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1a: Defn: Exponentiation. Given sets D and C, logi-
cians define the symbol CD as

CD :=
{
The set of all fncs from D→C

}
.

These functions haveDomain D and Co-domain C.
Note well that CD is a set of functions. For exam-
ple, let Ω := {α, β, γ} and B := {0, 1}. Then BΩ

comprises the 23 = 8 many fncs
α, β, γ 7→ 0, 0, 0 ; α, β, γ 7→ 1, 0, 0 ;

α, β, γ 7→ 0, 0, 1 ; α, β, γ 7→ 1, 0, 1 ;

α, β, γ 7→ 0, 1, 0 ; α, β, γ 7→ 1, 1, 0 ;

α, β, γ 7→ 0, 1, 1 ; α, β, γ 7→ 1, 1, 1 .

In contrast, ΩB comprises these 32 = 9 fncs:

0, 1 7→ α, α ; 0, 1 7→ β, α ; 0, 1 7→ γ, α ;

0, 1 7→ α, β ; 0, 1 7→ β, β ; 0, 1 7→ γ, β ;

0, 1 7→ α, γ ; 0, 1 7→ β, γ ; 0, 1 7→ γ, γ .

Note, for finite sets P and Q, that
∣∣P Q

∣∣ = |P ||Q|. It is
for that reason that logicians use this SetSet notation.
[N.B: Consider sets A � B with A 6= B. Although sets AB and
BA have the same cardinality, they are not the same set; this,
since the fncs in AB have B as their domain, whereas those in
BA have A as their domain, yet B 6= A.] �

1b: Defn: Powerset.The powerset of a set Ω, written
P(Ω), is the set of all subsets of Ω. Why do logicians
sometimes write {0, 1}Ω to mean P(Ω) ?

Well, there is a natural bijection between the two:
A function f :Ω→{0, 1} yields a subset Sf ⊂ Ω by
Sf := {x ∈ Ω | f(x) = 1}. Easily, the map f 7→ Sf is
a bijection from {0, 1}Ω onto P(Ω).

Logicians often write the powerset as 2Ω, rather
than {0, 1}Ω , since all that was important about the
base set {0, 1} was that it had 2 elements; it was not
important what those elements were. �

Entrance. Two sets A and B are equinumer-
ous, or “bijective with each other” , if there exists a
bijection A↪�B. [BTWay, we use a hook-arrow to indicate
an injection, e.g, A↪→B, and a doublehead-arrow, e.g A�B to

indicate a surjection. Hence ↪� indicates a bijection.] Write
the equinumerous relation as

A � B .

Write A 4 B if there exists an injection A↪→B. Fi-
nally, let A ≺ B mean that A 4 B yet A 6� B.

Easily, � is an equivalence relation. [On the class of
cardinalities, relation 4 is a pre-order. Is 4 a partial-order? Is
4 a total-order?]

Call S countably-infinite or denumerable if
S � N. Set S is countable if S 4 N, i.e, S is bijective
with some subset of N. [So a countable set is either finite
or countably-infinite.] �

2a: Lemma. Suppose sets P � P̃ and Q � Q̃. Then
P Q � P̃ Q̃. Proof. Exercise 1 soln is below.

Proof. By hypothesis, there are bijections ε:Q̃↪�Q
and β:P ↪�P̃ [ε for “exponent”, β for “base”]. We biject
P Q ↪� P̃ Q̃ by mapping f 7→ f̃ as in this diagram:

Q
ε←−−−− Q̃

f

y f̃

y
P

β−−−−→ P̃

so f̃ := β ◦ f ◦ ε . [I.e, f̃(x̃) := β
(
f
(
ε(x̃)

))
for arbitrary

x̃ ∈ Q̃.] The f 7→ f̃ mapping is (exercise!) a bijection.
[Can you write down its inverse-map?] �

2b: Card-Exponentiation Lemma (CE-Lemma). Consider
any three sets Ω, B and C. Then ΩB×C � [ΩB]

C .
Proof. Exercise 2 soln is below.

Proof. Define Θ:ΩB×C ↪� [ΩB]
C by

Θ(f) :=

[
c 7→

[
b 7→ f

(
(((b, c)))

)]]
.

Its inverse-map Υ:[ΩB]
C
↪�ΩB×C is

Υ(g) :=

[
(((b, c))) 7→

[
g
(
c
)]

(b)

]
. �
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3: Countable-card Theorem. Below, S represents an
arbitrary non-void countable set.

a: An arbitrary subset of a countable set is count-
able. In particular, an arbitrary infinite subset of
a countable set is countably-infinite.

b: Each of these is countably-infinite:
Z, Q, N×N, S×N.

c: A union of countably many countable sets is count-
able. ♦

4a: Defn. In referring to intervals, let LCRO mean
“Left-Closed Right-Open” and let LORC mean “Left-
Open Right-Closed”.

Use R := [ ∞, ∞] := { ∞} ∪ R ∪ {∞} to denote
the extended reals. In R, as an example, the set
[ ∞, 5) is a LCRO-interval, and (7,∞] is a LORC-
interval. Both [ 4,∞] and R itself are closed inter-
vals. All of these examples are unbounded intervals,
whereas ( 4, 7] is a bounded interval.

In the theorem below, the word “ interval ” means
“non-trivial interval”. That is, we exclude 1-point
closed intervals, e.g [7, 7]

note
=== {7}, as well as the

empty interval, e.g (7, 7)
note
=== (7, 7]

note
=== [7, 7), each of

which is the emptyset. [BTWay, the emptyset is open.] �

4b: Interval-card Theorem. Each non-trivial sub-
interval of R is equi-numerous with R. ♦

Proof. For k = 1,2, consider intervals Jk := [ak, bk],
with positive (finite) lengths Lk := bk − ak. Then the
affine map

x 7→ a2 + L2
L1
·[x− a1]

bijects J1 onto J2. The same map works for two
open intervals, two LCRO-intervals, or two LORC-
intervals.

Let H := { 1
n}
∞
n=1 comprise the harmonic numbers.

Define f :[0, 1]→[0, 1) as follows.♥1

For x ∈ H: Let n := 1
x , then map x 7→ 1

n+1 .

For x /∈ H: Map x 7→ x.
4c:

This f is a bijection. And g(x) := 1− x bijects [0, 1)
onto (0, 1]. Defining h:(0, 1]→(0, 1) by rule (4c) also
gives a bijection. Hence

[0, 1]
f
↪� [0, 1)

g
↪� (0, 1]

h
↪� (0, 1) . Thus:�� ��All bounded intervals have the same cardinality.

Unbounded intervals. Extending tan() to R, note
that tan bijects J := [ π2 ,

π
2 ] onto the closed inter-

val R. Consequently, every (bounded or unbounded)
closed/open/LORO/LCRO sub-interval of R is car-
ried by arctan to a corresponding subinterval of J .
♥1This (4c) uses one of our “Cantor’s–Hotel maps” from class.
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Since these latter intervals are all bounded intervals,
our earlier argument shows that they are all bijective
with each other.♥2 �

5: Cantor’s diagonalization thm.

i : Firstly, N ≺ R. Moreover, for each function
f :N→R there is an explicit construction of a
point NewPtf ∈ R which is not in Range(f).

ii : Every set S satisfies that S ≺ P(S). Moreover,
for each fnc f :S→P(S), this set,

NewSetf :=
{
z ∈ S

∣∣ f(z) 63 z
}

is not in Range(f). ♦

Proof of (i). Map x 7→ x injects N into R, so N 4 R.
Recall N�Z+ and R�(0, 1). Given g:Z+→(0, 1)

we build NewPtg ∈ (0, 1) with NewPtg /∈ Range(g), as
follows. For x ∈ (0, 1), define digits dx

n so that
∞∑
n=1

dx
n

10n
= x .

Moreover, when x is a 10-adic rational, use the expan-
sion which is eventually ‘9’. [Any fixed rule will work.]

If we write the decimal expansions of g(1), g(2), . . .

in a two-dimensional table, then digits δn := d
g(n)
n lie

along the diagonal, whence the name of the proof.
For a digit d, let

d :=

{
3 , if d 6= 3;

7 , otherwise.

}
.

Finally, define digit αn := δn. Then point

NewPtg :=
∞∑
n=1

αn

10n

lies in (0, 1) and [Exercise 3] is not in Range(g).�

Proof of (ii). Injection x 7→ {x} shows that S 4 P(S).
To see that S 6� P(S), note: For each z ∈ S, the

symmetric-difference NewSetf 4 f(z) owns z; hence
NewSetf differs from f(z). �

♥2BTWay, fnc x 7→ ex bijects R↪�R+, and x 7→ ex
/
[ex + 1]

maps R↪�(0, 1). Indeed, each an order-preserving homeomor-
phism. The latter fnc is the sigmoid function.

Schröder-Bernstein

Here, we examine cardinality relations between two
sets, X and Ω. The below arguments do not require
these sets be disjoint, but the idea is easier understand
when they are. At no cost, we can arrange that X
be disjoint from Ω by replacing X by X×{1}, and
replacing Ω by Ω×{2}.

Consider a map g:X→Ω, an injection
h:Ω↪→X, and a subset B ⊂ h(Ω)

note
⊂ X.

These determine a function θ:X→Ω by
setting F := X rB, and defining

θ�B := h 1�B, and θ�F := g�F .

Let Jg, h:BK denote this function θ.

6.1:

[So we map Forward on F , and Backward on B.]
Given g, h and B as above, with g an injection,

say that “the set B is (((g, h)))-backward-good ” if the
resulting function θ:X→Ω of (6.1) is a bijection, and
call θ an “(((g, h)))-good bijection” . The corresponding
forward set F := X rB is (((g, h)))-forward-good.

6.2: Weak Schröder-Bernstein thm. For sets X and Ω:
If X 4 Ω and X < Ω, then X � Ω. ♦

6.3: Schröder-Bernstein Thm [S-B thm]. Fix injections

X
g

↪−→Ω and X
h←−↩Ω .

Then there exists an (((g, h)))-good bijection.
Indeed, defining the collection of points in each set

with no pre-image in the other set,

X̂ := X r h(Ω) and Ω̂ := Ω r g(X) ,

we have this: The Smallest and Largest, in the sense
of inclusion, (((g, h)))-backward-good sets are

S〈g,h〉 :=
⋃∞

n=0

[
h ◦ g

]◦n(
h(Ω̂ )

)
and6.4:

L〈g,h〉 := X r
[⋃∞

n=0

[
h ◦ g

]◦n(
X̂
)]
,6.5:

resp.. In particular, S〈g,h〉 ⊂ L〈g,h〉 ⊂ Range(h). ♦

Proof. Use the 4-orbit picture from class. �
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Bits

Define half-open and open intervals in the reals,

L := [0, 1) and R := (0, 1] and J := (0, 1) .

Recall that each dyadic rational has two binary nu-
merals; the remaining reals each have one binary nu-
meral. Define the all-zero and all-one names

0 := 000 · · · , and 1 := 111 · · · ,

Let Ec be the set of eventually constant-1 or eventu-
ally constant-0 names.

Below, I’ll use “word ” for a finite string bits, e.g
“10010”. I’ll use “name ” for a (one-sided) infinite
string, e.g 10111100100100100100. . . (e.g, start with
“10111” then repeat the pattern “100” forever.)

Let Bits := 2Z+ be the set of bit-sequences
~b = b1b2b3 . . . , with each bj ∈ {0, 1}.

So Bits � P(denumerable).

7a: Defn. Define a fnc BinOne :(0, 1)→Bits that
produces the binary numeral of a point. Specifically,
BinOne(x) is the unique bit-sequence ~b such that

∞∑
n=1

bn
2n

= x ,

and: If x is a dyadic rational, then ~b is eventually
constant 1. [E.g BinOne(3/4) = 10111 · · · = 101.]

Define BinDTer :Bits→[0, 1] [Binary to Doubled-
Ternary] by

BinDTer(~b) :=
∞∑
n=1

2bn
3n

.

So BinDTer(101) is the number whose base-3 numeral
is .2022 · · · , is 2

3 + 1
9 = 7

9 . The range of BinDTer is
the famous “middle thirds” Cantor set.

Exercise-4:Both BinOne and BinDTer are injections. �

7b: S-B corollary. It is the case that R � P(N). ♦

Proof. Inject R↪→Bits by

R � (0, 1)
BinOne
↪−→ Bits .

In the other direction,

Bits
BinDTer
↪−→ [0, 1] ↪→ R ,

injecting Bits↪→R. Now apply Schröder-Bernstein. �

Explicit bijection ψ:Bits ↪� (0, 1]

In half-open (0, 1], let Dy be this sequence of dyadics:

Dy =
(((
1
1
, 1

2
, 1

4
, 3
4
, 1

8
, 3
8
, 5
8
, 7
8
, 1

16
, 3
16
, 5
16
, 7
16
, . . . 15

16
, 1

32
, 3
32
, . . . 31

32
, . . .))).

Define
ψ(~a) :=


µ(~a) , if ~a ∈ Ec ;
∞∑
n=1

an
2n , Otherwise


where map µ:Ec ↪�Dy is:

Eventually Dyadic
constant number
~a 7−→ µ

(
~a
)

1 1/1

0 1/2

01 1/4

10 3/4

001 1/8

010 3/8

101 5/8

110 7/8

0001 1/16

0010 3/16

0101 5/16

0110 7/16

1001 9/16

1010 11/16

1101 13/16

1110 15/16

00001 1/32

00010 3/32

00101 5/32

00110 7/32
...

...
11110 31/32

000001 1/64

000011 3/64

000101 5/64
...

...
111100 61/64

111110 63/64

0000001 1/128

0000011 3/128
...

...
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8: Power-of-reals Thm.

a: The plane is equi-numerous with the line.

b: For each posint k, we have that Rk � R.

c: Cartesian-power RN is equi-numerous with R. ♦

Pf of (a). Map Bits×Bits
W
↪�Bits by interweaving

the bits, as follows.

W(~a,~c) := a1 c1 a2 c2 a3 c3 a4 c4 . . .

Pick your favorite bijection B:R↪�Bits. Then

f(x, y) := B 1
(
W
(
B(x), B(y)

))
bijects the plane R×R to the line R. �

Pf of (b,c). [Note (a) is the k=2 case of (b).] To prove
that Bitsk � Bits, we can interleave k bit-seqs.

Alternatively, producing an injection

ϕ:BitsN ↪→ Bits

establishes (a,b,c) in one swell foop. [Trivially
Bits↪→BitsN, so S-B thm says Bitsk � BitsN � Bits.] We
make our ϕ an actual bijection, as follows: Notice
that BitsN can be viewed as a sequence of bit-seqs;
i.e, it is a bit-quadrant, ie, a bit at each point of N×N.
Pick your favorite bijection showing N×N � N, e.g,
diagonal raster-scan. Then

BitsN = 2N×N
by (2a)
� 2N = Bits . �

9: Continuous-fncs Thm.

i: Firstly, RR � 2R
note�

{
Functions only taking
on values 5 and 7.

}
.

ii: Also, C(R→R) � R note� {Constant fncs}. ♦

Challenging: Exercise 5. (?)
Pf of (i). RR � [2N]R � 2N×R, by CE-Lem (2b). Etc.�

Pf of (ii). An injection R↪→C(R→R) is p 7→ [x 7→p],
e.g, the number 4 maps to the constant-function-4.

Courtesy Schröder-Bernstein, then, ISTProduce an
injection in the other direction. Happily,

C(R→R)
Lem (9a)
4 RQ �

[
2N
]N byCE

� 2N×N
Etc.� R.�

9a: Lemma. The mapping C(R→R)→RQ defined
by restriction f 7→ f�Q, is an injection. ♦

Proof. Letting h := f�Q, we need to recover f from h.
Given a point p∈R, take a sequence ~q of rationals
s.t qn → p. Our [unknown] f is cts at p, so

f(p) = lim
n→∞

f(qn)
def
== lim

n→∞
h(qn) . �

Challenge. Define α:C(R→R)→RQ by α(f) := f�Q.
Is α() surjective?

For f ∈ C(R→R), restriction f�Q lies in RQ; but is
it necessarily a continuous map Q→R ?

If you think “Yes”, then: Does the above α() map
onto C(Q→R)? �
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Algebraic numbers

A complex number γ is algebraic if it is a root of
some non-zip intpoly [equiv., ratpoly] f . Thus

α :=
5
√

19 and β :=
[
1 −

√
13
]/

6

are algebraic numbers, since α is a root of x5 − 19,
and β is a root of 3x2 − x− 1. Evidently each ra-
tional number P/Q is algebraic, since it is a root of
intpoly Qx− P .

Each algebraic number γ has an associated
posint called its degree, written Deg(γ). Writing
d := Deg(γ), then γ is a root of some degree-d intpoly,
but is the root of no lower-degree [non-zip] intpoly.

The rationals are precisely those numbers of de-
gree 1. The above α has Deg(α) ≤ 5. The above
β has Deg(β) = 2, since

√
13 is irrational.

Use A for the set of algebraic numbers in C. We
see that A is stratified into a hierarchy by degree.
The numbers in the complement, Cr A, transcend
this hierarchy so –not surprisingly– each such number
is said to be transcendental . Although this is not
obvious, each of these three numbers

π, e, τ :=
∞∑
n=1

1

bn
, where bn := 2n!,

is transcendental.♥3

We define the degree of a transcendental number
to be∞. That is to say, the degree of a number γ ∈ C
is the infimum of numbers d ∈ [1 ..∞) such that γ is
a zero of some degree-d intpoly.

♥3Such a τ is called a Liouville number. There is an explana-
tion of Liouville numbers on my Teaching Page.

Defn.Algebraists use notation Z[x] for the set of Z-co-
efficient polynomials written using variable “x”. They
use Q[x] for the set of rational-coeff polynomials. �

11: Lemma. Sets Z[x] and Q[x] are equi-numerous,
and each is countably-infinite. ♦

Pf. Certainly Q[x] � Z[x] � N[x], since Q � Z � N.
Let pk be the kth-prime; so p0=2, p1=3, p2=5, . . . .

A N-coefficient polynomial can be written uniquely as

c0 + c1x+ c2x
2 + c3x

3 + . . . ,†:

where ∞-sequence ~c is eventually-constant-zero.
Mapping (†) to

∞∏
k=0

[pk]ck ,‡:

is well-defined [since ~c is eventually-const-zero] and is an
bijection N[x]↪�Z+. [E.g, Zip maps to 20·30·50 · · · = 1.
And 3x2 + x4 maps to p3

2 · p1
4 = 53 · 11 = 1375.] �

12: Algebraic-numbers Thm. The set A of algebraic
numbers is denumerable. ♦

Pf. Each [non-zip] intpoly has only finitely-many
roots. And Lemma (11) asserts only countably many
intpolys. Thus A is a countable union of countable
sets, hence is countable, courtesy (3), the Countable-
card theorem. �

(And now, the Appendices! See next page.)
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§A Schröder-Bernstein computation

S-B Challenge. Let’s use Schröder-Bernstein to con-
struct a bijection θ:Z+→Q+. [Since Z+ and Q+ are not
disjoint, I’ll use blue for Z+ and its elements, and use reddish
colors for Q+ and its elements.] Define the Divides map
D:Z+→Q+ by

D(n) := n/3 .

Easily, D is well-defined, and is an injection.
Each positive rational can be uniquely written p/q,

where p⊥q are posints. Define R:Q+→Z+ [it applies to
Ratios] by

R(p/q) := 2p−1·3q−1 .

[For example, R(1/1) = 21−1·31−1 = 2030 = 1. And
R(7/3) = 27−1·33−1 = 576.] This R is well-defined, and
is injective because prime-factorization is unique.

Let θ:Z+→Q+ be the (((D,R)))-good bijection with
the smallest backward set. [So θ uses R 1 only on those
(((D,R)))-orbits that start in Q+.]

Compute θ(18). Compute θ(4). �

Want to think about it first? Good idea!
Warning: A soln is on the next page.
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Looking into the Past. When does an n ∈ Z+ have
an R-preimage? Exactly when n factors as 2p−1·3q−1

with posints p and q coprime to each other.

Backtracing 18. This gives
Z+ Q+

18 ↖
↗ 2/3 [since 18 = 22−1·33−1]

2 ↖
↗ 2/1 [since 2 = 22−1·31−1]

6

This 6 has noR-preimage. For although 6 is a product
of powers of 2 and 3, the exponents are not coprime:
6 = 22−1·32−1, and 2 is not coprime to 2. Hence:

θ(18)
Fwd
=== D(18) = 18/3 = 6/1.†:

Backtracing 4. We compute:
Z+ Q+

4 ↖
↗ 3/1 [since 4 = 23−1·31−1]

9 ↖
↗ 1/3 [since 9 = 21−1·33−1]

1 ↖
↗ 1/1 [since 1 = 21−1·31−1]

3 ↖ �� ��1/2 [since 3 = 21−1·32−1].

Backtracing terminates with 1
2 , since 3 · 1

2 is not
in Z+ i.e, 1

2 6∈ Range(D). Thus

θ(4)
Bwd
=== R 1(4) = 3/1 = 3.‡: �

Forward tracing 6. As an example, let’s follow the
(((D,R)))-orbit of 6 a bit further:

Z+ Q+

6 ↘
↙ 2/1

2 ↘
↙ 2/3

18 ↘
↙ 6/1

32 ↘ [since 32 = 26−1·31−1]

↙ 32/3

19327352832
... [since 19327352832 = 232−1·33−1]

Discussion. Whether the S-B algorithm is construc-
tive depends one’s definition of “constructive” . How to
constructively tell if an orbit has no beginning?
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S-B exer. Let X := [3 ..∞) and Ω := [4 ..∞). Define

g:X→Ω by g(n) := n+ 7 and

h:Ω→X by h(k) := 3k + [ 1]k .

With θ the (unique, in this case) S-B map X↪�Ω, com-
pute: θ

(
10, 11, ..., 19

)
and θ

(
50, 51, ..., 59

)
.

Compute θ 1() of various numbers.
What is the smallest k ∈ Ω whose backwards g-h-

orbit has length 5 ? �

Two computations. To help out:

Back-tracing the pair-orbit:
X Omega

206
<--- 69

62 --->
<--- 21

14 --->
<--- 5

Thus...

theta(206) = H^{-1}(206) = 69.

================

Back-tracing the pair-orbit:
X Omega

368
<--- 123

116 --->
<--- 39

32 --->
<--- 11

4 --->

Consequently...

theta(368) = G(368) = 375.

θ backwards. Back-tracing from the Ω side:

Omega X
375

<--- 368
123 --->

<--- 116
39 --->

<--- 32
11 --->

<--- 4

Hence...

theta^{-1}(375) = G^{-1}(375) = 368.

Again from Ω, back-tracing:

Omega X
105

<--- 98
33 --->

<--- 26
9 --->

We ended on the Omega side, so

theta^{-1}(105) = H(105) = 314 .

Is π is on the way? �
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§B Appendix: AC =⇒WO

Orders

Below, order means strict total-order. For an order-
symbol <<<, ≺, @, use ≤, 444, v, for the non-strict
versions.

Fixing an order <<< on set X and a p ∈X, let

X<<<p := {x ∈X | x <<< p} ,

and analogously for X≤p. Subset I⊂X is an “initial
segment of X ” if [∀s∈I, ∀x∈X: x <<< s ⇒ x ∈ I].
Every non-void init-seg is of form X<<<p or X≤p.

For orders 〈X,<<< 〉 and 〈Ω ,≺ 〉, an “order-embed-

ding, f , of X into Ω ” , written f :X
emb
↪→ Ω , means

∀a,b ∈X: a <<< b IFF ϕ(a) ≺ ϕ(b) .

[Another name is an “into-isomorphism”.]
Write f :X

init
↪−→ Ω if f :X

emb
↪→ Ω and Range(f) is

an initial-segment of Ω .

14a: Prop’n. For well-orders 〈X,<<< 〉 and 〈Ω ,≺ 〉, sup-
pose ϕ:X

init
↪−→ Ω and λ:X

init
↪−→ Ω . Then ϕ = λ. ♦

Pf. Assuming ϕ 6= λ, let t∈X be the smallest X-
value s.t, WLOG, λ(t) � ϕ(t) =: τ . For each x <<< t,
then, λ(x) = ϕ(x) ≺ τ ≺ λ(t). Thus λ() skips over
τ , hence is not an init-seg map. ###

14b: Lemma. Fix well-orders 〈X,<<< 〉 and 〈Ω ,≺ 〉.
If they are order-isomorphic, then the isomorphism is
unique.

If not, then exactly one of them is ord-iso to a subset
the other. Moreover, it admits an ord-iso to an initial-
segment, and this init

↪−→ map is unique. ♦

Pf.Let C be the set of p∈X for which init-segX≤p ad-
mits a map fp:X≤p init

↪−→ Ω . For s >>> p, both in C, our
Prop’n (14a) implies that the restriction of fs to X≤p

equals fp. Consequently, the union

ϕ :=
⋃
p∈C

fp

is a well-defined map into Ω . Its domain is initial-
segment

I :=
⋃
p∈C

X≤p .

This ϕ is an ord-iso, since each fp is, and maps onto
Ω-init-seg

Λ :=
⋃
p∈C

Range(fp) .

Which direction?. If I equalsX, then ϕ:X
init
↪−→ Ω .

Otherwise, let s := Min(X r I). Could Λ fail to be
all of Ω? No!, since otherwise we could extend ϕ by
mapping s to Min(Ω r Λ). Hence ϕ 1:Ω

init
↪−→X. �

14c: Corollary. On the proper-class of Well-Order-
types, relation init

↪−→ is a [lax, i.e, non-strict] well-order.♦

Well-ordering Axiom. The WOAxiom states that each
set admits a well-order. �

15: WOA⇒AC thm. Assuming WOAxiom, each col-
lection C of non-void sets, admits a choice fnc. ♦

Proof. Let <<< be a well-order on U :=
⋃

(C). This
engenders choice-fnc A 7→ Min<<<(A), for each A ∈ C.�
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Zermelo’s pf AC ⇒ Well-ordering Principle

In 1904, Ernst Zermelo proved the then-surprising re-
sult that AC implies WOAxiom.

16a: Shy-function. On a set X, let M := 2X r {X}
be the collection of proper subsets. The Axiom-of-Choice
gives the existance of a shy-fnc Y:M→X satisfying

∀S ∈M: Y(S) ∈X r S ,†:

[The shY-fnc picks an X-element Y(S) that avoids S.] A shy-
fnc comes from AC applied to collection {X r S}S∈M
of non-void sets.

Henceforth, there is a fixed a shy-fnc Y on X. .

On a subset S⊂X, a well-order ≺ is “good on S ”
[or “pair 〈S,≺〉 is good”] if

∀t ∈ S: Y(S≺t) = t .‡: �

16b: Obs. Fix a good 〈S,≺〉. For each
proper ≺-init-seg I $ S, let t := Min≺

(
S r I

)
. Thus

I = S≺t. Hence

Min≺
(
S r I

)
= Y

(
I
)
.£: �

16c: Shy lemma. For subsets S,T ⊂X, suppose pairs
〈S,<<< 〉 and 〈T,≺〉 are each good. Then either S⊂T
or T⊂S.

When S⊂T , then S is a ≺-initial-segment. Further,
<<< equals ≺�S ; the ≺-order restricted to S.

[IOWords, 〈S,<<< 〉 init
↪−→ 〈T,≺〉 via the identity-map.] ♦

16d: Prelim. A subset J ⊂X is mutual if
J ⊂ S ∩ T , together with

J is init-seg w.r.t <<< and w.r.t ≺, and
orders <<< and ≺ agree on J . �

Pf. Let C comprise those p∈S s.t S≤p is mutual.
Automatically, the union I :=

⋃
p∈C S

≤p is mutual.

[We don’t need this, but note C = I.]

Inclusion. If I $ S ∩ T , then (£) gives

Min<<<
(
S r I

)
= Y(I) = Min≺

(
T r I

) note
∈ S ∩ T .

With y := Y(I), then S≤y = I t {y} = T�y. Or-
ders <<< and ≺ agree on It{y}, yielding ### that y is

in I recall
====

⋃
p∈C

S≤p.

If S = I, then S ⊂ T is a ≺-init-segment on which
orders <<< and ≺ agree. And if T = I, then T ⊂ S is a
<<<-init-segment on which orders <<< and ≺ agree. �

Prelim and Caveat. Consider C, a collection of 〈S,≺S〉
pairs with ≺S a partial-order on S⊂X. This C is
consistent if for each 〈S,≺S〉 and 〈T,≺T〉, partial-
orders ≺S and ≺T agree on S ∩ T . When, further,
always either S ⊂ T or T ⊂ S, then C is nested.

Define relation

<<< :=
⋃

〈S,≺S〉 ∈ C
≺S on set U :=

⋃
〈S,≺S〉 ∈ C

S .∗:

When C consistent, then <<< is a partial-order [exercise].
If each ≺S is a total -order, and C is nested, then <<< is
a total -order [exercise].

If, in addition, each ≺S is a well-order, must <<<
be a WOrder? No! Let Sn := [ n ..∞) ⊂ Z, for
n = 1, 2, . . ., with order≺n being<�Sn

. The (∗)-union
gives relation < on U = Z; not a well-order. �

17: Zermelo’s W-O Thm. If a set X admits a shy-fnc,
then X admits a well-order. ♦

Pf. Let C comprise all good pairs 〈S,≺S〉, where
S⊂X, and use (∗) to define relation <<< on set U. Our
C is nested, courtesy the Shy lemma; hence <<< is a
total-order.

<<< is a well-order. Fix a non-void subset B⊂U.
For j=1,2, consider pairs 〈Sj ,≺j〉 having intersec-

tionB ∩ Sj non-void. Let sj be the ≺j-min ofB ∩ Sj .
By the Shy lemma, WLOG S1 is a ≺2-init-seg of S2;
thus s2 = s1. Hence s1 is Min<<<(B ∩U).

Well-order 〈U,<<< 〉 is good. Fix a t ∈ U. There
exists a good 〈S,≺〉 with t ∈ S. The Shy lemma im-
plies S is a <<<-init-seg. Thus U<<<t = S≺t = t.
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U is everything. If U $X, let y := Y(U). Ex-
tend <<< to well-order l on Û := Ut{y} by defining
ul y for each u ∈ U. Easily, 〈Û,l〉 is good, contra-
dicting that C comprised all good pairs. �
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