

Note. This is an open brain, open HHA, closed book, quiz. Please fill in the blanks. Show no work.

Q4a: Let

$$h(z) := \int_3^{z^3+z^2} \sin^2(t) dt.$$

Then $h'(z) = \underline{\quad}$.

Q4b: The sum $\frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \dots + \frac{1}{2000 \cdot 2001}$ i.e,

$$\sum_{j=3}^{2000} \frac{1}{j \cdot [j+1]},$$

can be written as p/q in canonical form, with

$p = \underline{\quad}$ and

$q = \underline{\quad}$.

Q4a: 25pts

Q4b: 25pts

Total: 50pts

Print name Ord:

Filename: Classwork/1Calculus/1Calc2001t/q4.1Calc2001t.latex
As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:06.

Note. This is an open brain, open HHA, closed book, quiz. Please fill in the blanks. Show no work.

Q4a: Let

$$h(z) := \int_3^{z^3+z^2} \sin^2(t) dt.$$

Then $h'(z) = \underline{\quad}$.

Q4b: The sum $\frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \dots + \frac{1}{2000 \cdot 2001}$ i.e,

$$\sum_{j=3}^{2000} \frac{1}{j \cdot [j+1]},$$

can be written as p/q in canonical form, with

$p = \underline{\quad}$ and

$q = \underline{\quad}$.

Q4a: 25pts

Q4b: 25pts

Total: 50pts

Print name Ord:

Filename: Classwork/1Calculus/1Calc2001t/q4.1Calc2001t.latex
As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:06.