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1: Nomenclature. For odd D, use ) to mean 251,

(The H is to suggest “Half”.) ’

In the sequel, p is oddprime and S L p is the “stride-
length”; we will walk around the circumference=p
circle using strides of length S.

Use H = Hp and (z) := (), for the symmetric
residue of integer  modulo p; so (z) is in [-H .. H].
Let = mean =,.

Let §=9,(5) be the set of indices £ € [1.. H] such
that (€-5), is neGative. Letting P be the indices with
(£ - S) Positive, we have that (disjointly)

GUP = [1.H]. (The“Time’ set.)
Finally, use N' = N,(S) for the number of “negative”
indices; N := #G. O
2: Prop'n.  Fix an S L p, with notation from (1).

Then the mapping [abso]ute—value of symm-residue]

£ — [(£-5)],
is a permutation of [1.. H]. Mapping £+ (£-S) is
a “permutation up to sign” of [1.. H]. O

Proof. Given indices 1 < k < £ < H, we want that
either equality F(k-S) = (£-5) forces k = £.
For either choice of sign in F, note that

Fk-S)=(€-S) IFF 0=[t+k-S

IFF 0=£+k,
since S L p. Thus
0 < £+k < 2H < p.
Together with £ + k = 0, this forces £ + k to actually

be zero. Thus the “4” is a minus sign, and £ =k. ¢

3: Gauss Lemma.  Fix an odd prime p and integer

S L p. Then the Legendre symbol (%) satisfies

® = b 0
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Pf of Gauss Lemma. Let N := N,(S). Necessarily

H H S
*: H(E-S> = HE-S = H!.S7 = H!. (—),
=1 =1 p

with the last step following from LSThm. Ob-
serve that (£-S) equals +|(€S)| as £ is-not/is in G.
Prop’n 2, consequently, tells us that LhS(x) can be
written as H! times [-1]". Thus RhS(x) equals

The H!, being co-prime to p, cancels mod-p to hand
us congruence (%) = [V, ¢

An important application is the following.
4: Two-is-QR Lemma. Consider an oddprime p. Then
2 isap-QR IFF p =g *1. O

Abbrev. An odd integer D is 8 Near if D =g +1; it
is 8Far if D =g +3. [The names come from being, mod 8,

near/far from zero.] L]

Proof.  Call p “good” if 2 is a p-QR. As usual, let
H = %. It is easy to check that

T Even H < p =g {+1,-3};
I: Odd H < p =g {-1,+3} .

Let G := Gp(2). Computing N := |G| has two cases:

{CASE: H is even} Here, N = [H — %] +1= g7

{52,532, H}.

since G =

(CasE: H isodd] SoN = [H — ] 41 =11

2
{(EH 220 HY.

The Gauss lemma directs us to examine N mod-2.

since G =

CAsg: H is even. Courtesy (1) we can write p as
8L + {1,-3}, with LeZ. Thus

8L+ {1,3} -1
2

H:

= 4L +{0,-2}.

So N =4 =2L+{0,-1}. Consequently,

pgood &< N = 0 < H =40 < p=1.
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CAsE: H is odd. We can write p = 8L + {-1,+3}.
Thus

8L+ {-1,+3} — 1
2
So N = £+ =21+ {0,1}. Consequently,

H+l =

+1 = 4L +{0,2}.

pgood & N = 0 «<— H+1=,0 < p =g 1.

This gives the lemma. ¢

The Wrapping function. Count “full Wraps”,

Hp

> |22,

W = W,(8) = .
£=1

when walking around the circle with stridelength S.
(Here, |-] is the floor function.)

5: Eisenstein Lemma.Fix S L p from (1), with .
Then N and W are either both even or both odd. I.e.

Np(S) =2 Wp(S). 0
Proof of Eisenstein Lemma. Let 1 := (€ - S)p, Then
L-S T
1
P p+Te
Summing this over £ produces
H
6: S-ZB = pW + [ng} + pN + [Zre} .
=1

Le?P £e§
On [1.. H], recall that £ — ry is a permutation up to
sign. Thus

focP
0.5 = nre }

ifee§g

H

6': Se= [Dore] = [Yore

=1 £Lc? £e§

Subtracting equations, (6) — (6"), yields that

pW + pN +2-> 1.
£€$

But S is odd, so S—1 =5 0. Reducing each side
mod 2, then, gives
0 = p-W+N]+0

= W -i-N,
Thus W =5 N, as desired. ¢

H
O[S -1-> 0 =
=1

7'
since p is odd.
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8: The Quadratic Reciprocity Theorem. For odd-

primes p and q:

I

When p # q then we can write in a visually more
symmetric way as

<q> <p>
8//: [ R —
p/ \q
Equivalently, (%) equals (g) unless both p and q are

ANEG primes; in that case, the Legendre symbols are
negatives of each other. O

Proof of (8"). Eisenstein has us decompose the rect-
angle in Figurel (page 3) into two triangles, in order
to establish

9: Wp(q) +Wq(p) = Hp- Hy.

Then the Eisenstein Lemma shows that LhS(9) has the
same parity as N,(q) + Ng(p), Le,

9 No(q) +Ng(p) =2 Hp-Hg.

Applying the Gauss Lemma now establishes (8”). 4
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Legendre/Jacobi Symbol
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Fig.1: Here, p=17 and q=13. NOTE: The diagonal of (0, Hp] x (0, Hg] has no lattice-points, since p L q.
Triangle B contains Wy (q) many lattice-pts because, traveling vertically from point (k,0), one passes through

{k -%J many lattice-pts until reaching the diagonal line. Similarly, triangle A has W, (p) lattice-points.

Hence Wy(q) + Wq(p) = Hp - Hq.

Legendre/Jacobi Symbol
Consider a posint /V and an integer . This &

is an N-QR, an N—quadratic-residue, if there exists

an integer z with | 2*  |; otherwise, this k is an
N-nonQR. In contrast, if & / N, then k is neither a
QR nor a nonQR.

For p prime, the Legendre Symbol

k 0 ifklep
(—) = q+1 if kisa p-QR
P -1

if k£ is a p-nonQR
I pronounce (E) as “k legendre p”.
for the symmetric residue mod N.

Below, I use () v

(Image copied from Proof Wiki.)

10: Legendre-Symbol Thm (LSThm). For all odd-
primes p and all integers K, kg, k', we have:

A: Ifk L p: Ourkisap-QR IFF (é) = 1. [By defn.]
K p—1
B (3) = (K7),
Furthermore
it LS is “top multiplicative”:
kg,

ki-ko-... -k, k1 ko

—

.. K
ii: If k' =, k then (?)

I
S13
<
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Pf of (B). Use the involution = — £ on ®(p). Etc..¢

Pf of (i). Note RhS(B) is [totally] multiplicative in K.
Hence LhS(B) is multiplicative in K. ¢

Defn of Jacobi Symbol. Factoring a posodd N into
primes, N = p; - p, - - - py, define the Jacobi Symbol

by
Ey = (&) (& (&
E) = () &) ),
where k is an arbitary integer. O

11: Commentary. Properties (13ii,iii,iv), below,
will give a lightning-bolt (ie, Euclidean) algorithm for
rapidly computing Jacobi-Symbols; the QRecip prop-
erty of JS is the primary reason for generalizing LS.
However, something is lost in the process:

For example, (é) = 1, yet certainly 2 is not a 9-QR,
since 2 is not a 3-QR.

Also, 20 = 2% =; -2, So the symm-residue <2H9>9
doesn’t equal +1, let alone answer whether 2 is a 9-
QR.  Similarly, [-1]* = 1. So the value is in {+1},
but the answer is wrong: Negative-one is a 9-nonQR,
since -1 is a 3-nonQR. ]

12: Prop'n. For odd integers d and e:

Hy+H. = Hge. O

Proof. ~ Write d = 14+ 2A and e = 1+ 2B. The
product de equals 4AB + 2A + 2B + 1. Thus

Hy, = 2AB+A+B = A+B " [,+ H..¢

13: Jacobi-Symbol Thm (JSThm). For all
posodd N, D, d;, and all integers K, kg, k'
A: Foreachk I N: kisan N-QR IFF
Every prime p ¢ N has (Ié) =1.
Moreover
iz JS is “multiplicative, top and bottom”:
k1~k2~...~kL k1 kg kL
(=——) = () (). (=) and
K K\ (K K
) = @@ @)

Legendre/Jacobi Symbol
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.. 14 k
ii: If k' =n k then (N) = (N)

iii: These Jacobi-symbols satisfy:
(i) {+1 if N =5 11}
N -1 if N =5 43
(_1> _ {+1 if N = +1}.
N -1 if N =4 -1

ivi QReciprocity: For n and d posodd,

d n
ER
n d

Pfof (13A). Fix a prime p o N. Take r, a mod-
p sqroot of k. Let E € Z, be largest st. p® o N.
Use Hensel's lemma to lift r to sp, a mod-p® sqroot
of k. |Details: Our  is a mod-p root of f(z) = x> — k. Now

note

f'(r) == 2r is not divisible by p, since p is odd. Thus Hensel's

says this root can be lifted to a mod p? root, which can be lifted
to a mod p® root, ..., indeﬁnitely.m]

For each p ¢ N, let s, be a mod-p sqroot of k. Use
CRThm"? to suture together the {s, | p § N} values

into a mod-N sqroot of k. ¢

Pf (13iii). Let (-) and = mean symm-residue mod 8.
Our Two-is-QR Lemma implies that (=) = -1 IFF
N has oddly many 8Far primes in its factorization.
OTOHand, (N) is the product of (p) over these
primes. And for each two values in {£3}, the product
is congruent to £1. So (N) = +£3 IFF N has oddly

many 8Far primes in its factorization. ¢

Pf (13iv). If d X n then both (é) and (%) are zero. So
establishing

f: () ©)

will suffice, since WLOG d L n.
Lets prove the following.

L [t

t: Suppose each of d and e satisfies (1) w.r.t n.
Then their product d - e satisfies (f) w.r.t n.

YIFix V € [0.. p) with V =, f'(r). For a posint £, suppose ¢
is mod-p® sqroot of k. Compute the integer my = *f(?"()/pe.
Now doing division mod p, compute t¢ € [0.. p) st. t¢-V =p my.
Then 7¢ + [te - p*] is mod-p**! sqroot of k.

“2The Chinese Remainder Theorem.
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The combined exponent is H;H,, + H. H,. ie.,

(&) (@) = paffterin

And Prop'n 12 says that the RhS equals [*1]Hde'H”.

Inducting twice. W.r.t. a posodd N, say that
posodd d is “N-good” if

£ ) = G Pt

Having established (1), we have this:

_ For each posodd N, the set of N-good numbers
" is sealed (closed) under multiplication.

Fixing a prime N, the QReciprocity Thm, in form (8'),
tells us that every prime, d, is N-good. By (¥), then:
Every posodd d is N-good.

But (£) is symmetric in N & d. So we can restate
our accomplishment as: W.r.t. each posodd d, every
prime N is d-good.  Applying (¥) again, now says
that every posodd N is d-good. ¢

1st Application of LST+QRecip. Fixan N € Z.
We seek a characterization of those oddprimes p 1. N,
for which N € QR,. Say k is 5Near if k =5 +1, and
kis 5Far if k =5 £2.

14: Thm. Prime p # 5 has QR, 2 5 IFF p is 5Near.Q

Proof. Since 5 is 4Pos, we have (%) = (E)
Unfinished: as of 1Mar2023

Legendre/Jacobi Symbol
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2nd Application of LST-+QRecip. We will
show:

15a: For each n > 2, integer [n® — 1] has a 3P0S

prime factor.

Note, n3>—1 = [n—1][n*+n+1] where We will
prove this stronger statement:

15b: Thm. Let T,, == n? +n + 1, and define

C, = {p o7, ‘ p is prime, and p ¢ {2,3}}.

Every C,-prime is 3P0S. And for n > 2, collection C,
is not empty O

Pf of 3P0osness. 1ISTShow that p € 3Pos, where p is
an arbitrary non-2,3 prime p that divides

note

o F, = 4T, [2n +1]2 +3.

Now F,, =, 0, so () says [-3] is a mod-p square. By
hyp, -3 L p,so -3 € QR,, i.e
_ (@) ST
1=(3) =36
LST+QRecip [71]13%1 ) {{71}%71<p)i|

But the only 3-QR is 1. So p is 3P0Os. ¢

Pf @, # @. Fix n > 2. FTSOC suppose C, is empty.
Since T}, is odd, this implies that 7, = 3¥, for some
k > 2; this last, since T), > T} = 3'. So .
Since F,, =3 0, our (*) says that [2n+1]? Je 3.
Courtesy FTA, [2n + 1] jo 3. Thus, [2n + 1]> =g 0.
Recall that k& > 2, whence F,, =9 0. So (*) implies
that 0 =9 3, which is false. Hence ©,, is non-void. ¢

E11: For what negative integers n do we
have (15a)? Or have (15b)?
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