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Entrance. Let “n ≡4 k” mean♥1 4 •| [n− k].
A Pythagorean triple 〈a, b, c〉 of integers sat-

isfies

a2 + b2 = c2 .P0:

It is a PPT , a primitive Pythagorean triple ,
if, in addition,

P1: a, b, c ∈ Z+.

P2: GCD(a, b, c) = 1.
[Necessarily, each pair
of a, b, c is coprime,
courtesy (P0).

]
P3: a is odd. [We’ll see that b is even, and c is odd.]

By (P2), a and b can’t both be even; so there is no
loss of generality in the (P3) normalization. Could
also b be odd? If yes, then a2 + b2 ≡4 1 + 1 = 2.
But c is even, so c2 ≡4 0. ### .

Here is one correspondence, and its inverse:

c = 1
2

[
y2 + x2

]
.

b = 1
2

[
y2 − x2

]
.

a = yx .

√
c+ b = y .
√
c− b = x .

1a:

A reworking gives this corr., and its inverse:
c = r2 + q2 .

b = 2rq .

a = r2 − q2 .

√
1
2
[c+ a] = r .√

1
2
[c− a] = q .

1b:

To make this precise, say that a pair (((x, y))) is
an odd-pair if:

D1: x, y ∈ Z+. Additionally, 1 6 x < y.
D2: x ⊥ y.
D3: Both x and y are odd.

♥1Use ≡N to mean “congruent mod N ”. Let n ⊥ k
mean that n and k are co-prime [no prime in common].
Use k •| n for “k divides n”. Its negation k �r| n means

“k does not divide n.” Use n |• k and nr|� k for “n is/is-not a
multiple of k.” Finally, for p a prime and E a natnum: Use
double-verticals, pE •|| n, to mean that E is the highest
power of p which divides n. Or write n ||• pE to emphasize
that this is an assertion about n. Use PoT for Power of
Two and PoP for Power of (a) Prime.

A pair (((r, q))) is a mixed-pair if:

M1: r, q ∈ Z+. Furthermore, r > q > 1.
M2: r ⊥ q.
M3: Integers q and r have opposite parities.

Given x,y ∈ Z, define

T(x, y) := 〈a, b, c〉 , where
a := yx ;

b := 1
2 ·[y

2 − x2] ;

c := 1
2 ·[y

2 + x2] .

2a:

U(r, q) := 〈a, b, c〉 , where
a := r2 − q2 ;

b := 2rq ;

c := r2 + q2 .

2b:

3a: Odd-pair Thm. There is a 1-to-1 correspon-
dence between odd-pairs and primitive triples:
The map

Odd-Pairs T−→ PrimitiveTriples

is a bijection. ♦

Our T is well-defined. Necessarily, a def
== yx is odd

and a, b and c are positive since 1 6 x < y. Since
x2 and y2 are each odd, and Odd±Odd is even,
we have that b and c are indeed integers.

To establish that 〈a, b, c〉 is primitive, what re-
mains is to prove that GCD(a, b, c) = 1. So sup-
pose that p is a prime dividing a. Necessarily,
p divides x or y; WLOGenerality p •| x. Were
p to divide b, forcing p •| [y2 − x2], then p •| y2

and consequently p •| y. But that contradicts that
(((x, y))) is a odd-pair. Thus a ⊥ b. �

T(·) is injective. Suppose another odd-pair (((w, z)))
also gives rise to the same triple

T(w, z) = 〈a, b, c〉 = T(x, y) .

Since wz = a = xy, without loss of generality
w < x and z > y. But then

b = 1
2

[
z 2 − w 2

]
> 1

2

[
y2 − x2

]
= b .

This is a contradiction. �
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T(·) is surjective. Fix a primitive triple 〈a, b, c〉.
My first goal is to produce integers x & y so that
T(x, y) = 〈a, b, c〉. To this end, define X & Y by

Y := c+ b, X := c− b . Thus,

Y ·X = [c+ b] · [c− b] note
=== c2 − b2 = a2 .

Necessarily, Y ,X ∈ Z+. I want to let

x :=
√
X and y :=

√
Y ,U:

so I need to show that X & Y are squares. Since
product Y X is a square, ISTShow that X ⊥ Y .
Fixing a prime p •| X, then, ISTEstablish that

p does not divide Y .

Were p to also divide Y then it would divide
the two linear combinations

Y +X
note
=== 2c and Y −X note

=== 2b .

But p •|X •| a2, so p is odd. Thus p •| c and p •| b,
contradicting (P1).

Final step. I’ve shown that y&x from (U)
are posints. Since the argument also showed
that Y⊥X, we now have y⊥x. And (P1,P0,P3)
show that c > b > 0; so Y > X and thus
y > x > 1. Lastly, y & x are each odd, since
each divides a, which is odd. �

3b: Mixed-pair Thm. This map is a bijection:

Mixed-Pairs U−→ PrimitiveTriples . ♦

Pf. Define f
(
(((y, x)))

)
:= (((r, q))), where r := 1

2
[y + x]

and q := 1
2
[y − x]. Reversing, g

(
(((r, q)))

)
:= (((y, x))),

where y := r + q and x := r − q. Easily, f and g
are well-defined on the rationals, and are inverses
of each other. So the proof will be finished when
you show (exercise) that f(odd-pair)∈Mixed-pair
and g(mixed-pair)∈Odd-pair. �
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Special case of Fermat’s Last Theorem

Fermat proved the following theorem.

4: FLT for N = 4. There is no posint soln to either
of these:

a4 + b4 = c4 ;†:
D4 + E4 = U2 .‡: ♦

Prelim.A (†)-triple yields (‡)-triple a4 + b4 = [c2]
2,

hence ISTShow: @ soln to (‡). Below, define •⊥ so
that x •⊥ y means: x⊥y and x 6≡2 y.

Let expression “α∈�” mean that there exists
a posint β with α = β2. �

Proof. FTSOC, suppose we have a (‡) which has�� ��minimum U , over all (‡). Were there a prime
with p •|D and p •|E, then p2 •|U , so (((Dp ,

E
p ,

U
p2))) is

a smaller (‡); ### . Thus D ⊥ E, so (((D2, E2, U))) is
a PPT (prim. Pythag. triple), since [D2]2 + [E2]2 = U2;
WLOG

�� ��D is odd and E even .
Our PPT parametrization (1b) yields posints

R > Q with R •⊥ Q such that

U = R2 + Q2 ;∗1:
E2 = 2RQ ;∗2:
D2 = R2 −Q2 .

The latter is D2 + Q2 = R2. As R⊥Q, this last
is a PPT. Since D odd, nec. Q is even and R is
odd. Hence R⊥ 2Q, so (∗2) implies that

R ∈ � and 2Q ∈ � .£:

PPT D2 +Q2 = R2 engenders posints r > q
with r •⊥ q , such that

R = r2 + q2 ;∗3:
Q = 2rq ;∗4:
D = r2 − q2 .

Our (£) implies ∃ posint c with 2Q = [2c]2, i.e
2c2 = Q = 2rq, by (∗4). Thus c2 = rq. But r ⊥ q,

so r,q ∈ �. This, together with (£), tells us that
there exist posints u, d, e such that

R = u2, r = d2 and q = e2 .

Consequently, we can restate (∗3) as

d4 + e4 = u2 .∗∗3:

This has form (‡). Moreover, u 6 u2 = R < U
courtesy (∗1). We see to our relief that (∗∗3) con-
tradicts the minimality of U . �
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Pell’s Equation
What are all the Pythagorean triples

a2 + [a+ 1]2 = c2 ,5:

i.e, where the legs of the triangle are consecutive
integers? I’ll show, that if (((a, c))) is a soln, then so
is

a′ := 3a+ 2c + 1 and
c′ := 4a+ 3c + 2 .

6:

The first nine values are

a c a c a c

0 1 119 169 23660 33461
3 5 696 985 137903 195025
20 29 4059 5741 803760 1136689
The set of soln-pairs has a group structure, with

multiplication [ a1c1 ] � [ a2c2 ] described by this for-
mula:

a′ := a2 + c2 − a1 − 2a1a2 + 2a1c2

+ c1 + 2c1a2 − c1c2 − 1 ;

c′ := c1 − 2c1a2 + 2c1c2

+ 2a2 − c2 + 2a1 + 4a1a2 − 2a1c2 + 1.

7:

The group-inverse of an elt:
[
a′

c′

]
:= [ ac ]� 1 where

a′ := −3a+ 2c − 2 ;

c′ := −4a+ 3c − 2 .
7inv:

E.g, [ 3
5 ]� 1 = [ 1

1 ].
Eqn (5) is equivalent to [2a]2 +[2a+ 2]2 = [2c]2.

We can write this in form f(a, c) = 0, but the
f polynomial is not homogeneous. We can get a
homogeneous eqn: Setting

d := 2a+ 1

makes the eqn [d− 1]2 +[d+ 1]2 = [2c]2. Dividing
by 2 and rewriting gives

d2 − 2c2 = 1 .8:

This is special case of what the “generalized
Pell’s eqn with Pell coefficient µ” :

d2 − µc2 = τ , where µ ∈ Z+.ετµ:

We’ll ask: What targets τ ∈ Z admit a soln
pair (((d, c))) in integers? And: When τ admits a
soln, what is the complete set of soln-pairs?

Just “Pell’s eqn” shall mean the τ=1 case:

d2 − µc2 = 1 .εµ:

This always has the two trivial solns (((± 1, 0))).
We will find all consecutive pythag-triples

by solving (8), which we will get from the soln set
of (ε2).

Group structure

Below, the objects G,P,M, . . . all depend on µ.
When needed, I’ll indicate the dependence as Gµ,
with a subscript.

Use I := [ 1 0
0 1 ] and J :=

[
0 µ
1 0

]
. For the generic

lin-comb (linear combination) of matrices, use

M := Md,c := dI + cJ =
[
d µc
c d

] (always with let-
ters “d” and “c”).

The set
L :=

{
Md,c

∣∣∣ d, c ∈ Z
}

of lin-combs is sealed under multiplication, since
Z is a ring and J2 = µI ∈ L. Thus

(((L, ·, [ 1 0
0 1 ]))) is a commutative semi-

group.
9:

Note Det(M) = d2 − µc2. The following set is a
group

G :=
{
M ∈ L

∣∣∣ Det(M) ∈ {1, 1}
}
,

because G is sealed under mult., since {1, 1} is.
And G is sealed under inverse, since

M 1 = 1
Det(M)

[
d µc
c d

]
note
=== d̂ I + ĉJ, where

d̂ := d
Det(M)

and ĉ := −c
Det(M)

.
10:
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Note d̂ and ĉ are integers, since Det(M) = ±1.
Define two sets by the condition above them

G =
Det(M)= 1

P t
Det(M)= 1

N .

The map Det :G→{ 1, 1} is a gp-homomorphism,
so

P := Det 1
(
{1}

)
.

is a subgroup of G.
11: Lemma. For those values of µ with Nµ not
empty, then Nµ is a G-coset of Pµ. ♦

Proof. Fix a matrix Nµ ∈ Nµ. For each M ∈ Nµ,
note that M · Nµ

Det
= [ 1]2 = 1. I.e, MNµ ∈ P. �

Remark. When µ = 2: Matrix N2 := [ 1 2
1 1 ] shows

that N2 is not empty, hence is (the only other coset)
of P2.

In contrast, N3 is empty. Indeed, lots of µ have
Nµ = ∅; see the Appendix. �

Henceforth µ is a posint

Upper-lefthand entry. Define two sets

P =
d>0

U t
d<0

U− ;

this U is the set of
[
d µc
c d

]
with d > 0.

12: Lem. [µ ∈ Z+] (((U, ·, [ 1 0
0 1 ]))) is a group. ♦

Proof. When M ∈ U, necessarily M 1 ∈ U, by (10).
Now consider a product of two matrices in U:[

α µβ
β α

]
·
[
d µc
c d

]
=
[
αd+µβc ?
αc+βd ?

]
;

here d, α ∈ Z+ and c, β ∈ Z and

α2 = 1 + µβ2 > µβ2 ;

d2 = 1 + µc2 > µc2 .
∗1:

Now µ > 0, so the RhSes are non-negative; hence

[αd]2 > [µβc]2 .∗2:
To show U sealed under product we need to prove
that αd+ µβc

?
> 0. I.e, that αd

?
> µβc. So

|αd|
?
> |µβc| certainly suffices, since αd is posi-

tive. And this is implied by (∗2). �

When U non-trivial. Suppose that Uµ is not
the trivial gp {I}. So we can pick the minimal
posint Υ for which there exists a ∆ ∈ Z+ with
∆2 − µΥ2 = 1. This ∆ is unique. W.r.t ∆ or Υ,

S = Sµ :=
[

∆ µΥ
Υ ∆

]
is the minimal positive elt of U.

As an example, S2 = [ 3 4
2 3 ].

13: Lem. Fix an M ∈ U. Then the map hM:Z→Z
by

hM(n) := c-coord(Sn ·M)

is strictly increasing. ♦

Pf. Our goal is c′ < c, where[
d′ µc′

c′ d′

]
:= S 1 ·M =

[
∆ −µΥ
−Υ ∆

]
·
[
d µc
c d

]
=
[

? ?
∆c−Υd ?

]
.

So our goal is i.e ∆c − Υd < c, i.e [∆−1]c < Υd.
WLOG c > 0 (since ∆ ∈ Z+ so ∆−1 > 0), and so
our goal becomes ∆−1

Υ
< d

c
. Its LhS > 0, so

establishing [
∆−1

Υ

]2
<
[
d
c

]2
∗:

suffices. But d2 = µc2 + 1, so RhS(∗) > µ. Hence
showing

[
∆−1

Υ

]2
6 µ suffices, i.e [∆−1]2 6 µΥ2,

i.e ∆2 − 2∆ + 2 6 1 + µΥ2 suffices. But this is
equivalent to −2∆ + 2 6 0. This latter is true
since ∆ ∈ Z+. �

14: Prop’n. Imagine an M :=
[
d µc
c d

]
∈ U. Suppose

c > 0 > c′ ,15:

where
[
d′ µc′

c′ d′

]
:= S 1 ·M. Then M = I. ♦

Proof. Whoa! 03Nov2009: This proof was empty.
�

16: Theorem. [µ ∈ Z+] The map f :Z→U given
by f(n) := Sn, is a bijection. ♦
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Appendix

Which values of have Nµ non-empty? Although
we won’t give a complete answwer here, we will
rule out many. Say that an integer D is 4Neg if
D≡4 1; and it is 4Pos if D≡4 1.

Consider our eqn d2 − µc2 = 1, but modulo a
prime p •| µ. This gives

d2 ≡p 1 .17:

The Legendre-symbol thm implies that (17) has a
soln, d, IFF p is 4Pos or is 2.

18: Lemma.Consider a posint µ. Then congruence

d2 ≡µ 119:

has a soln IFF our µ is a a product of pow-
ers of 4Pos-primes and, possibly, one copy of the
prime 2. ♦

Proof. A 4Pos prime p admits a soln to (17).
Now Hensel’s lemma applies♥2 to give us a solution
modulo an arbitrary power, pn.

Certainly d2 ≡ 1 has a soln modulo 2 (but mod-
ulo 4, it certainly does not). Now the Chinese Remain-
der Thm allows us to stitch these congruence-solns
together, �
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♥2It is the easy non-singular case, since p is odd.
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