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Preliminaries. Expression k ∈ N [read as “k is an el-
ement of N” or “k in N”] means that k is a natural number;
a natnum. Expression N 3 k [read as “N owns k”] is a
synonym for k ∈ N.

N = natural numbers = {0, 1, 2, . . . }.
Z = integers = {. . . ,−2,−1, 0, 1, . . . }. For the set

{1, 2, 3, . . . } of positive integers, the posints, use Z+. Use
Z− for the negative integers, the negints.

Q = rational numbers = {pq | p ∈ Z and q ∈ Z+}. Use
Q+ for the positive rationals and Q− for the negative ra-
tionals.

R = reals. The posreals R+ and the negreals R−.
C = complex numbers, also called the complexes.
For ω∈C, let “ω > 5” mean “ω is real and ω > 5”. [Use

the same convention for ≥, <,≤, and also if 5 is replaced by any real
number.]

Use R = [ ∞, ∞] := { ∞} ∪ R∪{ ∞}, the extended
reals.

Abbrevs. Seq: ‘sequence’. poly(s): ‘polynomial(s)’.
irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘vari-
able(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’.
Fnc: ‘function’ (so ratfnc: means rational function, a ratio of poly-
nomials). trnfn: ‘transformation’. cty: ‘continuity’. cts:
‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-
Variable’. CoI: ‘Constant of Integration’. LoI: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposi-
tion’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS:
‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand
side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16
is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of
a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value
Thm’. MVT: ‘Mean-Value Thm’.

The logarithm fnc, defined for x>0, is
log(x) :=

∫ x

1
dv
v . Its inverse-fnc is exp(). For x>0,

then, exp
(
log(x)

)
= x = elog(x). For real t, naturally,

log
(
exp(t)

)
= t = log(et).

PolyExp: ‘Polynomial-times-exponential’, e.g,
[3 + t2]·e4t. PolyExp-sum: ‘Sum of polyexps’. E.g,
f(t) := 3te2t + [t2]·et is a polyexp-sum.

Below we will view various expressions as fncs of a vari-
able, x. As usual, x0 is a another name for the constant
fnc 1.

Monomials. Here are examples:

−6x2,
√

7 · x10, πx, 3, 0 .1a:

Here are non-examples:
√
x, ex, log(x), sin(x) .1b:
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A monomial is an expression OTForm Bxn,
where n ∈ N and B is a number (in R or C), called
the coefficient of xn.

To justify the monomials of (1a), note
x5 = 1·x5, 3 = 3·x0 and 0 = 0·x0. In contrast,
the expressions in (1b) don’t look like monomi-
als, although it would take some wrestling to
show, for example, that 3

√
x

note
=== x1/3 does not

equal some Bxn. It is easy to show that ex

is not a monomial: ex has a horizontal asymp-
tote as x↘ ∞, yet the only monomials with a
horiz. asymptote are the constants. And ex is not
constant.

Polynomials. Examples:

3x2 + x+ 9, π · x77 − x ·
√
π + e , 4, 0 .1c:

A polynomial is a sum of finitely-many monomi-
als. Thus 4 = 4x0 is a polynomial.

Degree. There are two “standard forms” of a
polynomial. The low-to-high form (LtH ) is

f(x) = B0 +B1x+ . . . +BN−1x
N−1 +BNx

N .2a:

We might stop at the highest N for which BN 6= 0,
or we might continue forever, writing the poly as
a power-series whose seq. of coeffs is eventually-
zero. So a poly f(x) =

∑∞
k=0Bkx

k is a way of de-
scribing an eventually-zero seq. ~B = (((B0, B1, . . .))).

The poly 0 + 0·x+ 0·x2 + 0·x3 + . . . we will call
Zip. In particular, Zip() is the identically-zero
function.♥1

The high-to-low form (HtL) of a non-zip poly
is

f(x) = BNx
N +BN−1x

N−1 + . . . +B1x+B0 ,2b:

where BN 6= 0 . A non-zip poly is monic if its
high-order coeff (also called its leading coefficient)
is 1; in (2b), then, this means that BN = 1.
♥1It is possible for a poly g:F→F over a finite field F

to be identically-zero, yet have some non-zero coefficients.
But over an infinite field, notions “poly g is Zip” and
“∀x : g(x) = 0” are the same. So over an infinite field, while
a non-zip polynomial g(x) can be zero for some values of x,
this cannot happen for all values.

The degree of a non-zip p, written Deg(p), is
the largest N such that xN has a non-zero coeff.

Example E1. Consider these polynomials:

p(x) := 0x2 + 7x+ 2 ;

q(x) := 0x2 + 0x+ 2 ;

r(t) := 3 + t+ t19 ;

s(y) := [y + 1][y + 2]− y2 .

Then Deg(p) = 1, Deg(q) = 0, Deg(r) = 19 and
Deg(s) = 1; this last, since s(y) equals

y2 + y + 2y + 2− y2 = 3y + 2 ;

the latter is its HtL-form. �

A convention is to define Deg(Zip) := ∞. This
makes the three equalities in (2c), next, work
when one or both of the polys is Zip.

2c: Lemma. The product, sum, and composition
of polynomials,

p · q, p+ q, p ◦ q ,

are themselves polynomials. Furthermore

2c1: Deg(p · q) = Deg(p) + Deg(q).

2c2: If p and q have distinct degrees, then
Deg(p+ q) equals Max

{
Deg(p),Deg(q)

}
.

2c3: If neither p nor q is Zip, then Deg(p ◦ q)
equals the product Deg(p) ·Deg(q). ♦

As an illustration, let p(z) := z2 − z + 3 and
q(x) := x19 + 1. Then

[p+ q](t) = t2 − t+ 3 + t19 + 1 ;

[p · q](t) = [t2 − t+ 3][t19 + 1] ;

[p ◦ q](t) = p
(
q(t)

)
= p(t19 + 1)

= [t19 + 1]2 − [t19 + 1] + 3

= t38 + t19 + 3 .

Exercise. The product and composition of monic
polynomials is monic. �

Filename: Problems/Polynomials/primer.poly.latex
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Upper-bounding degree. A polynomial p is
an “n-topped polynomial ” if Deg(p) < n. Here
are some 3-topped polys:

x2 − 2x, x+
√

7 , 17, Zip .

However x3 + x is not 3-topped.
The set of 3-topped polynomials is the set of

all Ax2 +Bx+ C, as numbers A,B,C vary. Thus
this set is a 3-dimensional vectorspace.

The zeros of a polynomial

Polynomial p is an integral poly, or an intpoly ,
or a Z-poly, if each p() coeff is integral, i.e, is an
integer. Poly p is called a rational polynomial
(a ratpoly), or a Q-poly, if each coefficient of p is
a rational number.

More generally, let Γ be either Z or Q or R or C:
We call p a “Γ-polynomial ” IFF each p-coeff is
in Γ. For instance, 7x2 − πx is a C-poly and an
R-poly, but is not a Q-poly, since Q 63 π.

In any of Z,Q,R or C, we can freely add, sub-
tract and multiply ; such a set Γ is called a ring.
For Q,R,C, we can also divide by non-zero val-
ues, and such an algebraic-system♥2 is called a
field. Henceforth, the symbol F will mean a gen-
eral field. I’ll speak more about fields in a mo-
ment, but first let me say. . .

Don’t Panic! I’ve designed these notes to be
useful for high-school students up to undergrad-
uate seniors (everyone will see some unfamiliar terms).
Here is how to skip/substitute parts of the text.

Unfamilar with complex numbers? Then re-
place every C with R.

Know C, but not general fields? Then replace
every F with one of Q,R,C.

Factoring. We now define reducible and irre-
ducible; I’ll apply these words to non-constant
polys, i.e, Deg ≥ 1. The irreducible polynomials

♥2Note that Z is not a field. For example, we can not
divide 2 into 3, since there is no integer n for which 2n = 3.

play a role similar to the prime numbers; they are
the fundamental objects of factoring.

Suppose that p is a non-constant Q-poly. Say
that p “ factors over Q” , or “ is Q-reducible ” , if
we can write p = q · r, where q and r are Q-polys,
and

Deg(q),Deg(r) < Deg(p) .

In contrast, p is Q-irreducible (or “ is irre-
ducible over Q”) if p cannot be so factored. Define
similarly F-irreducible, for F one of Q,R,C.

Oftentimes, in factoring p it is convenient to
write the factors as monic polys. So if p is non-
monic with lead-coeff C, then we may write p =
C · q · r, with q, r monic polys. E.g,

7x2 − 35x+ 70 = 7 · [x− 2][x− 3] .

Example E2. Consider p(t) := t2 − 3. This p is
R-reducible, since

p(t) = [t−
√

3] · [t+
√

3] .

But p is Q-irreducible, since t −
√

3 is not a Q-
poly. After all,

√
3 is not rational. �

Example E3. Let p(t) := 3t4 − 13t2 + 12. We can
factor this as p = 3qr, where

q(t) := t2 − 3 and r(t) := t2 − 4
3
.3i:

So p is Q-reducible. But q and r are each Q-irred,
so 3qr is the fully factored form –over Q– of p.

Over R, however, p factors further, as

3 ·
[
t−
√

3
][
t+
√

3
]
·
[
t−

√
4
3

][
t+

√
4
3

]
.3ii: �

Example E4. Is x2 +
√

3 irreducible over Q?
Trick question! This poly is not a Q-poly at all,

so the question is not well-posed. �

Example E5. Polynomial x2 + 9 is irre-
ducible over R. Over C, however, it factors as

[x− 3i][x+ 3i] ,

where i2 = −1. �

Filename: Problems/Polynomials/primer.poly.latex



Prof. JLF King Multiplicity Page 4 of 19

Zeros/Roots of fncs. Consider a fnc ψ:X→Y ,
where Y is a ring or vectorspace (has a distin-
guished element 0∈Y ) and X is an arbitrary set. A
point z ∈ X is a “zero of ψ ” if ψ(z) = 0.

When ψ is a polynomial over a field F, it is
customary to call z∈X a root of ψ. See (5a) for
precise defns.

The Quadratic Formula (QF)

Consider a quadratic polynomial

p(x) = Ax2 +Bx+ C ;4:

since Deg(p) = 2, necessarily A 6= 0. The dis-
criminant♥3 of p, written Discr(p), is the num-
ber

Discr(p) := B2 − 4AC .

Let D henceforth denote this number Discr(p).
Factor p as p(x) = A[x−α][x−β], where α& β

are the two zeros of p. The zeros α& β of p are
1

2A
[−B +

√
D ] & 1

2A

[
−B −

√
D
]
.

♥3 Each non-zip polynomial p has an associated number
called its discriminant. This Discr(p) gives information
about the zeros of p. When p is monic of degree N , then

Discr(p) :=
∏

j<k
[αj − αk]2 ,

where α1, α2, . . . , αN are the zeros of p, listed with mul-
tiplicity. The product is taken over all “N choose 2”
many pairs j<k of distinct indices. A non-trivial the-
orem says that this product is a polynomial in the co-
efficients of p. E.g, in the quadratic case, the mapping
(((A,B,C))) 7→ B2 − 4AC is a 3-variable homogeneous poly-
nomial of degree-2. Let’s look at this when A is 1.
When p is a monic quadratic polynomial

p(t) = t2 +Bt+ C = [t− α][t− β] ,

then the above definition tells us that Discr(p) equals
[α− β]2, which equals α2 + β2 − 2αβ. On the other hand,

B2 − 4AC = B2 − 4C = [−α− β]2 − 4αβ ,

which indeed equals α2 + β2 − 2αβ. So we see, in this
case, that Discr(p) is indeed a polynomial function of p’s
coefficients A,B,C.
See the Vandermonde determinant pamphlet for

more on discriminants.

Now suppose that p is a real poly. When D > 0
then p has distinct real zeros. When D = 0 then
p has one zero, α = β, of multiplicity 2. When
D < 0 then p has no real zeros; it does, however,
have two complex-conjugate zeros.

Irreducibility and the QF. When

p(x) := Ax2 +Bx+ C

is a real poly, then p is reducible over R IFF
D:=Discr(p) is not negative. When p() is a Q-
poly, then it is reducible over Q IFF D is the
square of a rational number. That is, expressing
D as n/d in lowest common terms with n and
d posints, then p() is Q-reducible IFF n& d are
each perfect squares.

Fully factored form. Let “FFF” abbreviate
fully-factored form. Suppose that

p(t) = CN t
N + CN−1t

N−1 + · · ·+ C1t+ C0 ,

is a Q-poly of degree N . Say that

p() = CN ·
∏K

k=1
rk()

is “the Q-FFF of p” if each rk is a monic Q-
irreducible polynomial.

For example, the Q-FFF of 3t4 − 13t2 + 12 is

3 · [t2 − 3][t2 − 4
3
] .

However, its R-FFF is (3ii).

Multiplicity

Given z ∈ F and non-zip F-poly p(), there is a
unique pair M ∈ N and F-polynomial q st.

p(x) = [x− z]M · q(x), where q(z) 6= 0.5a:

(I.e, the polynomials on the left and right of (5a) have the
same coeff-sequence.) We call this natnum M the p-
multiplicity of z, or the “multiplicity of z in p” ,
and write it

�� ��Mult(p, z) . If M ≥ 1 then z is a

Filename: Problems/Polynomials/primer.poly.latex
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root of p. In contrast, M=0 means that z is not
a p-root; so to speak, “z has p-multiplicity 0”, i.e
Mult(p, z) = 0.

What means “multiplicity” for the 0-poly? Let

Mult(Zip, z) := ∞ (for every z ∈ F) ,5b:

since Zip(x) = [x− z]M ·Zip(x) for each posintM .
Lastly, given a subset S ⊂ F define

#Roots(p, S) :=
∑

z∈S
Mult(p, z) ;5c:

we are counting roots in S with multiplicity. Since
factoring of non-zip polys is unique,♥4 we get that

If p 6= Zip then #Roots(p, F) ≤ Deg(p) .5d:

5e: Lemma. Suppose real-poly p is non-zero on
each endpoint of interval J := [x0, x1] ⊂ R. Then

R := #Roots(p, J) is even/odd as values
p(x0), p(x1) have same/opposite signs.

This also holds if R counts distinct roots in J, i.e,
ignoring multiplicity. Proof. Exercise. ♦

Differentiating a polynomial. Define the deriva-
tive of an F-poly p(x) =

∑N
`=0 C`x

` to be

p′(x) :=
∑N

`=1
C` ·

[
` · x`−1

]
.

In particular, Zip′ = Zip.
Recall that f (M) denotes the M th derivative of

fnc f . In particular, f (0) is another name for f .�

6: Derivative root-multiplicity Prop’n. Over a field
F, examine a root z ∈ F of non-zip F-polynomial
p(). With M := Mult(p, z) ∈ Z+, then,

Mult(p′, z) ≥ M−1 .6a:

For the derivative polynomial we have equality

Mult(p′, z) = M−16b:

IFF either Char(F) = 0 or Char(F) is a prime
that does not divide M . ♦
♥4Well. . . for polynomials over a field.

Pf. Factor p(x) = [x− z]M · g(x), with g(z)6=0.
Differentiating establishes (6a), since

p′(x) = [x− z]M−1 · s(x) , where
s(x) := M ·g(x) + [x− z]·g′(x) .

6c:

So (6b) iff s(z) 6= 0. Since s(z) = M ·g(z), this is
equivalent to Mr|� Char(F). �

See Gallian’s textContemporary Abstract Al-
gebra, P.363, for more on the preceding and following
results, and for “perfect” fields.

7: Lemma. For a C-polynomial p, point z ∈ C,
and M ∈ N, suppose that

Each of these derivatives
p(0)(z) , p(1)(z) , p(2)(z) , . . . , p(M−1)(z)
equal zero, but p(M)(z) 6= 0.

7a:

Then the p-multiplicity of z is M . ♦

Proof. WLOG p 6= Zip. Also, ISTShow that
if Mult(p, z) = M then p has property (7a). The
converse is immediate, since p can have (7a) for
only one value of M .

For two L-times–differentiable fncs α and β,
note that the Lth derivative equals (Product Rule)

[α · β](L) =
∑

j+k=L

(
L
j,k

)
· α(j) · β(k) ,

where (((j, k))) ranges over all ordered pairs of
natnums with j + k = L.

Let M := Mult(p, z). Factor p as in (5a). For
each j ≤M , this jth derivative w.r.t x is[

[x− z]M
](j)

= M !
[M−j]! · [x− z]M−j .

For each L ≤M , then,

p(L)(x) =
∑

j+k=L

(
L
j,k

)
· M !

[M−j]! ·[x− z]M−j · g(k)(x) .

When L < M , each exponent M−j is positive, so
p(L)(z) = 0. When L = M , conversely, M−j = 0
implies that j = M and k = 0. So p(M)(z) equals

1 ·M ! · 1 · g(z)
note
=== M ! · g(z) .7b:

This is not zero, so p() has property (7a). �

Filename: Problems/Polynomials/primer.poly.latex
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7c: Remark. For a poly p:F→F, the Lemma 7 holds IFF
RhS(7b) is not zero. So the lemma holds IFF Char(F)=0
or M<Char(F).

When Char(F)=0, then poly p is Zip IFF

there exists a point z ∈ F with all derivatives
zero; ∀n∈N: p(n)(z) = 0.7d:

This fails over fields of characteristic p. E.g, over F := Z2,
the non-zip polynomial

f(x) := x2[x− 1]
2 note

=== x4 + x2

has p(n)(z) = 0 for all z ∈ {0, 1} and n ∈ N. This poly is
also an example where the inequality in (6a) is strict. For
Mult(f, 1) = 2. Yet f ′ = Zip, so Mult(f ′, 1) = ∞. �

8: Thm. An irreducibile F-polynomial p has no re-
peated roots, if either Char(F) = 0 or p′ 6= Zip.♦

Proof.FTSOC, suppose z is a p-zero of multiplicity
M≥2. By (6a), z is a common zero of p′ and p;
thus GCD(p, p′) is non-trivial. By irreducibility
of p, then, GCD(p, p′) equals p [times a unit, if you
like]. Thus p divides p′. But Deg(p′) < Deg(p), so
the only way this can happen is if p′ = Zip.

For the Char(F)=0 case, since p is not constant

Deg(p′) = Deg(p)− 1 = M − 1 > 0 .

So automatically p′ 6= Zip. �

9: Neg-to-Pos Lemma. Fix a non-zip R-polyno-
mial p. At each real root z of p, the rational-func-
tion R := p′

p
has a simple pole, and changes sign

from negative to positive. In particular,

liminf
x↗z

R(x) = ∞ and

limsup
x↘z

R(x) = ∞ .
9a: ♦

Pf. Factor p(x) = [x− z]M · g(x) with M ∈ Z+

and g(z)6=0. Then

p′(x)

p(x)
=

M

x− z
+
g′(x)

g(x)
.9b:

Since g(z) 6=0, there exists an open interval J 3 z
with g�J is bounded away from zero. So WELOG

5 ≤ g′

g

∣∣∣
J
≤ 5 .

OTOHand, the map x 7→ 1
x−z is unbounded as x

increases past z, and goes from negative to posi-
tive. And M > 0. �

10: deGua’s Thm. Fix a non-zip real poly p() and
an [possibly half-open, possibly infinite] interval J ⊂ R.
Real polys A() and B() engender a poly

H := p′·A + p·B .

If A�J > 0, then

#Roots(H,J) ≥ #Roots(p,J)− 1 .10a: ♦

Pf. (We assume J open; the small modification necessary
when a root z is an endpt of J is left to the reader.)

List all the distinct p-roots in J as

z1 < z2 < . . . < zL (possibly L = 0) ,

and let M` := Mult(p, z`). By (6),

M` − 1 ≤ Mult(p′, z`)
note
≤ Mult(H, z`) .

Adding these together,

∑L

`=1
Mult(H, z`) ≥ #Roots(p,J)− L .

So (10a) will follow if, for each ` ∈ [1 .. L), poly H
has a root in open interval J` := (z`, z`+1). This
will follow from the IVThm if we can show that H
changes sign on J`. Since p() is never zero on J`,
our p() does not change sign. Thus ISTShow

For all ε>0 sufficiently small, R(z` + ε)
and R(z`+1 − ε) have opposite signs,

where R := H
p
. So ISTS that our R fulfills (9a).

Filename: Problems/Polynomials/primer.poly.latex
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Establishing (9a). Fix a p-root z ∈ J. From
the defn of H,

H
p

=
[
p′

p
· A
]

+ B .∗:

By Neg-to-Pos, (9), ratio p′

p
satisfies (9a). But

A(), being cts, is positive on a whole nbhd of z, so
product p′

p
·A fulfills (9a). Hence so does RhS(∗),

since polynomial B is bounded near z. �

Variation of a tuple. Consider ~a = (((a1, . . . , aL))), a
tuple of reals. Erase each entry which equals zero,
giving a possibly-shorter tuple ~b = (((b1, . . . , bJ))) of
non-zero reals. Define Var(~a) := Var(~b) to be the
number of sign-changes in ~b; that is, the number
of j ∈ [1 .. J) with bj·bj+1 < 0.

So Var(((( 3, 4, 0, 8)))) = 0. And Var(~a) = 2,
where ~a := (((3, 0, 0, 4, 0, 1, 0, 9, 7, 0))). �

11: Descartes’s rule-of-signs Thm. For a non-zip
real poly p(x) = aNx

N + · · ·+ a1x+ a0, let

R := #Roots(p,R+) and V := Var(~a) .

Then V ≥ R. Moreover, the difference V − R is
even. ♦

Pf. We induct on V . Since negating p changes
neither R nor V , WLOG aN > 0.�� ��Case: V = 0 Every coefficient ai ≥ 0. For
each x>0, then, p(x) is strictly positive. So R = 0.�� ��Case: V ≥ 1 Since aN > 0, there exist in-
dicesK>J in [1 .. N ] with aK > 0 > J , and ai = 0
for each i ∈ (J ..K).

We apply deGua’s Thm on J := Z+, to

H(x) = p′(x)·x + p(x)·B
note
===

∑N

`=0
b`x

` , where b` := [`− B]·a` ,

where B := K+J
2

. So deGua’s asserts that

#Roots(H,R+) ≥ R−1 .

Since K > B, we have, for each `≥K, that
`− B > 0, so Sgn(b`) = Sgn(a`). And B > J so,
for each `≥K, coeffs b` and a` have opposite signs.
Thus ~b has every variation that ~a has except the
one from index J to K. So Var(~b) = V−1.

Our induction hypothesis applied to H tells us
that V−1 ≥ #Roots(H,R+). Thus V−1 ≥ R−1.

Even difference. Factor the given p(x) as
xL[aNx

N + · · ·+ a1x+ a0] with

aN > 0 and a0 6= 0.

Neither the number of coeff-variations, nor of pos-
itive roots, is changed by redefining

p(x) := aNx
N + · · ·+ a1x+ a0 .

Integer Var(~a) is even/odd as a0 is pos/neg.
#Roots(p, Z+)

Unfinished: as of 1Feb2022 �

Defn. For p(t) = C0 +C1t+C2t
2 + · · ·+CN t

N , a
polynomial over C, its complex-conjugate is

p(t) := C0 + C1t+ C2t
2 + · · ·+ CN t

N . �

The discriminant of quadratic [i.e, A6=0]
polynomial q(z) := Az2 +Bz + C is

Discr(q) := B2 − 4AC .12.1:
The zeros [“roots”] of q are

Roots(q) =
1

2A

[
B ±

√
Discr(q)

]
.12.2:

Hence when A,B,C are real, then the zeros of q
form a complex-conjugate pair. And q has a re-
peated root IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

q(x) = x2 − Sx+ P = [x− z] · [x− z] ,12.3:

where z ∈ CrR. Note S = z + z = 2Re(z) is
the Sum of the roots. And P = z · z = |z|2 is
the Product of the roots. The discriminant of g,
Discr(g), equals

Filename: Problems/Polynomials/primer.poly.latex
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S2 − 4P note
=== [z− z]2 = −4·[Im(z)]2 .12.4:

Completing-the-square yields

q(x) =
[
x− S

2

]2
+ F 2, where F := |Im(z)| ,12.5:

which is easily checked. [Exercise]

13: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic C-polynomial

p(x) := xN +BN−1x
N−1 + . . . +B1x+B0 .

Then p factors completely over C as

p(x) = [x− z1] · [x− z2] · . . . · [x− zN ] ,

for a list z1, . . . , zN ∈ C, possibly with repetitions.
This list is unique up to reordering.

If p is a real polynomial, i.e p = p, then p fac-
tors over R as a product of monic R-irreducible
linear and R-irred. quadratic polynomials. The
product is unique up to reordering.

Proof. In appendix, (28).Also: A proof-sketch is
in Primer on Polynomials on my Teaching page. ♦

Division. Fix a field F, e.g F is one of Q,R,C.
We now discuss dividing one poly d (the “divisor”)

into another poly p (the “dividend”).

14: Division Thm. Consider F-poly p (the dividend)
and non-zip F-poly d (the divisor). Then there ex-
ists a unique pair of F-polys q and r (the quotient
and remainder) so that

p = [d · q] + r , where Deg(r) < Deg(d). ♦

15: GCD Corollary. The greatest common divisor
poly d of two polynomials p1, p2 (not both zip) is a
linear combination of them, in the sense that

d() = β1() · p1() + β2() · p2()

for some “coefficient polynomials” β1 and β2. ♦

Polynomial d is written as GCD(p1, p2).

Rational Functions
Suppose Γ is one of Z,Q,R,C. I’ll use the symbol
ΓJxK for the set of Γ-polynomials using the vari-
able x. Also Γ((x)) is used for the set of rational
functions over Γ, which we introduce next.

Recall that a rational number is a ratio of two
integers, with the denominator non-zero. Analo-
gously, a rational function , f , is a ratio of two
polynomials with non-zip denominator . The fol-
lowing,

t4 − t ; 3 ;
1

e · t6 −
√

3
;

t2 + 1

6t5 − π
,

are each rational functions of t. In contrast, et is
not a ratfnc (rational function) of t.

16: Theorem. Over a field F, each sum, product,
quotient and composition of ratfncs

f + h, f · h, f/h, f ◦ h ,

is a ratfnc; the quotient f/h requires that h 6= Zip.
In particular, the set F((x)), of rational func-

tions, is itself a field.♥5 ♦

♥5An algebraist would write this field as(((
F((x)),+, 0, · , 1

)))
, where 0 and 1 denote constant ra-

tional functions.
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Algebraic and Transcendental
numbers

A complex number γ is algebraic if it is a root of
some non-zip intpoly [equiv., ratpoly] f . Thus

α :=
5
√

19 and β :=
[
1 −

√
13
]/

6

are algebraic numbers, since α is a root of x5 − 19,
and β is a root of 3x2 − x− 1. Evidently each
rational number P/Q is algebraic, since it is a
root of intpoly Qx− P .

Each algebraic number γ has an associated
posint called its degree, written Deg(γ). Writing
d := Deg(γ), then γ is a root of some degree-d
intpoly, but is the root of no lower-degree [non-zip]
intpoly.

The rationals are precisely those numbers of de-
gree 1. The above α has Deg(α) ≤ 5. The above
β has Deg(β) = 2, since

√
13 is irrational.

Use A for the set of algebraic numbers in C. We
see that A is stratified into a hierarchy by degree.
The numbers in the complement, Cr A, tran-
scend this hierarchy so –not surprisingly– each
such number is said to be transcendental . Al-
though this is not obvious, each of these three
numbers

π, e, τ :=
∞∑
n=1

1

bn
, where bn := 2n!,

is transcendental.♥6

We define the degree of a transcendental num-
ber to be ∞. That is to say, the degree of a num-
ber γ ∈ C is the infimum of numbers d ∈ [1 ..∞)
such that γ is a zero of some degree-d intpoly.

18: Theorem. You can add, subtract multiply
and divide algebraic numbers, and the result is
always algebraic. Specifically, consider two alge-
braic numbers α,β ∈ A. Then the following hold.

i : Deg(1/β) equals Deg(β).

♥6Such a τ is called a Liouville number. There is an
explanation of Liouville numbers on my Teaching Page.

ii : The degrees of α ± β and of α · β
and α/β are upper-bnded by the product
Deg(α) ·Deg(β).

iii : For an arbitrary rational function F (x, y)
with rational coefficients: The degree of
F (α, β) is upper-bnded by Deg(α) ·Deg(β).

All assertions involving division by β require β to
be non-zero. ♦

A particular implication of the above thm is
that the set A of algebraic numbers forms a field.
This is not obvious.

19: Prop’n. For α algebraic, let N := Deg(α).
Then there is a unique monic ratpoly H() with
H(α) = 0. Moreover, H is Q-irreducible. ♦

Proof. Suppose H, ĥ are degree-N monic ratpolys
sending α to zero. Then ratpoly H−ĥ has smaller
degree, and [H−ĥ](α) = 0, so H−ĥ must be zip.

Irreducibility: FTSOC suppose H = p · q, for
monic ratpolys of degree <N . Then p(α) · q(α) is
zero, so WLOG p(α) = 0. But p is monic and
Deg(p) < Deg(H), contradicting the minimal-
degreeness of H. �

Defn. This minimal-degree monic poly H is called
the “minimal polynomial (min-poly) of α” .

This H is a ratpoly. Sometimes one wants
an intpoly. If I say “let H be the minimal int-
poly of α”, then this means that H is the unique
minimum-degree intpoly, with leading-coefficient
positive, and with GCD(H’s coeffs) = 1. �

Subfields of C
Fix an α ∈ C. Let QJαK be the set of complex
numbers OTForm q(α), where q ranges over all Q-
polys. Easily, the set QJαK is what algebraists call
a ring ; adding or multiplying two numbers in the
set keeps you in the set. (That is not a formal defn of
“ring”.)
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20: Lemma. Suppose that α is an algebraic
number of degree N . Then QJαK is an N -dim’al
Q-vectorspace, and {1,α,α2, . . . ,αN−1} is a Q-
basis.

Moreover, QJαK is a field, and hence
equals Q((α)). ♦

Proof. We start by establishing spanning.
The set {1,α, . . . ,αN−1} spans QJαK. Let

H be the min-poly of α; set N := Deg(H)≥1.
Each element of QJαK has form f(α), for some
ratpoly f . WLOG Deg(f) < N ; for divide H
into f to write f = [H ·q] + r where Deg(r) < N .
Thus r(α) = f(α). Hence f(α) is in the Q-span
of {1,α, . . . ,αN−1}.

Linear independence of {1,α, . . . ,αN−1}.
FTSOC, suppose that

∑N−1
j=0 Bjα

j = 0, non-
trivially. Let K ≤ N−1 be highest index with
BK 6= 0. Dividing the eqn by BK and renaming,
we now have 0 = αK +

∑K−1
j=0 Bjα

j. But this says
that α is the root of a monic degree-K ratpoly.
###

QJαK is a field. Fix a non-zero ω ∈ QJαK;
there is a ratpoly, call it f , with f(α) = ω. To
show that QJαK 3 1

ω
, we will produce a ratpoly T

with

f(α) · T (α) = 1 .†:

Firstly, f 6= Zip, since ω 6= 0. Thus f ⊥ H,
since H is irreducible and Deg(f)

WLOG
< Deg(H).

So there exist [Bézout’s lemma] ratpolys S and T
with 1 = HS + fT . Evaluating at α yields (†).�

21: Thm. Suppose α and β are roots of an irre-
ducible Q-poly, h, of degree N≥2. Then QJαK
is field-isomorphic (and vectorspace isomorphic) to
QJβK, via map

N−1∑
k=0

qk ·αk 7−→
N−1∑
k=0

qk · βk ,†:

where the qk range over the rational numbers. ♦

Quadratic extensions

Fix a Q-irreducible quadratic h(z) = z2−Sz+P ;
so S, P ∈ Q with P 6= 0. By the Quadratic For-
mula, there are complex numbers α,β such that

h(z) = z2 − Sz + P = [z −α] · [z − β] .

Necessarily, α,β ∈ CrQ and α 6=β, since h is
irred..

Automatically, α+ β = S (Sum)∗:
and α · β = P . (Product)

Let F := QJαK note
=== 1·Q +α·Q be this vectorspace

(and field). Courtesy (∗), note, QJβK = F = QJαK.
For each ζ ∈ F define ζ, its “h-conjugate ” .

The h-conjugation map ζ 7→ ζ is an involution
(i.e, ζ = ζ) which “interchanges α and β”. It is
determined by

1 := 1 and α := β.

Since S is rational, β = S −α def
== S − β = α .

For x, y ∈ Q, then,

x− yα def
== x− yβ = x− y[S −α] = [x− yS] + yα .

The mapping ζ 7→ ζ is special case of (21†),
a field automorphism. It engenders a norm
N:F→Q by

N(ζ) := Nh(ζ) := ζ · ζ note
=== x2 − xyS + y2P ,22:

where ζ := x − yα. This norm is (totally) multi-
plicative in that

N(ζ · z)
def
== ζzζz = N(ζ) ·N(z) ,23:

for all ζ, z ∈ QJαK.

24: Lemma. N(ζ) = 0 IFF ζ = 0 .

Pf (⇒). WLOG ζ 6= 0, so ζ must
=== 0. Thus ζ = 0.�
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Alt Pf of (⇒). Write ζ := x− yα. FTSOC, first
suppose that y 6= 0. Courtesy (22), then,

0 = 1
y2
· 0 = 1

y2
·N(ζ)

note
=== h(x

y
) .

So x
y
must be α or β. But x/y is rational. ###

Thus y = 0. So N(ζ) = x2, which forces x = 0.�

Note. A corollary is that QJαK is a field, since

1/ζ = ζ/N(ζ) = x
N(ζ)
− y

N(ζ)
β

= x−yS
N(ζ)

+ y
N(ζ)
α . �

Case: S and P are integers. Let Γ := ZJαK;
so ZJβK = Γ, since S ∈ Z. And the norm N(·)
maps Γ into Z, as (22) shows.

Let UΓ be the group of units in Γ.

25: Lem. For ζ ∈ Γ: N(ζ) ∈ UZ IFF ζ ∈ UΓ. ♦

Pf of (⇒). By hypothesis, u := 1/N(ζ) is ±1. And

1 = N(ζ) · u = ζ · ζu .

Thus ζ is a Γ-unit, since ζu ∈ Γ (since u ∈ Γ). �

Proof of (⇐). Take ω ∈ Γ with ζω = 1. Thus

1 = N(1) = N(ζ) ·N(ω) .

These last two are integers, so N(ζ) is a Z-unit.�

26: Example: Non-unique factorization. Let
α :=

√
5 and Γ := ZJαK. So N(x+ yα) equals

x2 + 5y2. Note that

2 · 3 = 6 = [1 +α][1−α] .†:

Call each of these four numbers 1±α, 2, 3 a “blip” .

Each blip is Γ-irred. By (23), were a blip
to have a nt-factor ζ, its norm would have a nt-Z-
factor N(ζ). The blip-norms are

N(1±α) = 6 ; N(2) = 4 ; N(3) = 9 .‡:

The only non-negative nt-Z-factors of 6, 4, 9
(this norm N() is non-negative) are 2, 3. Were�� ��x2 + 5y2 = 2 or 3 to have an integer soln, then
the corresponding congruence would too, i.e
x2 ≡5 ±2. But the mod-5 squares in [ 2 .. 2]
are 0,±1.

Lastly, none of 6, 4, 9 is a Z-unit (i.e, not ±1),
so (25) says that no blip is a Γ-unit.

No blip is Γ-prime. None of 6, 4, 9 divides
another so, by (23), no blip on LhS(†) divides a
blip on RhS(†), and vice versa. Thus no blip is
Γ-prime. �

27: Application. Let α :=
√

5 and Λ := ZJαK. So
N(x+ yα) = x2 − 5y2. Note

2 · 2 = 4 = [1 +α][1−α] .†:

A similar argument shows that each of ±2, 1±α
is Λ-irreducible but not Λ-prime. �

More general coefficients
So far, we have considered polys whose coefficients
come from a set, Γ, where Γ is either Z or Q or R
or C. More generally, we can allow Γ to be a com-
mutative ring. In this more general situation, we
need to be careful about the defn of a polynomial.

Consider a sequence ~C := (((C0, C1, . . .))) of points
in Γ. This ~C is eventually-zero if there is a
posint N so that Ck = 0 for each k > N . For-
mally, a Γ-polynomial is an eventually-zero se-
quence (((C0, C1, . . .))) of coefficients from Γ. The
polynomial determines an Γ-function

x 7→
∑∞

k=0
Ckx

k note
===

∑N

k=0
Ckx

k .
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Even for some fields F, it is possible for two
different F-polys to determine the same function!
For example, if F is the field {0, 1} having just two
elements, then distinct polys x and x2 determine
the same function. And x + x2 is the constant-
zero fnc, but it is not Zip, since its coeff-seq is
(((0, 1, 1, 0, 0, . . .))).
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§A Appendices
We put some proofs here that don’t fit into the
main text.

Fundamental Theorem of
Algebra

A field F is algebraically closed if every monic
F-polynomial “ factors completely” ; that is, into a
product of linear polynomials. Here we sketch a
proof that C is algebraically closed.

28: Fund. Thm of Algebra. Every monic C-
polynomial

f(z) = zN +BN−1z
N−1 + · · ·+B1z +B0

factors as

f(z) = [z − z1] · [z − z2] · . . . · [z − zN ] ,

for a unique multiset {z1, . . . , zN} of complex
numbers. Thanks to the division algorithm, this
is equivalent to saying

Each non-constant [i.e, N ≥ 1] complex
polynomial f() has a complex root.28′: ♦

Sketch of (28′). FTSOC, suppose that

µ := inf
z∈C
|f(z)|

is positive. As |z|→∞ note that |f(z)| → ∞,
since the high-order term zN swamps (in absolute-
value) the other terms. So there is a sufficiently
large closed disk D⊂C on which infz∈D |f(z)|
equals the above µ.

Since z 7→ |f(z)| is continuous, there exists♥7
a point z0 ∈ D with |f(z0)| = µ. Replace f by
z 7→ f(z+ z0)

f(z0)
. We now have

f(0) = 1. Furthermore, |f(z)| ≥ 1, for
all complex z.

†:

♥7Since D is closed and bounded, D is compact. And on
a non-void compact set, a cts fnc achieves a minimum.

Writing f(z) = 1 +
∑N
j=1Bjz

j, let K be the
smallest positive index with BK 6= 0; this exists,
since f is non-constant. Let A∈C be a Kth-root
of [ BK ]. Replace f by f( z

A
); this redefines coeffs

(((Bj)))
N

j=1. We retain (†) and now have

f(z) = 1 − zK + R(z) ,‡:

where R(z) :=
∑N
j=K+1Bjz

j, and K is a posint.

Small ε. Let C :=
∑N
j=K+1 |Bj|. Take a

(positive) ε<1 so small that

1
7
·εK > C· εK+1

note
≥

∣∣∣R(ε)
∣∣∣ . Thus∗: ∣∣∣f(ε)

∣∣∣ by (‡)
≤

∣∣∣1− εK ∣∣∣ +
∣∣∣R(z)

∣∣∣
by (∗)
≤ 1 − 6

7
·εK .

And this contradicts (†). [Hence infz∈C |f(z)| must
have been zero.] �
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Integrating polynomials
Here we exhibit two tricks, using counting♥8 ideas.

Bernstein polynomials. Throw K+L+1
darts at the unit-interval J := [0, 1]. Condition

♥8For a natnum n, use “n!” to mean “n factorial ” ;
the product of all posints ≤n. So 3! = 3 · 2 · 1 = 6 and
5! = 120. Also 0! = 1 = 1!.
For natnum B and arb. complex number α, define

Rising Fctrl: Jα ↑ BK := α·
[
α+ 1

]
·
[
α+ 2

]
· · ·
[
α+ [B−1]

]
,

Falling Fctrl: Jα ↓ BK := α·
[
α− 1

]
·
[
α− 2

]
· · ·
[
α− [B−1]

]
.

E.g, JB↓BK = B! = J1↑BK. Two further examples,

r
2
7

y 4
z

=
2

7
· 5

7
· 12

7
· 19

7
and J1 ↓ 3K = 1 · 0 · 1 = 0 .

In particular, for n ∈ N: If B > n then Jn ↓ BK = 0.
We pronouce J5 ↓ BK as “5 falling-factorial B”.

Binomial. The binomial coefficient
(
7
3

)
, read

“7 choose 3”, means the number of ways of choosing
3 objects from 7 distinguishable objects. Emphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as

(
7
3,4

)
. [Read as

“7 choose 3-comma-4.”] Evidently(
N

j

)
with k := N− j
============

(
N

j, k

)
=

N!

j! · k!
=

JN ↓ jK
j!

.†:

Note
(
7
0

)
=
(

7
0,7

)
= 1. Finally, the Binomial theorem says

[x+ y]N =
∑

j+k=N

(
N
j,k

)
· xjyk ,£:

where (((j, k))) ranges over all ordered pairs of natural num-
bers with sum N.

For natnum N, binomials satisfy this addition law:(
N+1

B+1

)
=

Pick last object.︷ ︸︸ ︷(
N

B

)
+

Avoid last object.︷ ︸︸ ︷(
N

B+1

)
.∗:

Extending this to all B∈Z forces:(
N

B

)
= 0,

when B > N
or B negative.

Case B>N is automatic in formula
(
N
B

)
= JN↓BK

B! .

on x, the landing-spot of the first dart. The
probability that the next K darts fall left of x,
and the rest right, is xK [1−x]L. So the condi-
tional probability that some K-many of the next
K+L many darts is(

K+L
K, L

)
· xK · [1−x]L .

Letting U be the unconditioned probability gives

U =
(
K+L
K, L

) ∫
J
xK · [1−x]L dx .29:

But by permutation symmetry,

U = 1
K+L+1

.30:

After all, of the K+L+1 darts, some “special”
dart ends up having K darts to its left. And the
probability that the first-thrown dart ends up be-
ing special is RhS(30). In consequence∫

J
xK · [1−x]L dx = 1

/[(
K+L
K, L

)
· [K+L+1]

]
= K!L!

/
[K+L+1]! .

31:

Multinomial. In general, for natural numbers
N = k1 + . . .+ kN , the multinomial coefficient(

N
k1, k2, ..., kN

)
is the number of ways of partitioning

N objects, by putting k1 objects in pocket-one, k2 objects
in pocket-two, . . . putting kN objects in the N th pocket.
Easily (

N

k1, k2, . . . , kN

)
=

N!

k1! · k2! · . . . · kN !
.‡:

Unsurprisingly, [x1+. . .+xN ]N equals the sum of terms(
N

k1,...,kN

)
· x1k1 · x2k2 · · ·xNkN ,££:

taken over all natnum-tuples ~k=(((k1, . . . , kN))) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum S` := k1 + k2 + . . .+ k`. Then multino-
mial LhS(‡) equals this product of binomials:(

N

k1

)
·
(
N− S1

k2

)
·
(
N− S2

k3

)
· . . . ·

(
N − SN−1

kN

)
·

[The last term is
(
kN

kN

) note
=== 1.]
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We now take a different approach to the same
problem.

Integration with convolutions. Recall that
the one-sided convolution of two (locally-
integrable) fncs f, g:[0,∞)→C is the function

[f ~ g](t) :=
∫ t

0
f(t− x) · g(x) dx .32:

Easily, convolution is associative and commuta-
tive. Use f~3 for the 3rd convo-power f~f~f .

For K = 0, 1, . . . , let pK(z) := zK ; our power
functions. Use 1 for the constant-one fnc p0.
Induction on natnum K shows that

1~[K+1] = 1
K!
· pK . Hence

pK = K! · 1~[K+1] .
33:

For K &L natnums, pK ~ pL = K!L! · 1~[K+L+2],
by associativity of convolution. Thus

pK ~ pL = K!·L!
[K+L+1]!

· pK+L+1 .34:

The binomial coeff M :=
(
K+L
K, L

)
allows

[pK~pL](z) =
zK+L+1

M · [K+L+1]
.34′:

Setting z := 1 in (34′), makes (34′) identical
to (31) —as it must!

Several. Consider N andK0, K1, · · · , KN , all
natnums. Let S :=

∑N
0 Kj. From (33a) note that

1~[S+N+1] = 1
[S+N ]!

· pS+N .

With M now the multinomial coeff
(

S
K0,··· ,KN

)
, the

convo-product pK0~pK1~ · · ·~pKN
equals

K0! · . . . ·KN ! · 1~[S+N+1] = 1
M
· S!

[S+N ]!
· pS+N .

Assigning B :=
(
S+N
S, N

)
permits the exposition

[pK0~ · · ·~pKN
](z) =

zS+N

M ·B ·N !
.35:

Does this denominator have an interesting combi-
natorial interpretation?

Polynomials in several
variables

The degree of a monomial such as
x4yz2 is the sum of the exponents; here
Deg(x4yz2) = 4 + 1 + 2 = 7. However, to be
precise one has to indicate which letters are
viewed as the variables, and which are viewed as
parameters. For instance (the first line needs A 6=0)

x 7−→ Ax2 +Bx+ C has degree 2;
(((A, x))) 7−→ Ax2 +Bx+ C has degree 3;

(((A,B,C))) 7−→ Ax2 +Bx+ C has degree 1.

A multivariate polynomial is a finite sum of
multivariate monomials, and its degree is the
maximum of the degrees of its monomials. E.g

f(x, y, z) := 2x4yz2 + 102y5z3 + 5x6 + 2007

has degree 8. A poly h is said to be “homo-
geneous of degree N ” , if every h-monomial has
degree exactly N . F’irinstance,

h(x, y, z) := 2x5yz3 + 120y6z3 − 75x9

is homogeneous of degree 9, but poly 23 + h() is
not homogeneous, since monomial 23 has degree 0,
not 9. Note that Zip is vacuously homogeneous,
since it has no monomials.

The product of homogeneous polys is homoge-
neous but –in general– the sum is not homoge-
neous.

Now lets view the N2-positions in an N×N ma-
trix M as variables. Then the matrix-determinant

Det(M) is a degree-N homogeneous
polynomial in N2 variables. The poly
has N ! many monomials, half of which
(once N ≥ 2) have coefficient 1, and half
of which have 1 as coefficient.

36:
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Roots of the Cubic and the
Quartic

Here I derive a root-extraction formula for the
roots of a cubic polynomial, similar to the QF for
a quadratic. Formulas like (41), below, are some-
times called Cardano’s formula. ♥9

First note, for a degree N≥1 (monic) polynomial

F (t) := tN + FN−1t
N−1 + FN−2t

N−2 + . . .

that the linear change-of-variable
�
�

�
�t =: x− FN−1

N

gives a polynomial in x

xN + 0 · xN−1 + CxN−2 +DxN−3 + . . .

with no penultimate term. Such a poly is a called
a “depressed degree-N polynomial” .

Sum and product. For two mystery num-
bers U, V , suppose we know their sum and prod-
uct,

U + V =: S and U · V =: P .37:

Then polynomial [y − U ][y − V ] = y2 − Sy + P
has U, V as roots. Consequently,

U, V = 1
2

[
S ±
√
S2 − 4P

]
37′:

in some order.

Roots of the depressed cubic

We’ll get a formula for the three roots of cubic

f(x) := x3 − 3Cx− S , with C, S ∈ C,38:

where I have written the x-coefficient as “−3C”
because I have looked ahead into the proof.

The trick is to write
�� ��x = α + β subject to a

constraint on the product α · β. Computing,

f(α + β) = α3 + β3 − S + [3αβ − 3C][α + β] .

♥9The history is complicated; see Wikipedia.

The idea is to view α3 and β3, as the “mystery”
numbers, (37), whose sum and product are known.
To make the sum known, require that 3αβ − 3C
equal 0, i.e

α · β = C .39:

This arranges that equality f(α + β)=0 means

α3 + β3 = S .40:

Cubing (39) gives

α3 · β3 = C3 .40′:

Thus (37) tell us that α3 and β3 each have form
RhS(37′), with P := C3. Since their sum must
be S, by (40), without loss of generality

α3 = 1
2

[
S −
√
S2 − 4C3

]
and

β3 = 1
2

[
S +
√
S2 − 4C3

]
.

Cardano’s formula. Let ω be a primitive
cube-root of unity; say, ω := 1

2
[ 1 +

√
3 i].

Let σ be a particular square-root of S2 − 4C3.
Let α0 be a particular cube-root of 1

2
[S − σ]. Let

β0 be the♥10 cube-root of 1
2
[S + σ] satisfying

α0 · β0 = C .

Then the three zeros of (38) are

x = α0 + β0 = ω0α0 + ω 0β0 ;

x = ωα0 + ω 1β0 = ω1α0 + ω 1β0 ;

x = ω 1α0 + ωβ0 = ω2α0 + ω 2β0 .

41:

♥10This β0 is unique unless α0 is zero. Making the con-
vention that if C = 0, then the σ we chose is S, we have

[α0 = 0] ⇐⇒ [C = 0] .

So when C = 0, we can let β0 be any one of the cube-roots
of 1

2 [S + σ]
note
=== S. Our (41) becomes

{
β0, ω

1β0, ωβ0
}
..
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Cheerful cubic! To the undepressed-cubic

F (t) := t3 − 3Kt2 − Lt−M ,42:

the change-of-var t =: x+K produces (38) with

C := K2 + L
3 and S := 2K3 +M + LK .

Produce σ, α0, β0 as above. Then the three zeros
of F () are

τj := K + [ωjα0 + ω jβ0] , for j = 0,±1.41′:

Roots of the Quartic

Let’s derive Ferrari’s formula , (46), for the
roots of a quartic polynomial.

43: Lemma. Consider complex numbers A,B,C.
When do there exist Λ,Ω ∈ C such that.

Ax2 +Bx+ C = [Λx+ Ω]2 ,43†:

where the equality is as polynomials in x? There
exist such Λ,Ω ∈ C IFF B2− 4AC equals zero.♦

Proof. Condition (43†) says that A=Λ2 and C=Ω2

and B=2ΛΩ. Thus B2 − 4AC = 0.
Conversely, now suppose B2 = 4AC and pick

square-roots Λ and Ω such that

Λ2 = A and Ω2 = C .43‡:

Necessarily, B2 = [2ΛΩ]2. Hence B = ±2ΛΩ. If
the minus-sign, then redefine Ω to be −Ω. �

Our goal now is to get a formula for the four
complex roots of the depressed quartic

q(x) := x4 − Ax2 −Bx− C .44:

Letting X := x2, we rewrite q(x)
goal
=== 0 as

X2 = [x2]
2 goal

=== Ax2 +Bx+ C .45:

Each t ∈ C produces a perfect square

[X + t]2
note
=== LhS(45) + [2tX + t2] .†L:

And RhS(45) + [2tX + t2] equals

[A+ 2t]︸ ︷︷ ︸
At

· x2 + Bx + [C + t2]︸ ︷︷ ︸
Ct

.†R:

Since (†L) is always a square, we’d like to choose t
so that (†R) is a square.

By lemma 43, we want t st. B2 − 4AtCt equals
zero. Multiplying 4AtCt −B2 by 1

8
gives

F (t) := t3 + A
2
t2 + Ct + 4AC−B2

8
.

This F (), upto a linear change-of-variable, is
sometimes called the resolvent of the quartic
polynomial q() from (44).

Ferrari’s formula. Use Cardano’s formula,
(41′), to pick a particular complex number τ
st. F (τ) = 0. Now (43‡) hands us numbers Λ and
Ω with (†R) equaling [Λx+ Ω]2. But (†L) = (†R).
Consequently,

[x2 + τ ]
2

= [Λx+ Ω]2 .45′:

The set of x solving (45) is precisely the soln-set
to (45′). And this is the union of solutions to

x2 + τ = Λx− Ω and

x2 + τ = Λx+ Ω .

I.e, the zeros of x2 ± Λx+ [τ ± Ω]. This polyno-
mial’s discriminant is

Λ2 − 4τ ∓ 4Ω .

We get the these four solutions:

x = 1
2

[
−Λ ±

√
Λ2 − 4τ − 4Ω

]
and

x = 1
2

[
+Λ ±

√
Λ2 − 4τ + 4Ω

]
.

46:
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