \mathbf{v} \in \mathbb{R}^3 \mid \langle \mathbf{v} - \mathbf{B}, \mathbf{v} - \mathbf{C} \rangle = 5 \}$ is a sphere. Its radius, r , satisfies $r^2 =$ (ITOf $\mathbf{B}, \mathbf{C}, 5$).

.....

CS&TI: Triangle Inequality Thm: For all $\mathbf{u}, \mathbf{w} \in \mathbf{V}$, we have that $\|\mathbf{u} + \mathbf{w}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\|$. (Omitted: The IFF-condition for equality.)

Derive the Triangle-Inequality Thm, using the C-S thm.

Cvx1: Give an example of a non-convex subset, Ω , of \mathbb{R}^1 . [Imagine 4 blank lines].

.....

SB1: In \mathbb{R}^3 , consider the closed radius=9 ball centered at $\widehat{\mathbf{0}}$; let Λ be its complement. Using set-builder notation, write $\Lambda = \{ \text{?} \mid \text{?} \}:$ [Imagine 2 blank lines].

.....

IP1: State the properties of an inner-product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^N . [Imagine 6 blank lines].

.....

Lin1: A fnc $L: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ is (*strictly*) *linear* if (state the two properties): [Imagine 4 blank lines].

.....

LI2: A collection $\mathcal{C} := \{ \mathbf{u}_1, \dots, \mathbf{u}_K \} \subset \mathbb{R}^N$ is *linearly-independent* if:

.....

blank lines].