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1: Nomenclature. For odd D, use HD to mean D−1
2 .

(The H is to suggest “Half”.)
In the sequel, p is oddprime and S⊥ p is the “stride-

length” ; we will walk around the circumference=p
circle using strides of length S.

Use H := Hp and 〈x〉 := 〈x〉p for the symmetric
residue of integer x modulo p; so 〈x〉 is in [ H ..H].
Let ≡ mean ≡p .

Let G=Gp(S) be the set of indices ` ∈ [1 .. H] such
that 〈` ·S〉p is neGative. Letting P be the indices with
〈` · S〉 Positive, we have that (disjointly)

G t P = [1 .. H]. (The “Time” set.)

Finally, use N = Np(S) for the number of “negative”
indices; N := #G. �

2: Prop’n. Fix an S ⊥ p, with notation from (1).
Then the mapping [absolute-value of symm-residue]

` 7→
∣∣〈` · S〉∣∣ ,

is a permutation of [1 .. H]. Mapping ` 7→ 〈` · S〉 is
a “permutation up to sign” of [1 .. H]. ♦

Proof. Given indices 1 ≤ k ≤ ` ≤ H, we want that
either equality ∓〈k · S〉 = 〈` · S〉 forces k = `.

For either choice of sign in ∓, note that

∓〈k · S〉 = 〈` · S〉 IFF 0 ≡ [`± k] · S
IFF 0 ≡ `± k ,

since S ⊥ p. Thus

0 ≤ `± k ≤ 2H < p .

Together with `± k ≡ 0, this forces `± k to actually
be zero. Thus the “±” is a minus sign, and ` = k. �

3: Gauss Lemma. Fix an odd prime p and integer
S ⊥ p. Then the Legendre symbol

(S
p

)
satisfies

(S
p

)
= [ 1]Np . ♦

Pf of Gauss Lemma. Let N := Np(S). Necessarily

H∏
`=1

〈`·S〉 ≡
H∏
`=1

`·S = H! · SH ≡ H! ·
(
S

p

)
,∗:

with the last step following from LSThm. Ob-
serve that 〈` · S〉 equals ±

∣∣〈`S〉∣∣ as ` is-not/is in G.
Prop’n 2, consequently, tells us that LhS(∗) can be
written as H! times [ 1]N . Thus RhS(∗) equals

H! ·
(S
p

)
≡ H! · [ 1]N .

The H!, being co-prime to p, cancels mod-p to hand
us congruence

(S
p

)
≡ [ 1]N . �

An important application is the following.

4: Two-is-QR Lemma. Consider an oddprime p. Then
2 is a p-QR IFF p ≡8 ±1. ♦

Abbrev. An odd integer D is 8Near if D ≡8 ±1; it
is 8Far if D ≡8 ±3. [The names come from being, mod 8,
near/far from zero.] �

Proof. Call p “good” if 2 is a p-QR. As usual, let
H := p−1

2 . It is easy to check that

Even H ⇐⇒ p ≡8 { 1, 3} ;†:
Odd H ⇐⇒ p ≡8 { 1, 3} .‡:

Let G := Gp(2). Computing N := |G| has two cases:�� ��Case: H is even Here, N = [H − H+2
2 ] + 1 = H

2 ,
since G =

{
H+2
2 , H+3

2 , . . . ,H
}
.�� ��Case: H is odd So N = [H − H+1

2 ] + 1 = H+1
2 ,

since G =
{
H+1
2 , H+2

2 , . . . ,H
}
.

The Gauss lemma directs us to examine N mod-2.

Case: H is even. Courtesy (†) we can write p as
8L + {1, 3}, with L∈Z. Thus

H =
8L + {1, 3} − 1

2
= 4L + {0, 2} .

So N = H
2 = 2L + {0, 1}. Consequently,

p good ⇐⇒ N ≡2 0 ⇐⇒ H ≡4 0 ⇐⇒ p ≡8 1 .

Webpage http://people.clas.ufl.edu/squash/ Page 1 of 5



Page 2 of 5 Prof. JLF King

Case: H is odd. We can write p = 8L + { 1, 3}.
Thus

H+1 =
8L + { 1, 3} − 1

2
+ 1 = 4L + {0, 2} .

So N = H+1
2 = 2L + {0, 1}. Consequently,

p good ⇐⇒ N ≡2 0 ⇐⇒ H+1 ≡4 0 ⇐⇒ p ≡8 1 .

This gives the lemma. �

The Wrapping function. Count “ full Wraps ” ,

W =Wp(S) :=

Hp∑
`=1

⌊` · S
p

⌋
,

when walking around the circle with stridelength S.
(Here, b·c is the floor function.)

5: Eisenstein Lemma.Fix S ⊥ p from (1), with
�� ��S odd .

Then N andW are either both even or both odd. I.e.

Np(S) ≡2 Wp(S) . ♦

Proof of Eisenstein Lemma. Let r` := 〈` · S〉p, Then

` · S = p ·
⌊` · S

p

⌋
+

{
r` if ` ∈ P

p + r` if ` ∈ G

}
.

Summing this over ` produces

S ·
H∑
`=1

` = p·W +
[∑
`∈P

r`
]

+ p·N +
[∑
`∈G

r`
]
.6:

On [1 .. H], recall that ` 7→ r` is a permutation up to
sign. Thus

H∑
`=1

` =
[∑
`∈P

r`
]
−
[∑
`∈G

r`
]
.6′:

Subtracting equations, (6)− (6′), yields that

[S − 1] ·
H∑
`=1

` = pW + pN + 2 ·
∑
`∈G

r` .7:

But S is odd, so S − 1 ≡2 0. Reducing each side
mod 2, then, gives

0 ≡2 p · [W +N ] + 0

≡2 W +N , since p is odd.
7′:

Thus W ≡2 N , as desired. �

8: The Quadratic Reciprocity Theorem. For odd-
primes p and q:(q

p

)
=

(p

q

)
· [ 1]Hp·Hq .8′:

When p 6= q then we can write in a visually more
symmetric way as(q

p

)
·
(p

q

)
= [ 1]Hp·Hq .8′′:

Equivalently,
(q
p

)
equals

(p
q

)
unless both p and q are

4Neg primes; in that case, the Legendre symbols are
negatives of each other. ♦

Proof of (8′′). Eisenstein has us decompose the rect-
angle in Figure 1 (page 3) into two triangles, in order
to establish

Wp(q) +Wq(p) = Hp ·Hq .9:

Then the Eisenstein Lemma shows that LhS(9) has the
same parity as Np(q) +Nq(p), i,e,

Np(q) +Nq(p) ≡2 Hp ·Hq .9′:

Applying the Gauss Lemma now establishes (8′′). �
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Fig.1: Here, p=17 and q=13. Note: The diagonal of (0, Hp]× (0, Hq] has no lattice-points, since p ⊥ q.
Triangle B contains Wp(q) many lattice-pts because, traveling vertically from point (((k, 0))), one passes through⌊
k ·qp

⌋
many lattice-pts until reaching the diagonal line. Similarly, triangle A has Wq(p) lattice-points.

Hence Wp(q) +Wq(p) = Hp ·Hq. (Image copied from Proof Wiki.)

Legendre/Jacobi Symbol

Consider a posint N and an integer
�� ��k ⊥ N . This k

is an N-QR, an N–quadratic-residue, if there exists
an integer x with

�� ��x2 ≡N k ; otherwise, this k is an
N-nonQR. In contrast, if k 6⊥ N , then k is neither a
QR nor a nonQR.

For p prime, the Legendre Symbol

(
k

p

)
:=


0 if k |• p
1 if k is a p-QR
1 if k is a p-nonQR

 .

I pronounce
(k
p

)
as “k legendre p”. Below, I use 〈·〉N

for the symmetric residue mod N .

10: Legendre-Symbol Thm (LSThm). For all odd-
primes p and all integers K, k`, k

′, we have:

A: If k ⊥ p: Our k is a p-QR IFF
(k
p

)
= 1. [By defn.]

B:
(K

p

)
=

〈
K

p−1
2

〉
p .

Furthermore

i: LS is “top multiplicative” :(k1·k2·...·kL
p

)
=
(k1

p

)
·
(k2

p

)
· . . . ·

(kL
p

)
.

ii: If k′ ≡p k then
(k′

p

)
=
(k
p

)
. ♦
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Pf of (B). Use the involution x 7→ K
x on Φ(p). Etc..�

Pf of (i). Note RhS(B) is [totally] multiplicative in K.
Hence LhS(B) is multiplicative in K. �

Defn of Jacobi Symbol. Factoring a posodd N into
primes, N = p1 · p2 · · · pL, define the Jacobi Symbol
by ( k

N

)
:=

( k
p1

)
·
( k
p2

)
· · ·
( k

pL

)
,

where k is an arbitary integer. �

11: Commentary. Properties (13ii,iii,iv), below,
will give a lightning-bolt (ie, Euclidean) algorithm for
rapidly computing Jacobi-Symbols; the QRecip prop-
erty of JS is the primary reason for generalizing LS.
However, something is lost in the process:

For example,
(2
9

)
= 1, yet certainly 2 is not a 9-QR,

since 2 is not a 3-QR.
Also, 2H9 = 24 ≡9 2. So the symm-residue

〈
2H9

〉
9

doesn’t equal ±1, let alone answer whether 2 is a 9-
QR. Similarly, [ 1]H9 = 1. So the value is in {±1},
but the answer is wrong : Negative-one is a 9-nonQR,
since 1 is a 3-nonQR. �

12: Prop’n. For odd integers d and e:

Hd + He ≡2 Hd·e . ♦

Proof. Write d = 1 + 2A and e = 1 + 2B. The
product de equals 4AB + 2A + 2B + 1. Thus

Hd·e = 2AB + A + B ≡2 A + B
note
=== Hd + He .�

13: Jacobi-Symbol Thm (JSThm). For all
posodd N,D, dj , and all integers K, k`, k

′:

A: For each k ⊥ N : k is an N -QR IFF

Every prime p •| N has
(k
p

)
= 1.

Moreover

i: JS is “multiplicative, top and bottom” :(k1·k2·...·kL
N

)
=
(k1
N

)
·
(k2
N

)
· . . . ·

(kL
N

)
and

( K

d1·d2·...·dJ

)
=
(K
d1

)
·
(K
d2

)
· . . . ·

(K
dJ

)
.

ii: If k′ ≡N k then
(k′
N

)
=
( k
N

)
.

iii: These Jacobi-symbols satisfy:(
2

N

)
=

{
1 if N ≡8 ±1
1 if N ≡8 ±3

}
.

(
1

N

)
=

{
1 if N ≡4 1

1 if N ≡4 1

}
.

iv: QReciprocity: For n and d posodd,(
d

n

)
=

(
n

d

)
· [ 1]Hd ·Hn . ♦

Pf of (13A). Fix a prime p •| N . Take r, a mod-
p sqroot of k. Let E ∈ Z+ be largest st. pE •| N .
Use Hensel’s lemma to lift r to sp, a mod-pE sqroot
of k. [Details: Our r is a mod-p root of f(x) := x2 − k. Now
f ′(r)

note
=== 2r is not divisible by p, since p is odd. Thus Hensel’s

says this root can be lifted to a mod p2 root, which can be lifted
to a mod p3 root, . . . , indefinitely.♥1]

For each p •| N , let sp be a mod-p sqroot of k. Use
CRThm♥2 to suture together the {sp | p •| N} values
into a mod-N sqroot of k. �

Pf (13iii). Let 〈·〉 and ≡ mean symm-residue mod 8.
Our Two-is-QR Lemma implies that

( 2
N

)
= 1 IFF

N has oddly many 8Far primes in its factorization.
OTOHand, 〈N〉 is the product of 〈p〉 over these

primes. And for each two values in {±3}, the product
is congruent to ±1. So 〈N〉 = ±3 IFF N has oddly
many 8Far primes in its factorization. �

Pf (13iv). If d 6⊥ n then both
(d
n

)
and

(n
d

)
are zero. So

establishing (d
n

)
·
(n
d

) ?
= [ 1]Hd·Hn†:

will suffice, since WLOG d ⊥ n.
Lets prove the following.

Suppose each of d and e satisfies (†) w.r.t n.
Then their product d · e satisfies (†) w.r.t n.‡:

♥1Fix V ∈ [0 .. p) with V ≡p f
′(r). For a posint `, suppose r`

is mod-p` sqroot of k. Compute the integer m` := f(r`)/p`.
Now doing division mod p, compute t` ∈ [0 .. p) st. t` ·V ≡p m`.
Then r` + [t` · p`] is mod-p`+1 sqroot of k.
♥2The Chinese Remainder Theorem.
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Applying (†) twice, and mult. top and bottom,(
de

n

)
·
(
n

de

)
=

(
d

n

)(
e

n

)
·
(
n

d

)(
n

e

)

=

(
d

n

)(
n

d

)
·
(
e

n

)(
n

e

)

= [ 1]Hd·Hn · [ 1]He·Hn .

The combined exponent is HdHn + HeHn. ie.,(de
n

)
·
( n
de

)
= [ 1][Hd+He]·Hn .

And Prop’n 12 says that the RhS equals [ 1]Hde·Hn .

Inducting twice. W.r.t. a posodd N , say that
posodd d is “N -good” if

( d
N

)
=
(N
d

)
· [ 1]Hd·HN .£:

Having established (‡), we have this:

For each posodd N , the set of N -good numbers
is sealed (closed) under multiplication.U:

Fixing a prime N , the QReciprocity Thm, in form (8′),
tells us that every prime, d, is N -good. By (U), then:
Every posodd d is N -good.

But (£) is symmetric in N & d. So we can restate
our accomplishment as: W.r.t. each posodd d, every
prime N is d-good. Applying (U) again, now says
that every posodd N is d-good. �

1st Application of LST+QRecip. Fix an N ∈ Z.
We seek a characterization of those oddprimes p ⊥ N ,
for which N ∈ QRp. Say k is 5Near if k ≡5 ±1, and
k is 5Far if k ≡5 ±2.

14: Thm. Prime p 6= 5 has QRp 3 5 IFF p is 5Near.♦

Proof. Since 5 is 4Pos, we have
(5
p

)
=

(p
5

)
Unfinished: as of 1Mar2023 �

2nd Application of LST+QRecip. We will
show:

For each n ≥ 2, integer [n3− 1] has a 3Pos
prime factor.

15a:

Note, n3 − 1 = [n− 1][n2 + n + 1] where We will
prove this stronger statement:

15b: Thm. Let Tn := n2 + n + 1, and define

Cn :=
{
p •| Tn

∣∣∣ p is prime, and p /∈ {2, 3}
}
.

Every Cn-prime is 3Pos. And for n ≥ 2, collection Cn

is not empty ♦

Pf of 3Posness. ISTShow that p ∈ 3Pos, where p is
an arbitrary non-2,3 prime p that divides

Fn := 4Tn
note
=== [2n + 1]2 + 3 .∗:

Now Fn ≡p 0, so (∗) says [ 3] is a mod-p square. By
hyp, 3 ⊥ p, so 3 ∈ QRp, i.e

1 =
( 3

p

) LST
===

( 1

p

)
·
(3
p

)
LST+QRecip
========== [ 1]

p−1
2 ·

[
[ 1]

p−1
2
(p
3

)]
=
(p
3

)
.

But the only 3-QR is 1. So p is 3Pos. �

Pf Cn 6= ∅. Fix n ≥ 2. FTSOC suppose Cn is empty.
Since Tn is odd, this implies that Tn = 3k, for some
k ≥ 2; this last, since Tn > T1 = 31. So

�� ��Fn = 4 · 3k .
Since Fn ≡3 0, our (∗) says that [2n + 1]2 |• 3.

Courtesy FTA, [2n + 1] |• 3. Thus, [2n + 1]2 ≡9 0.
Recall that k ≥ 2, whence Fn ≡9 0. So (∗) implies

that 0 ≡9 3, which is false. Hence Cn is non-void. �

E11: For what negative integers n do we
have (15a)? Or have (15b)?
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