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Entrance. Let “n =; k” mean”' 4 ¢ [n — k.
A Pythagorean triple (a,b, c) of integers sat-
isfies

PO: a?+b = 2.

It is a PPT, a primitive Pythagorean triple,
if, in addition,

Pl: a,b,ce Z,.

Necessarily, each pair

of a,b,c is coprime,
courtesy (P0).

P3: a is odd. |[We'll see that b is even, and ¢ is odd.|

P2: GCD(a,b,c) = 1.

By (P2), a and b can’t both be even; so there is no
loss of generality in the (P3) normalization. Could
also b be odd? If yes, then a®> +b*> =, 1 +1 = 2.
But c is even, so ¢ = 0. 3%¢.
Here is one correspondence, and its inverse:
c = %[gf + xﬂ .
la: b = %[y2—x2}

a = yr.

c+b =y
c—b =

A reworking gives this corr., and its inverse:
2, 2
c =1 +q. 1
Vslc+al = r.
1b: b = 2rq. i[ !
a=r—qg. sle—al = q.
To make this precise, say that a pair (x,y) is
an odd-paar if:
x,y € Zy. Additionally, 1 <z < y.
xz 1Ly.
Both x and y are odd.

“Y1Use =y to mean “congruent mod N”. Let n | k
mean that n and k are co-prime [no prime in common]|.

Use k o n for “k divides n”. Its negation k $n means
“k does not divide n.” Usen o k and n } k for “n is/is-not a
multiple of k£.” Finally, for p a prime and F a natnum: Use
double-verticals, p” ¢ 7, to mean that E is the highest
power of p which divides n. Or write n o p” to emphasize
that this is an assertion about n. Use PoT for Power of
Two and PoP for Power of (a) Prime.
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A pair (r,q) is a mized-pair if:

r,q € Z,. Furthermore, r > q > 1.
rlgq.
Integers q and r have opposite parities.

Given x,y € Z, define

yx ;
2a: T(z,y) = (a,b,c), where b:=3[y* —2?];
c:= 5[y + 2]
a=1r>—¢>;
2b: U(r,q) = (a,b,c), where b:=2rq ;
c=r>+ q2 .

3a: Odd-pair Thm.  There is a 1-to-1 correspon-
dence between odd-pairs and primitive triples:
The map

Odd-Pairs —— Primitive Triples

is a bijection. O

Our T is well-defined. Necessarily, a def yx is odd
and a,band c are positive since 1 < x < y. Since
2% and y? are each odd, and ODD 4+ ODD is even,
we have that b and c are indeed integers.

To establish that (a, b, ¢) is primitive, what re-
mains is to prove that GCD(a,b,¢) = 1. So sup-
pose that p is a prime dividing a. Necessarily,
p divides x or y; WLOGenerality p o x. Were
p to divide b, forcing p o [y? — x?], then p ¢ 3
and consequently p ¢ y. But that contradicts that
(7,y) is a odd-pair. Thus a L b. ¢

T(-) is injective. Suppose another odd-pair (w, 2)
also gives rise to the same triple

T(w, z) = (a,b,c) = T(z,y).

Since wz = a = zy, without loss of generality
w < x and z > y. But then

b = %[z2—w2} > %[gf—xﬂ = 0.

This is a contradiction. ¢
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T(-) is surjective. Fix a primitive triple (a, b, c).
My first goal is to produce integers x & y so that
T(z,y) = (a,b,c). To this end, define X & Y by

Y =c¢c+b X = c—b. Thus,
VX = [c+b-[e—b 2 21 = 2.

Necessarily, Y, X € Z,. I want to let
¥: r=+vX and y::\/?,

so I need to show that X & Y are squares. Since
product Y X is a square, ISTShow that X 1 Y.
Fixing a prime p ¢ X, then, ISTEstablish that

p does not divide Y.

Were p to also divide Y then it would divide
the two linear combinations

Y+ X229 and Y — X 29,

But pe X ¢ a? sopisodd. Thus p ¢ cand p ¢ b,
contradicting (P1).

Final step. I've shown that y&x from (¥)
are posints. Since the argument also showed
that Y L X, we now have yLz. And (P1,P0,P3)
show that ¢ > b > 0; so Y > X and thus
y > x > 1. Lastly, y & x are each odd, since
each divides a, which is odd. ¢

3b: Mixed-pair Thm. This map is a bijection:

Mixed-Pairs -2 Primitive Triples. O

Pf. Define f((y, x)) = (r,q), where r == $[y + ]

and ¢ := [y — z]. Reversing, g((r, q)) = (y,7),
where y :=r+ ¢ and x :==r — q. Easily, f and g¢
are well-defined on the rationals, and are inverses
of each other. So the proof will be finished when
you show (exercise) that f(odd-pair) € Mixed-pair
and g(mixed—pair) € Odd-pair. ¢
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Special case of Fermat's Last Theorem

Fermat proved the following theorem.

4: FLT for N = 4. There is no posint soln to either
of these:

Ik at vt =
1 D'+ E* = U*. ¢

Prelim. A (t)-triple yields (1)-triple a* + b* = [¢]?,

hence ISTShow: #soln to (). Below, define ¥ so
that 2 y means: xly and x #, v.

Let expression “a € [J” mean that there exists
a posint 5 with oo = 2. ¢

Proof. FTSOC, suppose we have a () which has

, over all (1). Were there a prime
with pe D and pe E, then p® ¢ U, so (%,%,p%) is
a smaller (1); 3. Thus D L E, so (D?, E? U) is
a PPT (prim. Pythag. triple), since [D?]? + [E?]? = U?;
WLOG (D is odd and E even).

Our PPT parametrization (1b) yields posints

R > @ with R ¥ Q such that

#1: U=R+Q*;
*2: E? = 2RQ;
D* = R?—Q*.

The latter is D? + Q? = R?. As R L Q, this last
is a PPT. Since D odd, nec. @) is even and R is
odd. Hence R 1 2Q), so (*2) implies that

£: Rel and 2Q €.

PPT D? +Q? = R? engenders posints r > ¢
with 7 ¥ ¢, such that

*3: R = r’+¢%;
x4 Q = 2rq;
D = r?—¢%.

Our (£) implies dposint ¢ with 2Q = [2¢]?, i.e
2¢> = Q = 2rq, by (x4). Thus ¢ =rq. Butr L g,

Special case of Fermat's Last Theorem
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so r,q € 0. This, together with (£), tells us that
there exist posints u, d, e such that

and q = e?.

R = v r = d
Consequently, we can restate (x3) as

*%3: d*+ et = u? .

This has form (}). Moreover, u < u?>=R<U
courtesy (x1). We see to our relief that (x*3) con-
tradicts the minimality of U. ¢
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Pell’s Equation
What are all the Pythagorean triples

5: a®+a+1)7? = &,

i.e, where the legs of the triangle are consecutive
integers? I'll show, that if (a,c) is a soln, then so
is

6 a = 3a+2c+ 1 and
) c = 4da+3c+ 2.
The first nine values are
al| ¢ a c a c
0 1 119 169 23660 33461
3 5 696 985 || 137903 195025
20 | 29 || 4059 | 5741 || 803760 | 1136689

The set of soln-pairs has a group structure, with
multiplication [¢'] ® [¢2] described by this for-
mula:

a =-ay+ cy —a; — 2a1a9 + 2a,¢9

7 +Cl+201a2—0102—1;

' C, =-C — 201(12 + 201C2

—|— 2@2 — Cy + 2&1 + 4&1&2 — 2@102 —|— ]_

The group-inverse of an elt: [gf] = [2]°" where
. ad = —3a+2c— 2;

e d = —4a+3c — 2.
Eg 317 = [{].

Eqn (5) is equivalent to [2a]?+[2a + 2]* = [2¢]*.
We can write this in form f(a,c¢) = 0, but the
f polynomial is not homogeneous. We can get a
homogeneous eqn: Setting

d = 2a+1

makes the eqn [d — 112+ [d + 1] = [2¢]. Dividing
by 2 and rewriting gives

8: ? - 27 = -1.

Group structure
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This is special case of what the “generalized
Pell’s eqn with Pell coefficient p”:

el & — p> = T,

M where p € Z ..

We'll ask: What targets ™ € 7Z admit a soln
pair (d,c) in integers? And: When T admits a
soln, what is the complete set of soln-pairs?

Just “Pell’s eqn” shall mean the 7=1 case:

Ept ? — pt = 1.

This always has the two trivial solns (£ 1,0).

We will find all consecutive pythag-triples
by solving (8), which we will get from the soln set
of (62).

Group structure

Below, the objects G, P, M, ... all depend on p.
When needed, I'll indicate the dependence as G,,,
with a subscript.

Use I:= [} 9] and J == [(1] ‘5] For the generic

lin-comb (linear combination) of matrices, use

(always with let-
ters “d” and “c”).

M = My, = dl+c) = [¢ ]

The set
L = {Md,c

d,cez}

of lin-combs is sealed under multiplication, since
Z is a ring and J? = pul € £. Thus

(£, [59]) is a commutative semi-
group.

Note Det(M) = d? — puc?. The following set is a
group

G = {M el ’ Det(M) € {1,71}},

because G is sealed under mult., since {1,-1} is.
And G is sealed under inverse, since

-1 1 d -pc| note 7 ~
L0 M = Dot (M) [70 o } — d I+ ¢J, where
) 7. d _ —c
d = Decy  and € Det(M)
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Note d and ¢ are integers, since Det(M) = +1.
Define two sets by the condition above them
Det(M)=+1

g =
The map Det :G—{+1,-1} is a gp-homomorphism,

i P = Det™ ({1}) .
is a subgroup of G.

Det(M)=-1

11: Lemma. For those values of p with N, not
empty, then N, is a G-coset of P,,. O

Proof. Fix a matrix N, € N,. For each M € N,,,
note that M- N, = [-12=1. Le, MN, € P. ¢

Remark. When g = 2: Matrix Ny := [} 2] shows
that Ny is not empty, hence is (the only other coset)
of Ps.

In contrast, N3 is empty. Indeed, lots of u have
N, = J; see the Appendix. O

Henceforth p is a posint

Upper-lefthand entry. Define two sets

d>0 d<0
P = U LU ;
this U is the set of H ‘jﬂ with d > 0.
12: Lem. [p € Zy] (U, [§9]) is a group. O

Proof. When M € U, necessarily M € U, by (10).
Now consider a product of two matrices in U:

a c ad c 7.
5] (2] = [ 2]
here d, € Z, and ¢, 8 € Z and

o = 1+pf® > pp?;
*x1: 9 9 9

d® = 1+ pc™ > pc.

Now p > 0, so the RhSes are non-negative; hence
*2: [ad)* > [uBc)?.

To show U sealed under product we need to prove
that ad + pfc ; 0. Le, that ad ; -pfBe. So

?
lad| > |ppe| certainly suffices, since ad is posi-
tive. And this is implied by (*2). ¢

Henceforth p is a posint
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When U non-trivial. Suppose that U, is not
the trivial gp {I}. So we can pick the minimal
posint T for which there exists a A € Z, with
A? — puY? = 1. This A is unique. W.r.t Aor T,

: A pY
S = Su = [T ‘A }
is the minimal positive elt of U.
As an example, Sy = [3 1].

13: Lem. Fix an M € U. Then the map hy:Z—Z
by
hm(n) = c-coord(S"™ - M)

is strictly increasing. O

Pf. Our goal is ¢ < ¢, where
(2] = st om = [ A ] [0
? ?
- {Acf"rd ?} :
So our goal is i.e Ac — Td < ¢, i.e [A—1]c < Yd.
WLOG ¢ > 0 (since A€Z; so A-1 > 0), and so

our goal becomes % < g. Its LhS > 0, so
establishing

) a-1]? d]?

* 57 < [

suffices. But d* = pc?+ 1, so RhS(x) > u. Hence
2

showing [%} < w suffices, ie [A—1]* < pY2,

ie A2 —2A +2 < 1+ pY? suffices. But this is

equivalent to —2A + 2 < 0. This latter is true

since A € Z. ¢

14: Prop'n. Imagine an M := {fcl ’jic] € U. Suppose

15: c>0>/c,

where | #¢'| .= ST.M. Then M =1 0
Proof. 03Nov2009: This proof was empty.
¢

16: Theorem. [w € Z,| The map f:Z—WU given
by f(n) :=S"™, is a bijection. O
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Appendix

Which values of have N, non-empty? Although
we won't give a complete answwer here, we will
rule out many. Say that an integer D is 4NEG if
D=,-1; and it is 4Pos if D =,+1.

Consider our eqn d?> — pc? = -1, but modulo a
prime p o p. This gives

17: d? = 1.

The Legendre-symbol thm implies that (17) has a
soln, d, IFF pis 4P0OS or is 2.

18: Lemma. Consider a posint . Then congruence
19: & =, -1

has a soln IFF our p is a a product of pow-
ers of 4POs-primes and, possibly, one copy of the
prime 2. O

Proof. A 4P0S prime p admits a soln to (17).
Now Hensel's lemma applies”? to give us a solution
modulo an arbitrary power, p".

Certainly d? = -1 has a soln modulo 2 (but mod-
ulo 4, it certainly does not). Now the Chinese Remain-
der Thm allows us to stitch these congruence-solns
together, ¢
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“21t is the easy non-singular case, since p is odd.
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