

Abbrevs.

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘left-hand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘Polynomial-times-exponential’. E.g, $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Phrases. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

S1: Fri 30 Aug Stmt $C \Rightarrow B$ has *contrapositive* $\neg B \Rightarrow \neg C$ and *converse* $\neg C \Rightarrow \neg B$. Recall $\&$, \vee , \neg mean AND, OR, NOT.

Using only symbols $\wedge, \vee, \neg, B, C,], [$, write $C \Rightarrow B$ as $\neg B \Rightarrow \neg C$.

S2: Mon 30 Sep Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \subset \bigcup_{\ell=r-4}^{r+7} \{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}$$

E3
E1
E2

E1: \dots . E2: \dots . E3: \dots .

S3: Wed 18 Sep LBolt gives $G := \text{Gcd}(133, 56) = \dots$. And $133S + 56T = G$, where $S = \dots$ & $T = \dots$ are integers.

S4: Fri 20 Sep LBolt: $\text{Gcd}(21, 15) = \dots \cdot 21 + \dots \cdot 15$.

So (LBolt again) $G := \text{Gcd}(21, 15, 35) = \dots$ and $\dots \cdot 21 + \dots \cdot 15 + \dots \cdot 35 = G$.

S5: Mon 23 Sep **B**-number (Blip number) 22 is **B**-irreducible: $T \mid F$.

B-numbers $K := \dots$ and $N := \dots$ are st. $22 \bullet [K \cdot N]$, yet $22 \nmid K$ and $22 \nmid N$. Hence 22 is *not* **B**-prime.

Also, $\text{B-GCD}(175, 70) = \dots$.

S6: Wed 02 Oct Mod $K := 50$, the recipr. $\langle \frac{1}{21} \rangle_K = \dots \in [0..K]$.

[Hint: $\frac{1}{21} = \frac{1}{21} \cdot 1$] So $x = \dots \in [0..K]$ solves $4 - 21x \equiv_K 1$.

S7: Mon 07 Oct Mod $K := 153$, the recipr. $\langle \frac{1}{10} \rangle_K = \dots \in [0..K]$.

[Hint: $\frac{1}{2}$] So $x = \lfloor \dots \rfloor \in [0..K)$ solves $7 - 10x \equiv_K 4$.

Coeff of x^2yz^5 in $[x+y+z]^8$ is $\lfloor \dots \rfloor$.

[You may leave your answer as a product of *posints*, or you may multiply-out.]

S8: Wed. 09Oct Coeff of x^3y^2 in $[x+1+2y]^8$ is $\lfloor \dots \rfloor$.

[You may leave your answer as a product of *posints*, or you may multiply-out.]

S9: Fri. 11Oct Euler $\varphi(121000) = \lfloor \dots \rfloor$.

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \cdot \dots$ of *primes* to posint powers, with $p_1 < p_2 < \dots$

The last 2 digits of 37^{162} are: $\lfloor \dots \rfloor \lfloor \dots \rfloor$.

SA: Wed. 16Oct Suppose **S** and **T** are each transitive binary-relations on a set Ω . Then

Rel. **T** \circ **S** is transitive: $AT \quad AF \quad Nei$

Rel. **S** \circ **S** is transitive: $AT \quad AF \quad Nei$

Now suppose **A** is an antireflexive binrel on Ω . Then

Rel. **A** \circ **A** is anti-reflexive: $AT \quad AF \quad Nei$

On $\Omega := [-9, 8]$, say $x \mathbf{R} y$ if $x \cdot y < 76$. So **R**

is Circle Reflexive Symmetric Transitive.

SB: Fri. 18Oct *Am I in class today?*

circle one *“Yes!”* *“Of course!”*

SC: Fri. 25Oct We consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$.

There are Anti-reflexive binrels,

and Reflexive binrels,

and Symmetric binrels. The

number of **strict total-orders** is $\lfloor \dots \rfloor$.

SD: Fri. 22Nov *Am I in class today?*

circle one *“Yes!”* *“Of course!”*

SE: Mon.
02Dec Between sets $\mathbf{S} := \mathbb{Z}_+$ and $\Omega := \mathbb{N}$, consider injections $f: \mathbf{S} \hookrightarrow \Omega$ and $h: \Omega \hookrightarrow \mathbf{S}$, defined by

$$f(x) := 3x \quad \text{and} \quad h(y) := y + 5.$$

Schröder-Bernstein produces a set $G \subset h(\Omega) \subset \mathbf{S}$ st., letting $U := \mathbf{S} \setminus G$, the fnc $\varphi: \mathbf{S} \hookrightarrow \Omega$ is a *bijection*, where

$$*: \quad \varphi|_U := f|_U \quad \text{and} \quad \varphi|_G := h^{-1}|_G.$$

For this (f, h) , the (U, G) pair is unique. Computing,

$$\varphi(17) = \text{_____} \quad \varphi(137) = \text{_____} \quad \varphi^{-1}(603) = \text{_____}$$

That's all there is,
There ain't no more,
unless I meet
that bear once more.