

Q1: Frid. 5Feb $\int_0^{\pi/4} \sin(x)^3 \cdot \cos(x) dx =$

Q2: Tues. 9Feb The quotient and remainder polynomials,

$$q(x) = \frac{Bx^3 + Cx^2 + Dx + E}{x^4 + 5x^3 + 7x^2 + 3} \quad \text{and} \quad r(x) =$$

satisfy $B = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$, where $B(x) := x^4 + 5x^3 + 7x^2 + 3$ and $C(x) := x + 2$.

Q3: Frid. 12Feb $\int_3^{\infty} 1/[x^{17}] dx =$

Q4: Wedn. 17Feb By l'Hôpital's thm or other means, please compute

$$\lim_{x \rightarrow 0} \frac{e^x - 1}{3x - 1} = \quad \text{and} \quad \lim_{x \rightarrow \frac{\pi}{2}} \frac{\sin(2x)}{x - \frac{\pi}{2}} =$$

Q5: Tues. 30Mar Compute the sum of this geometric series:

$$\sum_{n=4}^{\infty} [-1]^n \cdot -2/3^n =$$

Q6: Frid. 16Apr For natural number K , the sum

$$\sum_{n=6}^{19+K} \left[\frac{-1}{4} \right]^n \text{ equals}$$

Q7: Tues. 20Apr Blanks $\in \mathbb{R}$. So $\frac{1}{3-4i} =$ + $i \cdot$

And $\frac{5+i}{3-4i} =$ + $i \cdot$

By the way, $|5 - 3i| =$

Q8: Tues. 20Apr $\sum_{n=0}^{\infty} \text{Im}(\text{e}^w) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots =$

Set $w := [3 + i]^2$. So $|w| =$

$\text{Im}\left(\frac{1}{w}\right) =$. $\text{Im}(\text{e}^w) =$

The note said: Remainder term in a Taylor series? N^{th} -coeff in a Taylor series? Complex exponential or sin or cos fnc? Argand plane, geometric interpretation of complex-arith? What is e^{4+3i} , real and imaginary parts? Solve problems C2, C3a, C3b, GS9, GS10.

§A Potential quiz problems

Some of these may appear on quizzes; naturally, with different data. *Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.*

pf1 $\frac{A}{x-1} + \frac{Bx+C}{x^2+1} = \frac{6x^2-7x+3}{[x-1][x^2+1]}$ with $B =$, $C =$

pf2 $\frac{Ex+F}{x^2+x+1} + \frac{Gx+H}{[x^2+x+1]^2} = \frac{x^3+3x^2+6x+6}{[x^2+x+1]^2}$. with numbers $G =$, $H =$

pf3 $\frac{A}{x-4} + \frac{B}{x+3} + \frac{C}{x+3} = \frac{2x^2-7x+2}{[x-4][x+3][x+3]}$ with $C =$ $\in \mathbb{Q}$.

Int1 $\int_2^{\infty} \frac{z}{3^z} dz =$

Int2 $\int \sqrt{5t^4 + t^2} dt =$

Int3 $\int_5^{\infty} \frac{1}{x \cdot [\log(x)]^3} dx =$

and $\int_5^{\infty} \frac{1}{x \cdot \log(x)} dx =$. [Subst.]

Arc1 Compute the **arclength** of the curve $P(t) := (3^t \cos(t), 3^t \sin(t))$ from $t = \pi$ to $t = 2\pi$.
Arclength =

Arc2 Compute the **arclength** of the curve $\mathbf{w}(t) := t^2 \hat{\mathbf{i}} + [\cos(t) + t \sin(t)] \hat{\mathbf{j}} + [\sin(t) - t \cos(t)] \hat{\mathbf{k}}$ from $t = 0$ to $t = \pi$.
Arclength =

Arc3 The graph of $y = \frac{1}{12x} + x^3$, for $x \in (1, 2)$, has length =

Int4 $\int_2^7 \sqrt{1+x^2} dt =$. [Hint: Be careful!]

 That a spiral is **equi-angular** precisely means that [Imagine 4 blank lines].

- The **tautochrone** curve satisfies (picture and explanation) [Imagine 5 blank lines].
- The **brachistochrone** curve satisfies (picture and explanation) [Imagine 5 blank lines].
- A polynomial $h(x)$ is **monic** IFF [Imagine 3 blank lines].
- A polynomial $g(x, y, z)$ is **homogeneous** IFF [Imagine 5 blank lines].

CoM1 The width of the (parallel) top and bottom edges of a trapezoid **T** are W and $W+12$, and its height is 18. So $\text{Area}(\mathbf{T}) =$. Geometrically, $\lim_{W \nearrow \infty} Y_W =$ and $Y_0 =$, where $Y_W \stackrel{\text{note}}{=}$ denotes the distance of Centroid(**T**) above Bottom(**T**).

CoM2 Glued to a massless plate is a 10 lb weight at the origin, a 15 lb weight at the point $(3, -1)$, and 5 lb at point $(\text{.....}, \text{.....})$, thus putting the center-of-mass of the weighted-plate at $(2, 1)$.

CoM3 In a disk, of radius 5ft, you drill a radius 2ft hole whose edge passes through the center of the disk. How far from the center of the *hole* is the centroid of the holed-disk? .

Some new quiz/exam problems:

GS0 $\sum_{n=0}^2 r^n = \frac{19}{25}$. So $r =$ or DNE.

GS1 Compute the sum of this geometric series: $\sum_{\beta=3}^{\infty} [-1]^\beta \cdot [3/5]^\beta =$.

GS2 For natural number K , the sum $\sum_{n=3}^{3+K} 4^n$ equals .

GS3 $\sum_{k=1}^{\infty} r^k = \frac{5}{8}$. So $r =$ or DNE.

[Hint: The sum starts with k at **one**, not zero.]

GS4 Express this sum as a rational in lowest terms. $\sum_{n=1}^{\infty} \frac{2^n - 5^n}{10^n} =$.

GS5a $\sum_{L=0}^{\infty} r^L = \frac{4}{9}$. So $r =$ or DNE.

GS5b $\sum_{J=0}^{\infty} \omega^J = \frac{7}{9}$. So $\omega =$ or DNE.

GS6 $\sum_{n=2}^{\infty} r^n = 1$. So $r =$ or DNE.

[Hint: The sum starts with n at **two**, not zero.]

GS7 $\sum_{n=-1}^{\infty} y^n = \frac{-4}{3}$. So $y =$ or DNE.

[Hint: The sum starts with n at **negative-one**, not zero.]

GS8 Compute the sum of this geometric series: $\sum_{n=2}^{\infty} [1/7]^{3n} =$.

TS1 Sum $\sum_{k=2}^{\infty} \frac{1}{k[k+3]} = \frac{U}{D}$, where $U = \dots$ and $D = \dots$ are co-prime posints.
 [Hint: Telescoping series (several). “Co-prime” means “with no common factor”.]

TS2 Let $b_n := \exp\left(\frac{4}{n+5}\right) \stackrel{\text{note}}{=} e^{4/[n+5]}$. Then $\sum_{n=4}^{\infty} [b_n - b_{n+1}] = \dots$.
 [Hint: A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .]

TS3 Let $b_n := \frac{\log_2(n) + n}{1 + 2n}$. Then $\sum_{n=2}^{\infty} [b_n - b_{n+1}] = \dots$.
 [Hint: A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .]

TS4 Let $b_n := [-1]^n \cdot \cos\left(\frac{[-1]^n}{n}\right)$. Then $\sum_{n=2}^{\infty} [b_n - b_{n+1}] = \dots$.
 [Hint: A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .]

TS5 Let $b_n := \log\left(\frac{5+n}{3+n^2}\right)$. Then $\sum_{n=-2}^{\infty} [b_n - b_{n+1}] = \dots$.
 [Hint: A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .]

A11 Series $\sum_{n=2}^{\infty} \frac{[-1]^n}{n \cdot \log(n)}$ (*circle one*): **diverges**, **converges-conditionally**, **converges-absolutely**.
 [Hint: Alternating-series-test and Integral-test.]

A12 Let $g(x) := x^2 - x - 1$ and $b_n := 1/n^4$. Then $\sum_{n=4}^{\infty} [-1]^n \cdot g(b_n) = \dots$.
 [A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .] [Hint: Roots of g are? And $\lim(\vec{b})$ is?]

A13 Let $f(x) := x^2 - x - 1$ and $b_n := 5^{\frac{n+1}{2n}}$. Then $\sum_{n=4}^{\infty} [-1]^n \cdot f(b_n) = \dots$.
 [A real, $+\infty$, $-\infty$ or **DNEin** \mathbb{R} .] [Hint: Roots of f are? And $\lim(\vec{b})$ is?]

C1 Sum $\sum_{n=4}^{\infty} \frac{\sin(n) + \sqrt{n}}{\cos(n) + n}$ converges in \mathbb{R} . **Circle** **F**
 [Hint: Limit-comparison test.]

C2 Sum $\sum_{n=1}^{\infty} \frac{5 + \sin(n)}{[3 - \cos(n)]n^2}$ converges in \mathbb{R} . **Circle** **F**
 [Hint: Comparison test.]

Create a series. Evidently, answers are not unique for the following questions. As always, **DNE** may be the correct answer.

Cr1 Sum $\sum_{j=1}^{\infty} a_j = \infty$ yet $\sum_{j=1}^{\infty} [-1]^j \cdot a_j < \infty$, where posreal $a_j := \dots$.

Cr2 Sum $\sum_{j=1}^{\infty} b_j = \infty$ yet $\sum_{j=1}^{\infty} b_j^2 < \infty$, where posreal $b_j := \dots$.

Cr3 Sum $\sum_{j=1}^{\infty} c_j^2 = \infty$ yet $\sum_{j=1}^{\infty} c_j < \infty$, where posreal $c_j := \dots$.

Cr4 Sum $\sum_{j=1}^{\infty} \theta_j = \infty$ yet $\sum_{j=1}^{\infty} \sin(\theta_j) < \infty$, where posreal $\theta_j := \dots$.

Cr5 Sum $\sum_{j=1}^{\infty} \sin(\varphi_j) = \infty$ yet $\sum_{j=1}^{\infty} \varphi_j < \infty$, where posreal $\varphi_j := \dots$.

Polar coordinates

PC1 Set $\mathbf{A} := \frac{4\pi}{3}$. Let C_1 be the polar-curve $r = \frac{1}{\cos(\theta)}$, and C_2 the polar-curve $r = 1/\cos(\mathbf{A} + \theta)$. The *unique* intersection point of these curves is (r_0, θ_0) , where $\theta_0 = \dots$ and $0 < r_0 = \dots$.

PC2 For scale-factor $S > 0$, let \mathcal{N}_S be the number of distinct intersection-points of polar-curve $r = \frac{S}{\cos(\theta)}$ with polar-curve $r = 2\cos(\theta)$. So $\mathcal{N}_3 = \boxed{\dots}$,

$$\mathcal{N}_2 = \boxed{\dots}, \quad \mathcal{N}_1 = \boxed{\dots} \quad \text{and} \quad \mathcal{N}_{-1} = \boxed{\dots}$$

PC3 Inside polar-curve $\text{RadialDist}(\theta) = \theta^2$, the area from ray $\theta = 0$ to $\theta = \frac{\pi}{2}$ is $\boxed{\dots}$.

[Hint: See P.650 in Stewart's text.]

PC4 The area inside *one lobe* of polar-curve $r = 4\cos(7\theta)$, is $\boxed{\dots}$.

[Hint: Recall $[\cos(\alpha)]^2 = \frac{1}{2}[1 + \cos(2\alpha)]$.]

PC5 Inside polar-curve $\text{RadialDist}(\theta) = \frac{1}{\cos(\theta)}$, the area from ray $\theta = \frac{\pi}{6}$ to $\theta = \frac{\pi}{2}$ is $\boxed{\dots}$.

[Hint: Graph the “curve”; the area is evident w/o integration]

PC6 The area *inside* of polar-curve $r = 8\cos(\theta)$, yet *outside* of $r = 4$, is $\boxed{\dots}$.

[Hint: Graphing the curves makes this easy.]

PC7 One lobe of polar-curve $r = 3\sin(5\theta)$, has area $\int_0^{\pi} \boxed{\dots} \left[\boxed{\dots} \right] \cdot d\theta$.

Powers series

Henceforth let Mac abbreviate *Maclaurin series*.

PS1 Power series $\sum_{n=3}^{\infty} \frac{[3x]^n}{n+7}$ has RoC= $\boxed{\dots}$.

PS2 The Mac of $\frac{5}{1-x^3}$ has RoC= $\boxed{\dots}$.
Mac(x)= $\boxed{\dots}$.

Write the first 5 non-zero terms,
e.g, $8x^3 + \frac{1}{8}x^6 + \frac{3}{2}x^9 - x^{12} - 7x^{15} + \dots$

PS3 The Mac of $\frac{t}{t^2+7}$ has RoC= $\boxed{\dots}$.

$$\text{Mac}(t) = \boxed{\dots}$$

Write the first 5 non-zero terms,

$$\text{e.g, } 8t^3 + \frac{1}{8}t^6 + \frac{3}{2}t^9 - t^{12} - 7t^{15} + \dots$$

PS4 The Mac of $\log(1-3x)$ has RoC= $\boxed{\dots}$.

$$\text{Mac}(x) = \boxed{\dots}$$

Write the first 5 non-zero terms,

$$\text{e.g, } 8x^3 + \frac{1}{8}x^6 + \frac{3}{2}x^9 - x^{12} - 7x^{15} + \dots$$

PS5 Power series $f(x) = \sum_{n=3}^{\infty} \frac{[3x-6]^n}{4+[2n]^3}$ has

RoC= $\boxed{\dots}$. And BoC= $\boxed{\dots}$.

PS6 The Mac of $x^3 e^x$ has RoC= $\boxed{\dots}$.

$$\text{Mac}(x) = \boxed{\dots}$$

Write the first 5 non-zero terms,

$$\text{e.g, } 8x^3 + \frac{1}{8}x^6 + \frac{3}{2}x^9 - x^{12} - 7x^{15} + \dots$$

PS7 Power series $g(t) = \sum_{n=3}^{\infty} \frac{n! \cdot [t+2]^n}{n^3+7}$ has

RoC= $\boxed{\dots}$. And BoC= $\boxed{\dots}$.

PS8 Power series $h(x) = \sum_{n=3}^{\infty} \frac{n! \cdot [x-2]^n}{n^n}$ has

RoC= $\boxed{\dots}$. And BoC= $\boxed{\dots}$.

C1 Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$.

$$\text{And } \frac{7-2i}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$$

$$\text{By the way, } |5-3i| = \boxed{\dots}$$

C2 In \mathbb{R} : $[1 + i]^{86} = \left[\dots \right] + i \cdot \left[\dots \right].$

[Hint: Multiplying complexes multiplies their modulii, and adds their angles. You may use sin and cos if you wish.]

C3a Write $\sqrt{3} + i$ as $r \cdot \text{cis}(\theta)$,
where $r = \dots \in \mathbb{R}_+$ and $\theta = \dots \in [0, \frac{\pi}{2}]$.

C3b Sqroot of $i - 1$ in the upper-halfplane is $r \cdot \text{cis}(\theta)$,
where $r = \dots \in \mathbb{R}_+$ and $\theta = \dots \in [0, \frac{\pi}{2}]$.

GS9 Compute the sum of this geometric series:

$$\sum_{n=1}^{\infty} \left[\frac{4}{2+3i} \right]^n = \dots$$

GS10 Compute the sum of this geometric series:

$$\sum_{k=0}^{\infty} \left[\frac{2+3i}{4} \right]^k = \dots$$

C4 The std.pic. of \mathbb{C} is called the \dots plane.
 Set $w := \log(3) \cdot [2 + i]$. So $|w| = \dots$.
 $\text{Re}(e^w) = \dots$ and $|\text{e}^w| = \dots$.