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Preliminaries. Expression & € N [read as “k is an el-
ement of N” or “k in N”| means that k is a natural number;
a natnum. Expression N 3 k [read as “N owns k7] is a
synonym for k € N.

N = natural numbers = {0,1,2,... }.

Z = integers = {...,—2,—1,0,1,...}. For the set
{1,2,3,...} of positive integers, the posints, use Z,.. Use
Z_ for the negative integers, the negints.

Q = rationalnumbers = {£ | p€ Z and ¢ € Z1}. Use
Q. for the positive rationals and Q_ for the negative ra-
tionals.

R = reals. The posreals R and the negreals R_.

C = complex numbers, also called the complexes.

For weC, let “w > 5 mean “w is real and w > 5”. [Use
the same convention for >, <, <, and also if 5 is replaced by any real

number ]

Use R = [-00,+00] := {-c0} URU{+o0}, the extended
reals.

Abbrevs. Seq: ‘sequence’. poly(s): ‘polynomial(s).
irred: ‘irreducible’.  Coeff: ‘coefficient’ and var(s): ‘vari-
able(s) and parm(s): ‘parameter(s). Expr.: ‘expression’.
Fnc: ‘function’ (so ratfnc: means rational function, a ratio of poly-

nomials).  trnfn: ‘transformation’.  cty: ‘continuity’.  cts:
‘continuous’.  diff’able: ‘differentiable’. CoV: ‘Change-of-
Variable’.  Col: *Constant of Integration’. Lol: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop'n: ‘Proposi-
tion’.  CEX: ‘Counterexample’.  eqn: ‘equation’.  RhS:
‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand

side’.  Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16
is 47, Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of
a map”.

FTC: ‘“Fund. Thm of Calculus’. IVT: ‘intermediate-Value

Thm'. MVT: ‘Mean-Value Thm’.
The  logarithm fnc, defined for x>0, is
log(x) == [ll ‘}—‘ Its inverse-fnc is exp(). For x>0,

then, exp (log(m)) =g = elos(®),
log(exp(t)) =t = log(e").
PolyExp: ‘Polynomial-times-exponential’, e.g,
[3 + t2]-ett. PolyExp-sum: ‘Sum of polyexps’. E.g,
f(t) = 3te*" + [t?]-¢' is a polyexp-sum.
Below we will view various expressions as fncs of a vari-

able, z. As usual, 2¥ is a another name for the constant
fnc 1.

For real ¢, naturally,

Monomials.

la: —6a2,

Here are examples:
VT2 wz, 3, 0.

Here are non-examples:

1b: Vr, e,

log(z), sin(z).
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A monomaial is an expression OTForm Bzx",
where n € N and B is a number (in R or C), called
the coefficient of x™.

To justify the monomials of (la), note
2> =12% 3 = 3-2° and 0 = 0-2°. In contrast,
the expressions in (1b) don’t look like monomi-
als, although it would take some wrestling to
show, for example, that Jx 2ot 2173 does not
equal some Bzx™. It is easy to show that e”
is not a monomial: e” has a horizontal asymp-
tote as x\00, yet the only monomials with a
horiz. asymptote are the constants. And e* is not
constant.

Polynomials. Examples:

le: 322 +2+49, w27 —xz-Vw+e, 4, 0.

A polynomazal is a sum of finitely-many monomi-
als. Thus 4 = 42° is a polynomial.

Degree. There are two “standard forms” of a
polynomial. The low-to-high form (LtH) is

2a: f(x) = Bo+Biz+ ... + By_12V '+ Byz.

We might stop at the highest N for which By # 0,
or we might continue forever, writing the poly as
a power-series whose seq. of coeffs is eventually-
zero. So a poly f(z) = 332, Bra" is a way of de-
scribing an eventually-zero seq. B = (Bo, By, .. .).

The poly 0 + 0-z + 0-2% + 0-23 + . .. we will call
Zip. In particular, Zip() is the identically-zero

function. !
~ The high-to-low form (HtL) of a non-zip poly
is

2b: f(l‘) = BNQL‘N—‘y-BN,l.’L'N_l—f— —i—Blaj—i-B()7
where m A non-zip poly is monic if its

high-order coeff (also called its leading coejﬁcient)
is 1; in (2b), then, this means that By = 1.

Y11t is possible for a poly g:F—F over a finite field F
to be identically-zero, yet have some non-zero coefficients.
But over an infinite field, notions “poly ¢ is Zip” and
“Ya: g(x) = 0” are the same. So over an infinite field, while
a non-zip polynomial g(x) can be zero for some values of z,
this cannot happen for all values.

TABLE OF CONTENTS (TOC)
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The degree of a non-zip p, written Deg(p), is
the largest N such that 2 has a non-zero coeff.

FExample F1. Consider these polynomials:

p(z) = 02° +Tx +2;
q(z) = 02° + 02 +2;
r(t) = 3+1t+1"7;

s() = ly+1ly+21 -y

(
Then Deg(p) = 1, Deg(q) = 0, Deg(r) = 19 and
Deg(s) = 1; this last, since s(y) equals

VPHy+2y+2—y? = 3y+2;

the latter is its HtL-form. O

A convention is to define Deg(Zip) := -oo. This
makes the three equalities in (2c), next, work
when one or both of the polys is Zip.

2c: Lemma. The product, sum, and composition
of polynomials,

b-q, p+Q7 pog,

are themselves polynomials. Furthermore

2cl: Deg(p - q) = Deg(p) + Deg(q).

2c2: If p and q have distinct degrees, then
Deg(p + q) equals Max{Deg(p), Deg(q)}-

2c¢3: If neither p nor q is Zip, then Deg(p o q)
equals the product Deg(p) - Deg(q). O

As an illustration, let p(z) = 2? — 2+ 3 and
q(z) == 2! + 1. Then
p+qlt) = 2 —t+3 + "9 +1;
p-al®) = [ —t+3][t" +1];
poal(t) = p(q(t)) =p(t"* +1)
= [t 4+17-[t"+1+3
= %+ + 3.

Fzxercise. The product and composition of monic
polynomials is monic. 0

Filename: Problems/Polynomials/primer.poly.latex
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Upper-bounding degree. A polynomial p is
an “n-topped polynomial” if Deg(p) < n. Here
are some 3-topped polys:

2 — 2z,

z+V7, 17, Zip .
However 23 + x is not 3-topped.

The set of 3-topped polynomials is the set of
all Az? 4+ Bz + C, as numbers A, B, C vary. Thus

this set is a 3-dimensional vectorspace.

The zeros of a polynomial

Polynomial p is an integral poly, or an intpoly,
or a Z-poly, if each p() coeff is integral, i.e, is an
integer. Poly p is called a rational polynomial
(a ratpoly), or a Q-poly, if each coefficient of p is
a rational number.

More generally, let I" be either Z or Q or R or C:
We call p a “I'-polynomzial” IFF each p-coeff is
in I'. For instance, 722 — wa is a C-poly and an
R-poly, but is not a Q-poly, since Q # .

In any of Z,Q,R or C, we can freely add, sub-
tract and multiply; such a set I' is called a ring.
For Q,R,C, we can also divide by non-zero val-
ues, and such an algebraic-system"? is called a
field. Henceforth, the symbol F will mean a gen-
eral field. T’ll speak more about fields in a mo-
ment, but first let me say. ..

Don’t Panic! T've designed these notes to be
useful for high-school students up to undergrad-
uate seniors (everyone will see some unfamiliar terms).
Here is how to skip/substitute parts of the text.

Unfamilar with complex numbers? Then re-
place every C with R.

Know C, but not general fields? Then replace
every F with one of Q, R, C.

Factoring. We now define reducible and irre-
ducible; T'll apply these words to non-constant
polys, i.e, Deg > 1. The irreducible polynomials

“2Note that Z is not a field. For example, we can not
divide 2 into 3, since there is no integer n for which 2n = 3.

The zeros of a polynomial
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play a role similar to the prime numbers; they are
the fundamental objects of factoring.

Suppose that p is a non-constant Q-poly. Say
that p “factors over Q”, or “is Q-reducible”, if
we can write p = ¢ - r, where ¢ and r are Q-polys,
and

Deg(q), Deg(r) < Deg(p) .

In contrast, p is Q-irreducible (or “is irre-
ducible over Q”) if p cannot be so factored. Define
similarly F-irreducible, for F one of Q, R, C.

Oftentimes, in factoring p it is convenient to
write the factors as monic polys. So if p is non-
monic with lead-coeff C'; then we may write p =
C - q-r, with ¢, monic polys. E.g,

T2 =35z +70 = T-[z—2][x—3].

Example E2.  Consider p(t) := t* — 3. This p is
R-reducible, since
p(t) = [t — V3] [t +V3].

But p is Q-irreducible, since t — /3 is not a Q-
poly. After all, v/3 is not rational. U

Example ES. Let p(t) = 3t* — 13t> + 12. We can
factor this as p = 3¢qr, where

3i: q(t) = =3 and r(t) = *—3.

So p is Q-reducible. But ¢ and r are each Q-irred,
so 3qr is the fully factored form —over Q- of p.
Over R, however, p factors further, as

sis -~ V][ V3] - yE)f+ 3]

Example Ej. Is x* ++/3 irreducible over Q?
Trick question! This poly is not a Q-poly at all,
so the question is not well-posed. O

Ezxample E5. Polynomial 2% + 9 is irre-
ducible over R. Over C, however, it factors as
[z — 3i][x + 3i],

where i = —1. O

Filename: Problems/Polynomials/primer.poly.latex
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Zeros/Roots of fncs. Consider a fnc ¢: X =Y,
where Y is a ring or vectorspace (has a distin-
guished element 0€Y) and X is an arbitrary set. A
point z € X is a “zero of " if ¥(z) = 0.

When v is a polynomial over a field F, it is
customary to call z€ X a root of 1. See (5a) for
precise defns.

The Quadratic Formula (QF)

Consider a quadratic polynomial
4: p(r) = Az + Bx +C;

since Deg(p) = 2, necessarily A # 0. The dis-
criminant”? of p, written Discr(p), is the num-
ber

Discr(p) = B* —4AC.

Let D henceforth denote this number Discr(p).
Factor p as p(x) = Az — ][z — 8], where a & 8
are the two zeros of p. The zeros a & 8 of p are

sl-B+VD] & 4|-B-VD].

“3 Each non-zip polynomial p has an associated number
called its discriminant. This Discr(p) gives information
about the zeros of p. When p is monic of degree N, then

Discr(p) = I_IKIc [ — ax]?,

where oy, qa,...,ayN are the zeros of p, listed with mul-
tiplicity. The product is taken over all “N choose 2”
many pairs j<k of distinct indices. A non-trivial the-
orem says that this product is a polynomial in the co-
efficients of p. E.g, in the quadratic case, the mapping
(4, B,C) — B? — 4AC is a 3-variable homogeneous poly-
nomial of degree-2. Let’s look at this when A is 1.
When p is a monic quadratic polynomial

p(t) = >+ Bt+C = [t—al[t—f],

then the above definition tells us that Discr(p) equals
[ — B]?, which equals o + 3% — 2a3. On the other hand,

B? —4AC = B?*—-4C = [~a - f)* —4ap,

which indeed equals o + 52 — 2a5. So we see, in this
case, that Discr(p) is indeed a polynomial function of p’s
coefficients A, B, C.

See the Vandermonde determinant pamphlet for
more on discriminants.

Multiplicity
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Now suppose that p is a real poly. When D > 0
then p has distinct real zeros. When D = 0 then
p has one zero, a = 3, of multiplicity 2. When
D < 0 then p has no real zeros; it does, however,
have two complex-conjugate zeros.

Irreducibility and the QF. When

p(z) = Az’ +Bx+C

is a real poly, then p is reducible over R IFF
D:=Discr(p) is not negative. When p() is a Q-
poly, then it is reducible over Q IFF D is the
square of a rational number. That is, expressing
D as n/d in lowest common terms with n and
d posints, then p() is Q-reducible IFF né&d are
each perfect squares.

Fully factored form. Let “FFF” abbreviate
fully-factored form. Suppose that

p(t) = OxtN +COn it "t + C1t + Gy,

is a Q-poly of degree N. Say that

p0) = Cy 11 70

is “the Q-FFF of p” if each r; is a monic Q-
irreducible polynomial.
For example, the Q-FFF of 3t* — 13t + 12 is

3. [2 — 3][t — 4].

However, its R-FFF is (3ii).

Multiplicity

Given z € F and non-zip F-poly p(), there is a
unique pair M € N and F-polynomial ¢ st.

Sa:  p(x) = [z —2z]M.q(zx), where q(z) # 0.

(Le, the polynomials on the left and right of (5a) have the
same coeff-sequence.) We call this natnum M the p-
multiplicity of z, or the “multiplicity of z in p”,

and write it | Mult(p,z)|. If M > 1 then z is a

Filename: Problems/Polynomials/primer.poly.latex
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root of p. In contrast, M=0 means that z is not
a p-root; so to speak, “z has p-multiplicity 07, i.e
Mult(p,z) = 0.

What means “multiplicity” for the 0-poly? Let

5b:  Mult(Zip, z) = +oco (for every z € F),

since Zip(z) = [x — z]™-Zip(x) for each posint M.
Lastly, given a subset 8§ C F define

ZZES Mult(p, z) ;

we are counting roots in 8 with multiplicity. Since
factoring of non-zip polys is unique,”* we get that

5¢c: #Roots(p, 8) =

5d:  If p # Zip then 7Roots(p, F) < Deg(p).

be: Lemma. Suppose real-poly p is non-zero on
each endpoint of interval J := [xg,x1] C R. Then

R = #Roots(p, J) is even/odd as values
p(z0), p(x1) have same/opposite signs.

This also holds if R counts distinct roots in J, i.e,
ignoring multiplicity. — Proof. Exercise. O

Differentiating a polynomial. Define the deriva-
tive of an F-poly p(x) = X0, Cex’ to be

p(z) = ZZVZIC}- [ﬁ : :176_1} :

In particular, Zip' = Zip.
Recall that f) denotes the M*™ derivative of
fnc f. In particular, f(* is another name for f.[J

6: Derivative root-multiplicity Prop'n. Over a field
F, examine a root z € F of non-zip F-polynomial
p(). With M := Mult(p, z) € Z., then,
Ga: Mult(p’, z) > M-1.
For the derivative polynomial we have equality
6b: Mult(p’, z) = M-1

IFF either Char(F) = 0 or Char(F) is a prime
that does not divide M. O

“4Well. . . for polynomials over a field.

Multiplicity
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Pf.  Factor p(z) = [z —z]™ - g(z), with g(z)#£0.
Differentiating establishes (6a), since

px) = [z—2zM ' s(x), where
s(x) = M-g(x) + [z —z]g(x).

So (6b) iff s(z) # 0. Since s(z) = M-g(z), this is
equivalent to M } Char(F). ¢

6c:

See Gallian’s text CONTEMPORARY ABSTRACT AL-
GEBRA, P.363, for more on the preceding and following
results, and for “perfect” fields.

7: Lemma. For a C-polynomial p, point z € C,
and M € N, suppose that

Fach of these derivatives

7a:  pO(z), p(z), pP(z), ..., MV (2)
equal zero, but p™)(z) # 0.
Then the p-multiplicity of z is M. O

Proof. WLOG p # Zip.  Also, ISTShow that
if Mult(p,z) = M then p has property (7a). The
converse is immediate, since p can have (7a) for
only one value of M.

For two L-times—differentiable fncs a and S,
note that the L™ derivative equals (Product Rule)

a- B = 3 (L) a0,

j+k=L

where (j,k) ranges over all ordered pairs of
natnums with j +k = L.

Let M := Mult(p,z). Factor p as in (ba). For
each j < M, this j*" derivative w.r.t = is

M—j

R R

o 2 = o

For each L < M, then,

pPa) = 3 (ij) . [MA{!J'}!'[I — M W) (g).
j+h=L

When L < M, each exponent M —j is positive, so
pP(z) = 0. When L = M, conversely, M—j = 0
implies that j = M and k = 0. So p™)(z) equals

7h: 1-M!-1-g(z) 2 M!-g(z).

This is not zero, so p() has property (7a). ¢

Filename: Problems/Polynomials/primer.poly.latex
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Tc: Remark. For a poly p:F—F, the Lemma7 holds IFF
RhS(7b) is not zero. So the lemma holds IFF Char(F)=0
or M <Char(F).

When Char(F)=0, then poly p is Zip IFF

there exists a point z € F with all derivatives

7d: zero; VneN: p((z) = 0.

This fails over fields of characteristic p. E.g, over F := Zs,
the non-zip polynomial
2

fla) = [z —1)° 2 2t 42

has p(™ (z) =0 for all z € {0,1} and n € N. This poly is
also an example where the inequality in (6a) is strict. For
Mult(f,1) = 2. Yet f' = Zip, so Mult(f’,1) = +oo. 0

8: Thm. An irreducibile F-polynomial p has no re-
peated roots, if either Char(F) = 0 or p’ # Zip. O

Proof. FTSOC, suppose z is a p-zero of multiplicity
M>2. By (6a), z is a common zero of p’ and p;
thus GCD(p,p’) is non-trivial. By irreducibility
of p, then, GCD(p,p’) equals p [times a unit, if you
like]. Thus p divides p’. But Deg(p’) < Deg(p), so
the only way this can happen is if p’ = Zip.

For the Char(F)=0 case, since p is not constant

Deg(p') = Deg(p)—1 = M —1 > 0.
So automatically p’ # Zip. ¢
9: Neg-to-Pos Lemma.  Fix a non-zip R-polyno-
mial p. At each real root z of p, the rational-func-

tion R = % has a simple pole, and changes sign
from negative to positive. In particular,

liminf R(z) = -oo and
9as z 'z <>
' limsup R(x) = +o00.
\z

Pf. Factor p(x) = [v —2z]M - g(x) with M € Z,
and ¢(z)#0. Then
(@) M

o plr) "

Multiplicity
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Since ¢(z)#0, there exists an open interval J 5 z
with g|; is bounded away from zero. So WELOG

-5 <

@ [

< 5.
3 =

OTOHand, the map = ﬁ is unbounded as x

increases past z, and goes from negative to posi-
tive. And M > 0. ¢

10: de Gua's Thm. Fix a non-zip real poly p() and
an |possibly half-open, possibly infinite| interval J C R.
Real polys A() and B() engender a poly

H = 9p.A+ pB.
If Al > 0, then

10a:  #Roots(H,J) > #Roots(p,J)—1. 0O

Pf. (We assume J open; the small modification necessary
when a root z is an endpt of J is left to the reader.)
List all the distinct p-roots in J as
7 < Zo < ... < 7y (possiblyLzo),

and let M, :== Mult(p, z,). By (6),

note
M, —1 < Mult(p, z¢) < Mult(H,z).
Adding these together,
L
2421 Mult(H, z;) > #Roots(p,J) — L.

So (10a) will follow if, for each ¢ € [1.. L), poly H
has a root in open interval J, := (z,2¢,1). This
will follow from the IVThm if we can show that H
changes sign on J,. Since p() is never zero on Jy,
our p() does not change sign. Thus ISTShow

For all £>0 sufficiently small, R(z; + ¢)
and R(z,y1 — €) have opposite signs,

where R = %. So ISTS that our R fulfills (9a).

Filename: Problems/Polynomials/primer.poly.latex
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Establishing (9a).
the defn of H,

Fix a p-root z € J. From

/

. H _ |p
s , = [’; A} + B.
By Neg-to-Pos, (9), ratio %’ satisfies (9a). But
A(), being cts, is positive on a whole nbhd of z, so
product Z-A fulfills (9a). Hence so does RhS(x),
since polynomial B is bounded near z. ¢

Variation of a tuple. Consider & = (ay,...,ar), a
tuple of reals. Erase each entry which equals zero,
giving a possibly-shorter tuple b = (b1,...,by) of
non-zero reals. Define Var(a) := Var(b) to be the
number of sign-changes in B; that is, the number
of j € [1..J) with b;-b; 41 <O.

So Var((-3,-4,0,-8)) = 0. And Var(a) = 2,
where a == (3,0,0,4,0,-1,0,9,7,0). O
11: Descartes's rule-of-signs Thm.  For a non-zip
real poly p(z) = axz™ + -+ + ayx + ay, let

R = #Roots(p,R,) and V := Var(a).

Then V > R. Moreover, the difference V — R is
evern. O

Pf.  We induct on V. Since negating p changes
neither R nor V., WLOG ay > 0.

Every coefficient a; > 0. For

each x>0, then, p(x) is strictly positive. So R = 0.

Since ay > 0, there exist in-

dices K>J in [1.. N] withax > 0> J,and a; =0
for each i € (J .. K).
We apply de Gua's Thmon J :=Z, to

H(z) = p'(z)x + p(x)B

note §—~N bext, where by == [ — Bl-ae,

=0

where B = % So de Gua's asserts that

#Roots(H,R,) > R-1.

Multiplicity
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Since K > B, we have, for each (>K, that
¢ —B >0, so Sgn(by) = Sgn(ag). And B > J so,
for each (> K, coeffs b, and a, have opposite signs.
Thus b has every variation that a has except the

—

one from index J to K. So Var(b) =V —1.
Our induction hypothesis applied to H tells us
that V—1 > #Roots(H,R, ). Thus V-1 > R—1.

Even difference. Factor the given p(x) as
rllaya™ + -+ + ayx + ag) with
ay >0 and ag # 0.

Neither the number of coeff-variations, nor of pos-
itive roots, is changed by redefining

p(x) = ayzV 4+ +ax +ap.

Integer Var(a) is even/odd as ay is pos/neg.
#Roots(p, Z)

Unfinished: as of 1Feb2022 ¢

Defn. For p(t) = Co+ Cit + Cot? +-- -+ CntV | a
polynomial over C, its complex-conjugate is

p(t) = Co+Cit+Cot> +---+CntY. [

The discriminant of quadratic [i.e, A0
polynomial ¢(z) := A2% + Bz + (' is

12.1: Discr(q) = B?* — 4AC.

The zeros [“roots”| of ¢ are
1 :
QA{B + /Discr(q) } .

Hence when A,B,C are real, then the zeros of ¢
form a complex-conjugate pair. And ¢ has a re-
peated root |FF Discr(q) is zero.

A monic R-irreducible quadratic has form

12.2: Roots(q) =

12.3: q(z) = 2>~ Sz +P = [z —2| [vr -7,

where z € C\R. Note § =z+7z =2Re(z) is
the Sum of the roots. And P =z -7z =|z|* is
the Product of the roots. The discriminant of g,
Discr(g), equals
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124:  S*—4P 2z -7 = —4[Im(z)]>.

Completing-the-square yields
12.5: q(z) = [m — §}2 + F?, where F = |Im(2)],

2

which is easily checked. [Exercise]

13: Fundamental Theorem of Algebra (Gauss and friends)

Consider a monic C-polynomial
p(z) = 2V +By_12V '+ ..+ Bix+By.
Then p factors completely over C as

plz) = [x—2z] - [x—2o] ... [ —2zN],

for alist z,,...,zy € C, possibly with repetitions.
This list is unique up to reordering.

If p is a real polynomial, i.e p = p, then p fac-
tors over R as a product of monic R-irreducible
linear and R-irred. quadratic polynomials. The
product is unique up to reordering.

Proof. In appendix, (28).Also: A proof-sketch is

in Primer on Polynomials on my Teaching page. O

Division. Fix a field F, e.g F is one of Q, R, C.
We now discuss dividing one poly d (the “divisor”)
into another poly p (the “dividend”).

14: Division Thm. Consider F-poly p (the dividend)
and non-zip F-poly d (the divisor). Then there ex-
ists a unique pair of F-polys q and r (the quotient
and remainder) so that

p = [d-q] +r, where Deg(r) < Deg(d). O

15: GCD Corollary. The greatest common divisor
poly d of two polynomials py, ps (not both zip) is a
linear combination of them, in the sense that

d() = Bi() - pi() + Ba2() - pa2()

for some “coefficient polynomials” 1 and Bs. O

Polynomial d is written as GCD(p1, p2).

Rational Functions

Page 8 of 19

Rational Functions

Suppose I' is one of Z, Q, R, C. T’ll use the symbol
['[x] for the set of I'-polynomials using the vari-
able z. Also I'(x) is used for the set of rational
functions over I', which we introduce next.
Recall that a rational number is a ratio of two
integers, with the denominator non-zero. Analo-
gously, a rational function, f, is a ratio of two

polynomials with non-zip denominator . The fol-
lowing,
1 t?+1
th—t; 3; : =
e-t6—3 65—

are each rational functions of ¢. In contrast, e’ is
not a ratfnc (rational function) of t.

16: Theorem. Over a field F, each sum, product,
quotient and composition of ratfncs

f'h7 f/ha

is a ratfnc; the quotient f/h requires that h # Zip.
In particular, the set ¥(z), of rational func-
tions, is itself a field.“® O

f+h foh,

“5An  algebraist would write this field as
(F((:lc)),—i—,0,~,1)7 where 0 and 1 denote constant ra-
tional functions.
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Algebraic and Transcendental
numbers

A complex number v is algebrazic if it is a root of
some non-zip intpoly [equiv., ratpoly| f. Thus

o = V19 and B = {1—\/@}/6

are algebraic numbers, since a is a root of 27 — 19,
and B3 is a root of 322 — 2 — 1. Evidently each
rational number P/(Q is algebraic, since it is a
root of intpoly Qx — P.

Each algebraic number v has an associated
posint called its degree, written Deg(y). Writing
d := Deg(7), then v is a root of some degree-d
intpoly, but is the root of no lower-degree [non-zip
intpoly.

The rationals are precisely those numbers of de-
gree 1. The above a has Deg(a) < 5. The above
(B has Deg(8) = 2, since v/13 is irrational.

Use A for the set of algebraic numbers in C. We
see that A is stratified into a hierarchy by degree.
The numbers in the complement, C~\ A, tran-
scend this hierarchy so —mnot surprisingly— each
such number is said to be transcendental. Al-
though this is not obvious, each of these three
numbers

=1

n
T, e, T = Z b where b,, = 2",

n=1 "N

is transcendental.”®

We define the degree of a transcendental num-
ber to be co. That is to say, the degree of a num-
ber v € C is the infimum of numbers d € [1 .. c0)
such that ~ is a zero of some degree-d intpoly.

18: Theorem.  You can add, subtract multiply
and divide algebraic numbers, and the result is
always algebraic. Specifically, consider two alge-
braic numbers «,3 € A. Then the following hold.

i Deg(1/8) equals Deg(3).

“6Such a 7 is called a Liouville number. There is an
explanation of Liouville numbers on my Teaching Page.

Subfields of C
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it: The degrees of o £+ [ and of «-f
and «/f are upper-bnded by the product

Deg(a) - Deg(f).

iii: For an arbitrary rational function F(z,y)
with rational coefficients: The degree of
F(a, ) is upper-bnded by Deg(«) - Deg(f3).

All assertions involving division by [3 require 3 to
be non-zero. O

A particular implication of the above thm is
that the set A of algebraic numbers forms a field.
This is not obvious.

19: Prop'n.  For « algebraic, let N = Deg(«a).
Then there is a unique monic ratpoly H() with
H(a) = 0. Moreover, H is Q-irreducible. O

Proof. Suppose H, h are degree- N monic ratpolys
sending « to zero. Then ratpoly H —h has smaller
degree, and [H—h](c) = 0, so H—h must be zip.

Irreducibility: FTSOC suppose H = p - q, for
monic ratpolys of degree <N. Then p(«a) - () is
zero, so WLOG p(a) = 0. But p is monic and
Deg(p) < Deg(H), contradicting the minimal-
degreeness of H. ¢

Defn. This minimal-degree monic poly H is called
the “minimal polynomial (min-poly) of a”.
This H is a ratpoly. Sometimes one wants
an intpoly. If I say “let H be the minimal int-
poly of o”, then this means that H is the unique
minimum-degree intpoly, with leading-coefficient
positive, and with GCD(H’s coeffs) = 1. O

Subfields of C

Fix an a € C. Let Q[a] be the set of complex
numbers OTForm ¢(a), where ¢ ranges over all Q-
polys. Easily, the set Q[ is what algebraists call
a ring; adding or multiplying two numbers in the
set keeps you in the set. (That is not a formal defn of

“ring”.)
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20: Lemma. Suppose that « is an algebraic
number of degree N. Then Q[a] is an N-dim’al
Q-vectorspace, and {1,a,a?, ..., a7} is a Q-
basis.

Moreover, Qa] is a field, and hence

equals Q). O

Proof. We start by establishing spanning.

The set {1,c,...,a "'} spans Q[a]. Let
H be the min-poly of a; set N = Deg(H)>1.
Each element of Qa] has form f(a), for some
ratpoly f. WLOG |Deg(f) < N |, for divide H
into f to write f = [H-q] + r where Deg(r) < N.
Thus r(a) = f(a). Hence f(a) is in the Q-span
of {1,a, ..., a7t}

Linear independence of {1,c,...,a™"'}.
FTSOC, suppose that Z;y;ol Bja/ = 0, non-
trivially. Let K < N—1 be highest index with
Bk # 0. Dividing the eqn by Bk and renaming,
we now have 0 = o + 1" Bjad. But this says
that a is the root of a monic degree-K ratpoly.

>

Qe is a field. Fix a non-zero w € Q[a];
there is a ratpoly, call it f, with f(a) = w. To
show that Qo] > %, we will produce a ratpoly T’
with
. fla)-T(a) = 1.

Firstly, f # Zip, since w # 0. Thus f L H,

since H is irreducible and Deg(f) A Deg(H).
So there exist [Bézout's lemma| ratpolys S and T
with 1 = HS + fT. Evaluating at « yields (}). ¢

21: Thm. Suppose a and (3 are roots of an irre-
ducible Q-poly, h, of degree N>2. Then Q[a]

is field-isomorphic (and vectorspace isomorphic) to

Q[B], via map
N-1 N-1

t: Sagadb — N g6,
k=0 k=0

where the ¢, range over the rational numbers. ¢

Quadratic extensions
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Quadratic extensions

Fix a Q-irreducible quadratic h(z) = 22 — Sz + P;
so S, P € Q with P # 0. By the Quadratic For-

mula, there are complex numbers a,3 such that
h(z) = 22— S2+P = [z—qa] - [z — 1.

Necessarily, a,3 € C\Q and a#(3, since h is
irred..

at+pd =795
and a-3 = P.

(Sum)
(Product)

*: Automatically,

Let F := Q[a] % 1-Q 4 a-Q be this vectorspace
(and field). Courtesy (x), note, Q[3] = F = Q[«].

For each ¢ € F define (, its “h-conjugate”.
The h-conjugation map ¢ — ( is an involution
(ie, ¢ = ¢) which “interchanges a and 3”. It is
determined by

1 =1 and o :

= .
Since S is rational, (3 = ?—ad:efS—ﬁ = .
For z,y € Q, then,
Tya =Ea—yB =a—ylS—a] = [r—yS|+ya.

The mapping ¢ — ( is special case of (211),
a field automorphism. It engenders a norm
N:F—Q by

22:  NC) = Np(¢) = ¢-¢ fofe z? — zyS + y*P,

where ¢ := x — ya. This norm is (totally) multi-
plicative in that

23 NC-2) = (20 = NQ) - N2),
for all ¢, z € Q[a].

24: Lemma. N({) =0 IFF(=0 .

Pf(=). WLOG ¢ #0, so { == 0. Thus { = 0. 4

Filename: Problems/Polynomials/primer.poly.latex



Prof. JLF King

Alt Pfof (=). Write ¢ == x —ya. FTSOC, first
suppose that y # 0. Courtesy (22), then,

NQ) 2 ().

1
2 Y

1
0 — 5
2 Yy

Y

So ¥ must be o or 8. But z/y is rational. X
Thus y = 0. So N(¢) = 2, which forces z = 0.4

Note. A corollary is that Qo] is a field, since

1/¢ = UNG) = 55 — 58

z—yS
N(¢)

—l—%a. 0

Case: S and P are integers. Let I' == Z[a]};
so Z[B] = T, since S € Z. And the norm N-)
maps " into Z, as (22) shows.

Let Ur be the group of units in I

25: Lem. For ( €T: N() €Uy IFF ( € Ur. ¢

Pf of (= ). By hypothesis, u := 1/N(() is £1. And
1= NQ)u = ¢-Tu.

Thus ¢ is a [-unit, since Cu € I' (sinceu € T). ¢

Proof of («=). Take w € I with (w = 1. Thus

I = N1) = N¢) - Nw)-
These last two are integers, so N(() is a Z-unit. ¢
26: Example: Non-unique factorization. Let
a = -5 and T = Z[a]. So Nz + ya) equals
2% + 5y2. Note that
T: 2.3 =6 =[1+a][l —q.

Call each of these four numbers 1+, 2,3 a“blip”.

More general coefficients
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Each blip is T'-irred. By (23), were a blip
to have a nt-factor ¢, its norm would have a nt-Z-
factor N(¢). The blip-norms are

o Nlta)=6; N2)=4: N3)=09.

The only non-negative nt-Z-factors of 6,4,9
(this norm N() is non-negative) are 2,3.  Were

[$2 +5y? = 2or 3] to have an integer soln, then
the corresponding congruence would too, i.e
r? =5 +2. But the mod-5 squares in [-2..2]
are 0, +£1.

Lastly, none of 6,4,9 is a Z-unit (i.e, not +1),
so (25) says that no blip is a I'-unit.

No blip is I'-prime. None of 6,4,9 divides
another so, by (23), no blip on LhS(f) divides a
blip on RhS(f), and vice versa. Thus no blip is
[-prime. L]

27: Application. Let a :=+/5 and A := Z[a]. So
Nz + yar) = 2? — 5y*. Note

f: 2.2 = -4 = [1+a][l-a].

A similar argument shows that each of +£2, 1+«
is A-irreducible but not A-prime. O

More general coefficients

So far, we have considered polys whose coefficients
come from a set, I', where I' is either Z or Q or R
or C. More generally, we can allow I' to be a com-
mutative ring. In this more general situation, we
need to be careful about the defn of a polynomial.

Consider a sequence C = (Cp, C4, . .. ) of points
in I. This C is eventually-zero if there is a
posint NV so that C, = 0 for each &k > N. For-
mally, a I'-polynomsial is an eventually-zero se-
quence (Co,Ch,...) of coefficients from I'. The
polynomial determines an I'-function

oo Lk note N k
T Zk:oc’fx e Zk:ockx )
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Even for some fields F, it is possible for two
different F-polys to determine the same function!
For example, if F is the field {0, 1} having just two
elements, then distinct polys # and 2? determine
the same function. And z + 22 is the constant-
zero fnc, but it is not Zip, since its coeff-seq is
(0,1,1,0,0,...).
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A Appendices

We put some proofs here that don’t fit into the
main text.

Fundamental Theorem of
Algebra

A field F is algebraically closed if every monic
F-polynomial “factors completely”; that is, into a
product of linear polynomials. Here we sketch a
proof that C is algebraically closed.

28: Fund. Thm of Algebra.
polynomial

Every monic C-

f(z) = 2N+ By_12" 4+ + Biz+ By
factors as
f(z) = [z—z] - [z —22] -...- [z —zNn],

for a unique multiset {zy,...,zx} of complex
numbers. Thanks to the division algorithm, this
is equivalent to saying

Fach non-constant |ie, N > 1| complex o

I
28" polynomial f() has a complex root.

Sketch of (28"). FTSOC, suppose that

poo= b f()]

is positive. As |z| — oo note that |f(z)| — oo,
since the high-order term 2" swamps (in absolute-
value) the other terms. So there is a sufficiently
large closed disk DCC on which inf.cp|f(2)
equals the above p.

Since z + |f(2)| is continuous, there exists”’
a point zy € D with |f(zy)| = . Replace f by
Z %{S“) We now have
f(0) = 1. Furthermore, |f(z)| > 1, for
all complex z.

“7Since D is closed and bounded, D is compact. And on
a non-void compact set, a cts fnc achieves a minimum.

Fundamental Theorem of Algebra
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Writing f(z) = 1 + Z;V:] B;z7, let K be the
smallest positive index with By # 0; this exists,

since f is non-constant. Let AcC be a K'"-root
of [-Br|. Replace f by f(7); this redefines coeffs

(Bj)j.vzl. We retain () and now have
I: flz) = 1-254+R(>)),

where R(z) = Z?{:KH B;z7, and K is a posint.

Small e. Let C:=3Y, ., |B;. Take a
(positive) e<1 so small that
*: Lef > ¢ it nozte R(e)‘. Thus
] " =] + RG]
byﬁ(*) 1 — g-gl".

And this contradicts (f). [Hence inf.cc|f(2)| must

have been zero.] ¢
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Integrating polynomials
Here we exhibit two tricks, using counting™® ideas.

Bernstein  polynomials. Throw K-+L+1
darts at the unit-interval J := [0,1]. Condition

“8For a natnum n, use “n!” to mean “n factorial”;

the product of all posints <n. So 3!=3-2-1=6 and
5/'=120. Also 0! =1 =1
For natnum B and arb. complex number «, define

Rising Fctrl: [o1B] :=a- [oc + 1] . [a + 2] e
Falling Fctrl: [o|B]=a[a—1]-[a—2] -

[o + [B-1]],
[o — [B-1]].

E.g, [B{B] = B! =[11B]. Two further examples,

H%l%zzééigi?mmm¢ﬂ=10fﬂzo

In particular, for n € N: If B > n then [n | B] =0.
We pronouce [5 ] B] as “5 falling-factorial B”.

Binomial. The binomial coefficient (3), read

“7 choose 3”7, means the number of ways of choosing
3 objects from T distinguishable objects. Emphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as (3T4). [Read as
“7 choose 3—00111111&1—/1.”] Evidently

N

f: N\ withk=n—-3 [ N ~N!
’ j g k) Gk g

Note (7) = (,/-) = 1. Finally, the Binomial theorem says

0,7
Z (j',\lk) 2ty

j+k=N

£: [z+yN =

where (j, k) ranges over all ordered pairs of natural num-
bers with sum N.

For natnum N, b]i;llg(n?ials ]s)atilsfy tglosl (?%cql(m%n law:

ast objec object.

SIS

Extending this to all BEZ forces:

N
(5) -0
N) _ InyB]

Case B>N is automatic in formula (B

when B > N
or B negative.

Integrating polynomials
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on x, the landing-spot of the first dart. The
probability that the next K darts fall left of x,
and the rest right, is #%[1—z]’. So the condi-
tional probability that some K-many of the next
K+L many darts is

(S4E) 2% - [1—a]".

Letting U be the unconditioned probability gives

29: U = <K+L)/J % [1—x) dw.

K, L
But by permutation symmetry,

30: U= -

K+L+1 "

After all, of the K+L+1 darts, some “special’
dart ends up having K darts to its left. And the
probability that the first-thrown dart ends up be-
ing special is RhS(30). In consequence

.. /Jq;K-[l—x]L dz = 1/[(1;{*5) [K+L+1]|

= KILI/[K+L+1]!.

Multinomial. In general, for natural numbers
N==FK +...+kn, the multinomial coefficient
(h. ]N ,},\,) is the number of ways of partitioning

N objects, by putting k; objects in pocket-one, ks objects
in pocket-two, ...putting kx objects in the N*" pocket.
Easily

: N B N!
' kiokay..okn) Kbkl kat

Unsurprisingly, [21+...+2 x|V equals the sum of terms

. N 5 ki, k2 .. kN
££. (kl,...,kN) X To N ,

taken over all natnum-tuples k=(ki,...,ky) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum Sy := k1 + ko + ... + ky. Then multino-
mial LhS(}) equals this product of binomials:

()5 ()

note

[The last term is (:i) 1.
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We now take a different approach to the same
problem.

Integration with convolutions. Recall that
the one-sided convolution of two (locally-
integrable) fncs f, g:[0, 00)—C is the function

2 [feg) = [ ft—2) o) de.

Easily, convolution is associative and commuta-
tive. Use f®3 for the 3™ convo-power f®f®f.

For K = 0,1,..., let pg(z) :== z&; our power
functions. Use 1 for the constant-one fnc py.
Induction on natnum K shows that

18] — # - Pr . Hence

33: i = K. 18K+
For K & L natnums, px ® p;, = KL . 1®8K+L+2]
by associativity of convolution. Thus

34: Pk ®pr = % "PK4L+1 -
The binomial coeff M := ([;’LL) allows
SK+L+1
34 = —
Setting z = 1 in (34'), makes (34’) identical

to (31) —as it must!

Several. Consider N and Ky, K1, , Ky, all
natnums. Let S := ¢ K;. From (33a) note that

1815+N+1] [SJ:NM DSAN -

With M now the multinomial coeff ( K S X )
0, AN
convo-product pg,®p, ® - - - ®pg,, equal

Kyl ... Kyl - 195N+ — ﬁ‘%'pS—kN-

, the

Assigning B = (S;]]VV) permits the exposition
ZS+N
e eralE) = g

Does this denominator have an interesting combi-
natorial interpretation?

Polynomials in several variables
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Polynomials in several
variables

The degree of a monomial such as
2tyz? is the sum of the exponents; here
Deg(zlyz?) =4+ 1+4+2=7.  However, to be
precise one has to indicate which letters are
viewed as the variables, and which are viewed as
parameters. For instance (the first line needs A#0)

x +— Ax? + Bx +C  has degree 2;
(A,z) — A2* + Bz + C  has degree 3;
(A, B,C) — A2® + Bx + C has degree 1.

A multivariate polynomsial is a finite sum of
multivariate monomials, and its degree is the
maximum of the degrees of its monomials. E.g

Flx,y,2) = 22'yz? +102¢°2° + -52° + 2007

has degree 8. A poly h is said to be “homo-
geneous of degree N, if every h-monomial has
degree exactly N. F’irinstance,

h(z,y,2) = 22°yz* +1204%2% — 7527

is homogeneous of degree 9, but poly 23 + h() is
not homogeneous, since monomial 23 has degree 0,
not 9. Note that Zip is vacuously homogeneous,
since it has no monomials.

The product of homogeneous polys is homoge-
neous but —in general- the sum is not homoge-
neous.

Now lets view the N2-positions in an N xN ma-
trix M as variables. Then the matrix-determinant

Det(M) is a degree-N homogeneous
polynomial in N? variables. The poly

36:  has N! many monomials, half of which
(once N > 2) have coefficient +1, and half
of which have -1 as coefficient.
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Roots of the Cubic and the
Quartic

Here I derive a root-extraction formula for the
roots of a cubic polynomial, similar to the QF for
a quadratic. Formulas like (41), below, are some-
times called Cardano’s formula. “°

First note, for a degree N>1 (monic) polynomial

F(t) == tN 4+ Fy V7 Fy otV 2

that the linear change-of-variable m

gives a polynomial in z

oV 402N 2N DN 4

with no penultimate term. Such a poly is a called
a “depressed degree-N polynomial”.

Sum and product. For two mystery num-
bers U, V', suppose we know their sum and prod-
uct,

37: U+V = 8§ and U-V = P.

Then polynomial [y — Ully — V] = y* — Sy + P
has U,V as roots. Consequently,

37: UV = 1S+V§—4P]

in some order.

Roots of the depressed cubic

We’ll get a formula for the three roots of cubic

38: f(x) = 2*-3Cx -9, with C, S € C,
where I have written the x-coefficient as “—3C”
because I have looked ahead into the proof.

The trick is to write subject to a
constraint on the product a - f. Computing,

fla+B) = a®+8° -8 + [3a8 —3C][a+ 3.

“9The history is complicated; see Wikipedia.

Roots of the depressed cubic
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The idea is to view o® and 3°, as the “mystery”
numbers, (37), whose sum and product are known.
To make the sum known, require that 3a3 — 3C
equal 0, i.e

39: a-f = C.

This arranges that equality f(a + J)=0 means
40: P+ p3 =5,

Cubing (39) gives

40" ot B = CP.

Thus (37) tell us that o and * each have form

RhS(37"), with P := (C®. Since their sum must
be S, by (40), without loss of generality

o’ = %[S—\/S2—4C3} and
5 = 3]s+ VET—acs].

Cardano’s formula. Let w be a primitive
cube-root of unity; say, w = -1 + V3il.

Let o be a particular square-root of S? — 4C".
Let o be a particular cube-root of 1[S — o]. Let
5y be the”! cube-root of $[S + o] satisfying

O‘O'BO = C

Then the three zeros of (38) are

ap + Bo = wlay + w8 ;
41: =z = wag + w'lb’o = wlap + w'p ;
z = wlay + wh = wlap + w3pp .

“10This f, is unique unless o is zero. Making the con-
vention that if C' = 0, then the o we chose is S, we have

[ao = 0] < [C=0].

So when C' = 0, we can let §; be any one of the cube-roots
of %[é + o] 2 S Our (41) becomes {380, w1 By, wxff(]}.
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Cheerful cubic! To the undepressed-cubic

42: F(t) == t* - 3Kt* — Lt — M,
the change-of-var ¢ =: x + K produces (38) with
C=K+% and S = 2K’+M+ LK.

Produce o, oy, 3y as above. Then the three zeros
of F() are

410 75 = K+ [way+w?By), for j=0,+1.

Roots of the Quartic

Let’s derive Ferrari’s formula, (46), for the
roots of a quartic polynomial.

43: Lemma. Consider complex numbers A, B, C'.
When do there exist A, ) € C such that.

43t: Az*+ Br+C = [Az+ Q)?,

where the equality is as polynomials in x? There
exist such A,Q) € C IFF B? —4AC equals zero.)

Proof. Condition (437) says that A=A? and C=?
and B=2AQ. Thus B? — 4AC = 0.

Conversely, now suppose B? = 4AC and pick
square-roots A and 2 such that

431: A = A and Q* = C.

Necessarily, B> = [2AQ]%. Hence B = +2AQ. If
the minus-sign, then redefine Q2 to be —. ¢

Our goal now is to get a formula for the four
complex roots of the depressed quartic

44: q(z) = 2* — Ax* — Bx — C.
Letting X = 22, we rewrite ¢(z) 22 0 as
45: X? = [x2]2g°:alz4x2+Bx+C’.

Each t € C produces a perfect square

tL: [X +1)* £ LhS(45) + [2tX + 7.

Roots of the Quartic
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And RhS(45) + [2tX + t?] equals

tR: [A+2t]-2* + Bx + [C+t7] .
X e

Since (1L) is always a square, we’d like to choose ¢
so that (1R) is a square.

By lemma 43, we want t st. B? — 4A,C; equals
zero. Multiplying 4A4,C, — B? by % gives

43 A2 4AC—B?
F(t) =t +5t —i—C’t—i—T.

This F(), upto a linear change-of-variable, is
sometimes called the resolvent of the quartic
polynomial ¢() from (44).

Ferrari’s formula. Use Cardano's formula,
(41"), to pick a particular complex number 7
st. F'(7) = 0. Now (431) hands us numbers A and
Q) with (TR) equaling [Az + Q. But ({L) = ({R).
Consequently,

45': [z° + 7']2 = [Ax+ Q2.

The set of = solving (45) is precisely the soln-set
to (45’). And this is the union of solutions to

2> 4+7 = -Ar—Q and
247 = Ax+9Q.

Le, the zeros of 2% + Az + [7 + Q. This polyno-
mial’s discriminant is

A’ — 47 F40Q.
We get the these four solutions:
7 = %{—A + A2—4T—4Q] and

46:
v = 3[+A & VAT =47 +40] .
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h-conjugation, 10

Q-FFF, see fully-factored form
A, see algebraic number

[x 1 K], see rising factorial

[x | K], see falling factorial

[-polynomial, 3, 11
algebraic number, 9
algebraically closed, 13

Bernstein polynomials, 14
binomial coefficient, 14

Cardano’s formula, 16
coefficient, coeff, 2
Completing-the-square, 8
complex-conjugate, 7
constant-zero function, 2
convolution, 15

Degree

of a polynomial, 2, 15

of an algebraic number, 9
depressed polynomial, 16
determinant, 4, 15
discriminant, 4, 7, 17
Discr(), see discriminant

eventually-zero, 11

factors completely (a poly), 13
falling factorial, 14

Ferrari’s formula, 17

FFF, see fully-factored form
field, &

fully-factored form, 4

Fund. thm of Algebra , 8

high-order coeff, 2
high-to-low, 2

homogeneous polynomial, 15
HtL, 2

intpoly, &
involution, 10
irreducible polynomial, 3

leading coefficient, 2
Liouville number, 9
logarithm, 1
low-to-high, 2

LtH, 2

minimal polynomial, min-poly,
9

monic, 2

monomial, 2

multinomial coefficient, 14

multiplicative, 10

multiplicity of a root, 5

multivariate polynomial, 15

n-topped polynomial, 3
non-zip, 2
norm on a ring, 10
Number
algebraic, 9
transcendental, 9

PolyExp, 1
PolyExp-sum, 1
polynomial, 2
discriminant, 4, 7
power functions, 15

quadratic polynomial, 4

ratfnc, 8
rational function, 8
ratpoly, &

reducible polynomial, 3

resolvent, 17

ring, 3, 9

rising factorial, 14

root, 4, &

Roots of a polynomial
Cardano’s cubic formula, 16
Ferrari’s quartic formula, 17
multiplicity, 5

Theorems

Fund. thm of Algebra, 8
topped polynomial, 3
transcendental number, 9
Trick question, 3

Vandermonde determinant, 4
vectorspace, 3

7€10, 4
zero of a function, 4
Zip, 2
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