

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\overline{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And ∇ = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Plex [2023g] quizzes so far...

Q1: Fri.
20 Jan Euler $\varphi(56) = \boxed{\dots}$.

Soln. Note $56 = 2^3 \cdot 7$. As φ is multiplicative,

$$\varphi(56) = \varphi(2^3) \cdot \varphi(7) = 2^2 \cdot [2-1] \cdot [7-1] = 24. \spadesuit$$

Mod $K:=51$, the reciprocal $\langle \frac{1}{20} \rangle_K = \boxed{23} \in [0..K]$.
 [Hint: $\frac{1}{20} = \frac{1}{2} \cdot \frac{1}{10} = \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{1}{2}$.] So $x = \boxed{18} \in [0..K]$ solves $5 - 20x \equiv_K 2$.

Recipe for Reciprocal: We do *not* need to compute the s -column, but I'll show it for reference.

(lightning 51 20)

n:	r_n	q_n	s_n	t_n
0:	51	--	1	0
1:	20	2	0	1
2:	11	1	1	-2
3:	9	1	-1	3
4:	2	4	2	-5
5:	1	2	-9	23
6:	0	Infty	20	-51

Note $\text{GCD} = r_0 * s + r_1 * t$, i.e
 $1 = [51]*[-9] + [20]*[23]$.

So $R := \langle 1 \div 20 \rangle_K \equiv_K 23$.

The congruence gives $20x \equiv_K 5 - 2 = 3$. Thus

$$x \equiv_K 23 \cdot [20 \cdot x] \equiv_K 23 \cdot 3 = 69 \equiv_K 18. \spadesuit$$

Q2: Wed. 25 Jan With $N := 85$, then $\varphi(N) = 64$. Thus EFT (Euler-Fermat) says that $3^{645} \equiv_N 73 \in [0..N]$.

φ -fi-foo-fum. Our $\varphi(N) = \varphi(5) \cdot \varphi(17) = 4 \cdot 16 = 64$, as prime-power factoring gives $85 = 5 \cdot 17$. And $645 \equiv_{64} 5$. Since $3 \perp 85$, EFT applies, asserting $3^{645} \equiv_{85} 3^5$. I.e,

```
% (mod 645 64) -> 5
```

```
% (repeated-squaring 3 5 85 :symmod nil)
```

```
/----- Mod 85 -----\
n: 2^n | Accum | 3^[2^n]
+-----+-----+
0: 1 | 1 | 3 <<
1: 2 | 3 | 9
2: 4 | 3 | 81 <<
All: done | 73 |
\----- Mod 85 -----/
```

So 3^5 is mod-85 congruent to the product of the << marked values, which is 73,

since $81 \cdot 3 \equiv_{85} -4 \cdot 3 = -12 \equiv_{85} 73$. ◆

Alternatively: We can avoid Euler-Fermat, as follows:

```
% (repeated-squaring 3 645 85)
```

```
/----- Mod 85 -----\
n: 2^n | Accum | 3^[2^n]
+-----+-----+
0: 1 | 1 | 3 <<
1: 2 | 3 | 9
2: 4 | 3 | 81 <<
3: 8 | 73 | 16
4: 16 | 73 | 1
5: 32 | 73 | 1
6: 64 | 73 | 1
7: 128 | 73 | 1 <<
8: 256 | 73 | 1
9: 512 | 73 | 1 <<
All: done | 73 |
\----- Mod 85 -----/
```

So 3^{645} is mod-85 congruent to the product of the << marked values, which is 73.

The table shows that $3^{[2^4]} \equiv_{85} 1$. As repeated-squaring of 1 yields 1, the table is constant-1 from then on. ◆

Q3: Fri. 27 Jan Note that $\text{GCD}(55, 33, 15) = 1$. Find particular integers S, T, U so that $55S + 33T + 15U = 1$:

$$S = 4, T = -8, U = 3$$

[Hint: $\text{GCD}(\text{GCD}(55, 33), 15) = 1$.]

Soln. Among the ∞ many correct triples are $(7, -8, -8)$, $(4, -8, 3)$, $(1, -3, 3)$, $(-2, 2, 3)$ and $(-23, 7, 69)$.

LBolting,

(lightning 55 33)

n:	r_n	q_n	s_n	t_n
0:	55	--	1	0
1:	33	1	0	1
2:	22	1	1	-1
3:	11	2	-1	2
4:	0	Infny	3	-5

Rename r3,s3,t3 to GCD,S,T.

Note $\text{GCD} = r0 * S + r1 * T$, i.e
 $11 = [55]*[-1] + [33]*[2]$.

And, we now want (lightning 11 15) but I'll reverse the order to make the table one row shorter.

(lightning 15 11)

n:	r_n	q_n	s_n	t_n
0:	15	--	1	0
1:	11	1	0	1
2:	4	2	1	-1
3:	3	1	-2	3
4:	1	3	3	-4
5:	0	Infny	-11	15

So $1 = 11 \cdot [-4] + 15 \cdot 3$. Substituting from the 1st LBolt,

$$\begin{aligned} 1 &= [55 \cdot [-1] + 33 \cdot 2] \cdot [-4] + 15 \cdot 3 \\ &= 55 \cdot 4 + 33 \cdot [-8] + 15 \cdot 3. \end{aligned} \quad \diamond$$

Exploration. Since $\text{GCD}(55, 33) = 11$, the 1-parameter family of Bézout-pairs for $(55, 33)$ is

$$\begin{aligned} 11 &= [-1 + \frac{33}{11} \cdot n] \cdot 55 + [2 - \frac{55}{11} \cdot n] \cdot 33 \\ &= \underbrace{[-1 + 3n]}_{A_n} \cdot 55 + \underbrace{[2 - 5n]}_{B_n} \cdot 33. \end{aligned}$$

Our second LBolt gives that

$$1 = [-4] \cdot 11 + 3 \cdot 15.$$

Our 1-parameter family of $(11, 15)$ -Bézout-pairs is thus

$$1 = \underbrace{[-4 + 15k]}_{X_k} \cdot 11 + \underbrace{[3 - 11k]}_{Y_k} \cdot 15.$$

Rewriting, $1 = 11X_k + 15Y_k$. Substituting,

$$\begin{aligned} 1 &= [55A_n + 33B_n] \cdot X_k + 15 \cdot Y_k \\ &= \underbrace{55 \cdot A_n X_k}_{P_{n,k}} + \underbrace{33 \cdot B_n X_k}_{Q_{n,k}} + \underbrace{15 \cdot Y_k}_{R_{n,k}}. \end{aligned}$$

An *incomplete* 2-parameter family $\mathbf{V}_{n,k} := \begin{bmatrix} P_{n,k} \\ Q_{n,k} \\ R_{n,k} \end{bmatrix}$ of Bézout-triples for $(55, 33, 15)$ can be cheerfully written as

$$\begin{aligned} P_{n,k} &= [-1 + 3n] \cdot [-4 + 15k], \\ \dagger: \quad Q_{n,k} &= [2 - 5n] \cdot [-4 + 15k] \quad \text{and} \\ R_{n,k} &= [3 - 11k]. \end{aligned}$$

Plugging in $n = 0$ and $k = 0$ gives the above $\begin{bmatrix} 4 \\ -8 \\ 3 \end{bmatrix}$. \diamond

Going further. While correct triples $\begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$ can be obtained from (\dagger) , we need *non-integer* values of n, k to get them; e.g. $\begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix} = \mathbf{V}_{\frac{30}{55}, 1}$. *Unpleasant...*

Using another method [Smith normal form of a matrix], one can derive

$$\dagger: \quad \mathbf{U}_{\alpha, \beta} := \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} + \alpha \begin{bmatrix} -3 \\ 10 \\ -11 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ -5 \\ 11 \end{bmatrix}$$

which parametrizes all Bézout-triples, as α, β range over all the integers. E.g. $\mathbf{U}_{-2, -3} = \begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix}$ and $\mathbf{U}_{1, 1} = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$. \diamond

Q4: Mon. 30 Jan With $M := 22$ and $\mathbf{J} := [0..M]$, use repeated-squaring to compute $6^{128} \equiv_M 4 \in \mathbf{J}$. Since 133 equals $2^7 + 2^2 + 2^0$, power $6^{133} \equiv_M 18 \in \mathbf{J}$.

[Hint: Compute with symm. residues, and use periodicity.]

RS Soln: The period is tiny, so this is quick.
(repeated-squaring 6 133 22 :symmod t)

```
/----- Mod 22 -----\
n: 2^n | Accum | 6^-[2^n]
---+---+---+---+
0: 1 | 1 | 6 <<
1: 2 | 6 | -8
2: 4 | 6 | -2 <<
3: 8 | 10 | 4
4: 16 | 10 | -6
5: 32 | 10 | -8
6: 64 | 10 | -2
7: 128 | 10 | 4 <<
All: done | -4 |
\----- Mod 22 -----/
```

So 6^{133} is mod-22 congruent to the product of the << marked values, which is -4.

The upshot: $6^{128} \equiv_M 4$. And $6^{133} \equiv_M -4 \equiv_M 18$.

But *Whoa!?* —why can't we use Euler- φ ? Alas, alack, $6 \nmid 22$; did we remember to check this?

Q5: Fri.
03 Feb Carmichael fnc $\lambda(385 \cdot 29 \cdot 43) = 2^A \cdot 3^B \cdot 5^C \cdot 7^D \cdot 11^E$

where $A = 2$, $B = 1$, $C = 1$, $D = 1$, $E = 0$.

Euler- φ just for Fun... Our $K := 385 \cdot 29 \cdot 43$ factors as $K = 5 \cdot 7 \cdot 11 \cdot 29 \cdot 43$. So $\Phi(K)$ is gp-isomorphic to product of cyclic groups,

$$* \colon \mathbb{Y}_{2^2} \times \mathbb{Y}_{2 \cdot 3} \times \mathbb{Y}_{2 \cdot 5} \times \mathbb{Y}_{2 \cdot 7} \times \mathbb{Y}_{2 \cdot 3 \cdot 7}.$$

So $\varphi(K) = 2^7 \cdot 3^2 \cdot 5^1 \cdot 7^2 = 282240$ is the product of the group-orders. [For reference, $K = 480095$.] \spadesuit

Good Carma! The (*) gps are cyclic, so the exponent of the product group is simply the LCM of the group-orders.

$$\text{Hence } \lambda(K) = 2^2 \cdot 3^1 \cdot 5^1 \cdot 7^1 \cdot 11^0 = 420. \spadesuit$$

Nota Bene: Were K a multiple of 4, we would use that $\Phi(2^{N+2}) \xrightarrow{\text{gp}} \mathbb{Y}_2 \times \mathbb{Y}_{2^N}$.

Q6: Mon. 20 Feb Over alphabet $\mathbf{G} = \{a, b, c\}$, our UD code has length-spectrum $\vec{\ell} = (1, 2, 2, 2, 2, 3)$. Its Kraft-sum equals $\Sigma(\vec{\ell}) = 1 - \frac{5}{27} = \frac{22}{27}$.

Ordering our alphabet as $a < b < c$, the proof from our previous class constructs the following specific prefix code with spectrum $\vec{\ell}$:

a ba bb bc ca cba

Kraftyness. With alphabet size $\Gamma = 3$, the Kraft-sum of $\vec{\ell}$ is

$$\Sigma(\vec{\ell}) := \Sigma_{\Gamma}(\vec{\ell}) := \sum_{j=1}^R 1/\Gamma^{\ell_j},$$

where $\vec{\ell} = (\ell_1, \dots, \ell_R)$ is the code's length-spectrum.

The first five lengths consume mass $\underbrace{1}_{1/3}, \underbrace{2, 2}_{1/3}, \underbrace{2}_{1/9}$. Out of the $\frac{2}{9} = \frac{6}{27}$ of mass remaining, $\frac{1}{27}$ is eaten by the length-3. So this spectrum *fails* to be Γ -complete by mass $\frac{6}{27} - \frac{1}{27} = 5/27$.

Whence the above prefix-code? In order *shortest-to-longest*, we assign the *leftmost* available path down the tree. [“Leftmost” is well-defined, since we ordered the alphabet.]

BTW, we can increase the Kraft-sum by shortening code-word cba to cb , but the code is still not 3-complete [not Γ -complete, for $\Gamma = 3$]. Indeed, there is *no* 3-complete spectrum $\vec{s} \preccurlyeq \vec{\ell}$ satisfying $\Sigma(\vec{s}) \leq 1$.

POSTING: *Removing the $\preccurlyeq \vec{\ell}$ restriction, prove there is no six word, 3-complete UD-code over $\mathbf{G} = \{a, b, c\}$.* \blacklozenge

Home-U due, 11:30AM. Wed. 22 Feb ... slid under my office door, LIT402. After having successfully handed-in your Home-U, *email me* that you have done so, and include your **Team-U number** in the message.

Have printed-out Problem sheet, and made that the *first page* of youw write-up. Number the pages (probably by hand) $1/47$ [that is the Problem sheet], $2/47$ $47/47$. Handwrite-in the blanks on the problem sheet, the requested answers.

Put name/ordinals/Team-number where requested, and sign the Honor Code.

Class-U. Wed. 22 Feb

In-class closed-book Open-Brain exam.

Please bring lined-paper for computation. You may also want to bring colored pens/pencils for diagrams.

Q7: Fri. 24 Feb *Am I in class today?*

circle **one** "Yes!" "Of course!"

"I wouldn't miss it for the world!"

Q8: Fri. 10 Mar Congruences $z \equiv_{18} 5$, and $z \equiv_5 17$, fuse into $z \equiv_{90} T$, where $T = \boxed{77} \in [0..90]$.

[Note: $\text{LCM}(18, 5) = 90$].

Nuclear fusion. Since $18 \perp 5$, we *could* use CRT.

```
% (fuse-many-mtars '(18 5) '(5 17))
```

Starting fusion over ring "InTeGeRs".

Our goal is to solve the following system of congruences:

```
C1: x == 5 (mod 18)
C2: x == 17 (mod 5)
```

Here is a solution:

```
/-----\
With A:=18 and B:=5, is there an x with
x =A= 5 and | YES, since D := Gcd(A,B) = 1 divides 5-17 =: F.
x =B= 17 ? | Ratio is R := F/D = -12.
-----,
```

LBolt gives $2A + (-7)B = D$. Multiplying by R produces
 $(-24)A - (-84)B = F = 5 - 17$.

Thus $x + (-24)A = 5$. So $x := 437$ solves both congruences.
Reducing this modulo $L := \text{Lcm}(A,B)=90$ gives

```
x := [437 mod L] = 77.
```

Upshot: We can fuse the two (Modulus Target) pairs into a single (M T):

```
(18, 5) fuse (5, 17) -> (L, x) =note= (90, 77).
```

Q9: Mon. 20 Mar Base-2 (distribution-)entropy of $\vec{v} := (\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4})$

is $\mathcal{H}(\vec{v}) = \sum_p p \cdot \mathcal{L}(\frac{1}{p}) = \frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{2}{4} = \frac{14}{8} = 7/4$.

Soln. ... where, $\mathcal{L}() := \log_2()$,

The due-date for this year's *Robert Long Essay Competition (RLEC)* is Thurs. 30 Mar., with a PDF emailed to Prof. K.

True!

Yes!

QA: Fri. 24 Mar Legendre symbol $\left(\frac{47}{53}\right)$ is +1 -1 0.

Soln. Fastest –two lines– is Jacobi-LBolt:

```
% (setq A 47 P 53)

% (jac A P :symmod true)
n: Jn * (T_n == TAU_n // B_n) | Reason to negate J_n:
-----+-----+-----+-----+
0: 1 * (47 == -6 // 53) | 3 | 1 | Two
1: -1 * (53 == -1 // 3) | 1 | | Sign
2: 1 * (3 == 0 // 1) <- This product equals 1.
```

Recall the nomenclature:

Let $J_n := J_n$, $T_n := T_n$, $t_n := t_n$, $TAU_n := TAU_n$, etc..
Note $(0 // 1) = 1$. For $D > 1$ odd, $(0 // D) = 0$.

>> Product $J_n * (T_n // B_n)$ will be preserved, as $n=0,1,2,\dots$ <<

We reduce $T_n = TAU_n$, mod B_n . Here are actions that might negate J_n :
Each action is named in [Brackets].

[Sign] If $TAU_n < 0$ then change sign by replacing TAU_n by $-TAU_n$.
So if B_n is 4NEG then negate J_n .

[Two] Factor $TAU_n = t_n * [2^n]$, with t_n posodd & natnum exponent X_n .
If X_n odd /and/ $B_n = 8 = +3$, then negate J_n .

[QdRc] Quadratic Reciprocity. Exchange t_n with B_n to define the next row.
 $(T_{n+1} // B_{n+1}) := (B_n // t_n) * +1$.
The "+1" is -1 IFF both t_n and B_n were 4Neg.

Alt Soln. Also reasonable is repeated-squaring:

```
% (setq H (/ (- P 1) 2)) => 26

% (repeated-squaring A H P)

/----- Mod 53 ----\
n: 2^n | Accum | 47^(2^n)
-----+-----+-----+
0: 1 | 1 | 47
1: 2 | 1 | -17 <<
2: 4 | -17 | 24
3: 8 | -17 | -7 <<
4: 16 | 13 | -4 <<
All: done | 1 |
\----- Mod 53 -----/
```

So 47^{26} is mod-53 congruent to the product of the << marked values, which is 1.

Connected to (V2). Coincidentally, $53 \equiv_8 5$, so question (V2γ) allows us to compute a sqrt of 47.

```
% (setq ExponR (/ (+ P 3) 8)) => 7
```

```
% (repeated-squaring A ExponR P)
```

```
/----- Mod 53 ----\
n: 2^n | Accum | 47^(2^n)
-----+-----+-----+
0: 1 | 1 | 47 <<
1: 2 | -6 | -17 <<
2: 4 | -4 | 24 <<
All: done | 10 |
\----- Mod 53 -----/
```

So 47^7 is mod-53 congruent to the product of the << marked values, which is 10.

```
;; Checking...
% (mod 100 53) => 47
```

QB: Fri.
14 Apr \exists **Math Festival** this **Sunday, 16 Apr**,
10AM-1PM, in the Rion Ballroom of Reitz Union, open
to all.

Circle: True! Yes!

What's "Math" ?

End of semester; looking forward to our Games Party!