

Number Sets. An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

An “*interval of integers*” $[b..c)$ means the intersection $[b, c) \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- .

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘*polynomial(s)*’. irred: ‘*irreducible*’. Coeff: ‘*coefficient*’ and var(s): ‘*variable(s)*’ and parm(s): ‘*parameter(s)*’. Expr.: ‘*expression*’. Fnc: ‘*function*’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘*continuity*’. cts: ‘*continuous*’. diff’able: ‘*differentiable*’. CoV: ‘*Change-of-Variable*’. Col: ‘*Constant of Integration*’. Lol: ‘*Limit(s) of Integration*’.

Soln: ‘*Solution*’. Thm: ‘*Theorem*’. Prop’n: ‘*Proposition*’. CEX: ‘*Counterexample*’. eqn: ‘*equation*’. RhS: ‘*RightHand Side*’ of an eqn or inequality. LhS: ‘*left-hand side*’. Sqrt or Sqroot: ‘*square-root*’, e.g, “the sqroot of 16 is 4”. Ptn: ‘*partition*’, but pt: ‘*point*’, as in “a fixed-pt of a map”.

FTC: ‘*Fund. Thm of Calculus*’. IVT: ‘*intermediate-Value Thm*’. MVT: ‘*Mean-Value Thm*’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘*Polynomial-times-exponential*’. E.g, $F(t) := [3 + t^2] \cdot e^{4t}$ is a polyExp.

Phrases. WLOG: ‘*Without loss of generality*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. Use iff: ‘*if and only if*’.

IST: ‘*It Suffices to*’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Q1: Thu
05 Jul LBolt gives $G := \text{GCD}(413, 294) = \boxed{\dots}$. And $413S + 294T = G$, where $S = \boxed{\dots}$ & $T = \boxed{\dots}$ are integers.

Also $x = \boxed{\dots} \in [0..13)$ solves congr. $5x \equiv_{13} 3$.

Q2: Fri. 06 Jul LBolt: $\text{GCD}(70, 42) = \underbrace{\dots} \cdot 70 + \underbrace{\dots} \cdot 42.$

So (LBolt again) $G := \text{GCD}(70, 42, 60) = \underbrace{\dots} \cdot 70 + \underbrace{\dots} \cdot 42 + \underbrace{\dots} \cdot 60 = G.$

Q6: Thu. 12 Jul With $M := 22$ and $\mathbf{J} := [0..M)$, use repeated-squaring to compute $6^{1024} \equiv_M \underbrace{\dots} \in \mathbf{J}$. Since 1033 equals $2^{10} + 2^3 + 2^0$, power $6^{1033} \equiv_M \underbrace{\dots} \in \mathbf{J}$.
 [Hint: Compute with symm. residues, and use periodicity.]

Q3: Mon. 09 Jul Mod $K := 50$, the recipr. $\langle \frac{1}{21} \rangle_K = \underbrace{\dots} \in [0..K)$.

The last two digits of 29^{128} are $\underbrace{\dots} \dots$. [Hint: Use repeated-squaring, and look for a pattern.]

Q4: Tue. 10 Jul Euler $\varphi(36300) = 2^A \cdot 3^B \cdot 5^C \cdot 7^D \cdot 11^E$, where

$A = \underbrace{\dots}, B = \underbrace{\dots}, C = \underbrace{\dots}, D = \underbrace{\dots}, E = \underbrace{\dots}$.

As a single number, $\tau(36300) = \underbrace{\dots}$.

Q5: Wed. 11 Jul

With $M := 88$, congruence $36x \equiv_M 28$ has $N = \underbrace{\dots}$ solns in $[0..M)$. The *smallest* such is $S = \underbrace{\dots}$.

As $k = 0, 1, \dots, \underbrace{\dots}$, formula $S + [kB]$ gives *all* solns in $[0..M)$, where $B = \underbrace{\dots}$.

Q7: Mon. 16 Jul *Magic integers* G_1, G_2, G_3 , each in $[0..330]$, are such that the $g: \mathbb{Z}_5 \times \mathbb{Z}_6 \times \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{330}$ mapping is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 \right\rangle_{330}.$$

Then $G_3 = \text{_____} \in [0..330]$. Also: “Element $g((6, 11, 5))$ is a zero-divisor in \mathbb{Z}_{330} .” (Circle \mathcal{T} \mathcal{F})

Q8: Mon. 06 Aug Since $221 = 13 \cdot 17$, then $221 = a^2 + b^2$ where $a \perp b$ and posints $a = \text{_____} \leq b = \text{_____}$.

Doubling, $442 = x^2 + y^2$, where $x \perp y$ are posints, and $x = \text{_____} \leq y = \text{_____}$.

Q9: Tue. 07 Aug

A primitive Pythagorean triple has $a^2 + 28^2 = c^2$, where $a = \text{.....}$ and $c = \text{.....}$ with $a \perp c$.

That's All, Folks!

Mr. Green's will left *half* of his estate to his eldest, Abe; a *quarter* to Bert; and an *eighth* to his youngest, Carl. Alas, his "estate" comprises 7 horses; and nobody wants a fractional horse. [It's messy for the humans... —and uncomfortable for the horse.]

What to do?

Ta da! Nancy NumberTheorist rides up and adds her horse to the 7, making 8. She gives 4 horses to Abe, 2 to Bert, 1 horse to Carl, then rides off on her own horse, well contented.

Whoa! *Each child got more than his fair share of the estate, receiving his fraction out of 8 horses, rather than 7. And yet, Nancy lost nothing; she rides off into the *Sunset*, on *Sunset* [the name of her horse].*

Explain this

