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la: Defn: FExponentiation. Given sets D and C, logi-
cians define the symbol CP as

cP = {The set of all fncs from D—)C}.

These functions have Domain D and Co-domain C.
Note well that CP is a set of functions. For exam-
ple, let Q := {a, 8,7} and B := {0,1}. Then B%

comprises the 23 = 8 many fncs

a, B,y — 0,0,0; o, B8,y — 1,0,0;
a,B,v — 0,0,1; a, B,y — 1,0,1;
a, B,y — 0,1,0; a, B,y — 1,1,0;
a,B,v — 0,1,1; a, B,y — 1,1,1.

In contrast, QP comprises these 32 =9 fncs:

0,1 —» o,a; 0,1 — B, a; 0,1 = v, a;
0,1 = «,f; 0,1 — B,8; 0,1 = 7,85
0,1 = a,v; 0,1 — B,7v; 0,1 = 7,7.

Note, for finite sets P and @, that |PQ| = |P|‘Q|. It is
for that reason that logicians use this Set>®* notation.
[N.B: Consider sets A < B with A # B. Although sets A® and
B4 have the same cardinality, they are not the same set; this,

since the fncs in A® have B as their domain, whereas those in
B have A as their domain, yet B # A.] U]

1b: Defn: Powerset. The powerset of a set €2, written
P(€), is the set of all subsets of Q. Why do logicians
sometimes write {0,1}*" to mean P(Q) ?

Well, there is a natural bijection between the two:
A function f:Q2—{0,1} yields a subset Sy C Q by
Spi={x € Q| f(x) = 1}. Easily, the map f — 5 is
a bijection from {0, 1} onto P(€).

Logicians often write the powerset as 2, rather
than {0, 1}Q , since all that was important about the
base set {0, 1} was that it had 2 elements; it was not
important what those elements were. O

ENTRANCE. Two sets A and B are equinumer-
ous, or “bijective with each other”, if there exists a
bijection A<»B. [BTWay, we use a hook-arrow to indicate
an injection, e.g, A— B, and a doublehead-arrow, e.g A—B to
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indicate a surjection. Hence < indicates a bijection.| Write

the equinumerous relation as
A =< B.

Write A < B if there exists an injection A—B. Fi-
nally, let A < B mean that A < B yet A % B.
Easily, = is an equivalence relation. [On the class of
cardinalities, relation < is a|pre-order. Is < a partial-order? Is
< a total—order?]
Call S |countably-infinite| or denumerable if
S = N. Set S'is countable if S < N, i.e, S is bijective
with some subset of N. [So a countable set is either finite
or countably—mﬁnite.] [l

Suppose sets P =< P and Q = Q. Then

Proof. Exercise 1 soln is below.

2az: LemmNa.
PQ = pQ,

Proof. By ‘hypothesis, there are bijections e:Q>Q
and 3: P<»P [e for “exponent”, 3 for “base’|. We biject

PQ < ]56 by mapping [ > f as in this diagram:
Q+—— Q
Ll

PL?

SO ]? = Bofoel| [I.e, (/T(;?) = [3(]“(6(:17))) for arbitrary
7eQ] The f— / mapping is (ezercise!) a bijection.

[Can you write down its inverse—map?] ¢

2b: Card-Exponentiation Lemma (CE-Lemma). Consider
any three sets 2, B and C. Then QF*¢ < [QB}C.
Proof. Exercise 2 soln is below.

]C‘

Proof. Define ©:08%¢ < [QF]" by

o(f) = |:Ci—> [b»—>f((b,c)>H.

Its inverse-map Y:[QB}C% OBxC g

Y(g) = [(b, c) — {g(c)](b)} . ¢
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3: Countable-card Theorem.  Below, S represents an

arbitrary non-void countable set.

a: An arbitrary subset of a countable set is count-
able. In particular, an arbitrary infinite subset of
a countable set is countably-infinite.

b: Each of these is countably-infinite:
Z, Q, NxN, SxN.

c: A union of countably many countable sets is count-
able. O
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4a: Defn. In referring to intervals, let LCRO mean
“Left-Closed Right-Open” and let LORC mean “Left-
Open Right-Closed”.

Use R := [-00,+00] = {-00} UR U {co} to denote
the extended reals. In R, as an example, the set
[-00,5) is a LCRO-interval, and (7, 00] is a LORC-
interval. Both [4,00] and R itself are closed inter-
vals. All of these examples are unbounded intervals,
whereas (-4, 7] is a bounded interval.

In the theorem below, the word “interval” means
That is, we exclude 1-point
closed intervals, e.g [7,7] 225 {7}, as well as the
empty interval, e.g (7,7) 225 (7,7] 22 [7,7), each of
which is the emptyset. [BTWay, the emptyset is open.| [J

“non-trivial interval”.

4b: Interval-card Theorem. Each non-trivial sub-
interval of R is equi-numerous with R. %

Proof. For k = 1,2, consider intervals Jj := [ay, b],
with positive (finite) lengths Ly := by — ag. Then the
affine map
r — az + %-[w—al]

bijects J; onto Jo. The same map works for two
open intervals, two LCRO-intervals, or two LORC-
intervals.

Let 7 := {>}°>°, comprise the harmonic numbers.
Define f:[0,1]—[0,1) as follows
_1
n+1-
Map z — z.

For x € H: Let n == %, then map x —
For x ¢ H:

This f is a bijection. And g(x) :=1— z bijects [0,1)
onto (0, 1]. Defining h:(0,1]—(0,1) by rule also
gives a bijection. Hence

0,1 & 0,1) <% (0,1 & (0,1). Thus:

[AH bounded intervals have the same cardina]ity]

Unbounded intervals. Extending tan() to R, note
that tan bijects J = [-T, 7] onto the closed inter-
val R. Consequently, every (bounded or unbounded)
closed /open/LORO/LCRO sub-interval of R is car-

ried by arctan to a corresponding subinterval of J.

“1This ([&d) uses one of our “ Cantor’s-Hotel maps” from class.
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Since these latter intervals are all bounded intervals,
our earlier argument shows that they are all bijective

with each other ¢

5: Cantor’s diagonalization thm.

1: Firstly, N < R. Moreover, for each function
f:N—R there is an explicit construction of a
point NewPt; € R which is not in Range(f).

itz Every set S satisfies that S < P(S5).
for each fnc f:S—P(S), this set,

{ze 8| f(2) %2}
is not in Range(f). O

Moreover,

NewSet; =

Proof of. Map x — x injects N into R, so N < R.
Recall N=<Z, and R=(0,1). Given ¢:Z.—(0,1)
we build NewPt, € (0, 1) with NewPt, ¢ Range(g), as
follows. For x € (0,1), define digits d;, so that
o0 dx'
Z ﬁ = .
n=1
Moreover, when x is a 10-adic rational, use the expan-
sion which is eventually ‘9’. [Any fixed rule will work.]
If we write the decimal expansions of ¢g(1),g(2),...
in a two-dimensional table, then digits §,, := dﬂ(") lie
along the diagonal, whence the name of the proof.
For a digit d, let

7 3 Jifd#3;
7 , otherwise. [
Finally, define digit a,, := §,,. Then point

[e.e]

Mwﬂ?tg = Z

n=1

n
10"

lies in (0,1) and [EXGI'CjSG 3] is not in Range(g).4
Proof of (fil). Injection x + {z} shows that S < P(5).
To see that S % P(S), note: For each z € S, the

symmetric-difference NewSet; /A f(z) owns z; hence
Newjetfv differs from f(z). ¢

Y2BTWay, fuc = — e” bijects R—+R,, and z e""/[e”’ + 1]
maps R<»(0,1). Indeed, each an order-preserving homeomor-
phism. The latter fnc is the sigmoid function.

Schroder-Bernstein
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Schroder-Bernstein

Here, we examine cardinality relations between two
sets, X and 2. The below arguments do not require
these sets be disjoint, but the idea is easier understand
when they are. At no cost, we can arrange that X
be disjoint from € by replacing X by Xx{1}, and
replacing © by Qx{2}.

Consider a map ¢g:X—€2, an injection
note

h:Q—=X, and a subset B C h(2) C X.

These determine a function 6:X—€Q by
6.1:  setting F := X \ B, and defining

Olp:="h"lp, and Olp=glp.
Let [g, h: B] denote this function 6.

[So we map Forward on F', and Backward on B.]

Given g, h and B as above, with g an injection,
say that “the set B is (g, h)-backward-good” if the
resulting function 6:X—€ of is a bijection, and
call # an “(g, h)-good bijection”. The corresponding
forward set F':= X ~ B is (g, h)-forward-good.

6.2: Weak Schroder-Bernstein thm. For sets X and €2:
If X xQ and X = Q, then X < €. O

6.3: Schroder-Bernstein Thm [S-B thm|. Fix injections

X250 and X<,

Then there exists an (g, h)-good bijection.
Indeed, defining the collection of points in each set
with no pre-image in the other set,

X = X< h(Q) and 2 = Q- g(X),

we have this: The Smallest and Largest, in the sense
of inclusion, (g, h)-backward-good sets are

U~ [hog]™ (h(2)) and

6.5: Lign = XN {U:O:O [h og]on(jf\)} ,

6.4: Sign) =

resp.. In particular, Sy, 5y C L4y C Range(h). O

Proof. Use the 4-orbit picture from class. ¢
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Bits Explicit bijection :BI1TS <> (0, 1]
Define half-open and open intervals in the reals, In half-open (0, 1], let DY be this sequence of dyadics:
L :=[0,1) and R := (0,1] and J := (0,1). Dv=(3, 3 5.5 5858 16167167167~ To7 537357+~ 337 ---)-

Recall that each dyadic rational has two binary nu-  Define 11(&) , if & € Ec;
merals; the remaining reals each have one binary nu- P(a) = 00

! an -
meral. Define the all-zero and all-one names T Otherwise
n=

0 :=000---, and 1 := 111---,
where map u: Ec < Dy is:

Let EC be the set of eventually constant-1 or eventu-

ally constant-0 names. fo‘;e:t;ﬁ]ly HDlﬁgfr

Below, I'll use “word” for a finite string bits, e.g 3 — (@)
“10010". T'll use “name” for a (one-sided) infinite

string, e.g 10111100100100100100... (e.g, start with T 11
“10111” then repeat the pattern “100” forever.) o 1/2
Let BITs := 2%+ be the set of bit-sequences - 14
b = bi1bobs ..., with each b; € {0,1}. 10 3/4
So BITS =< P(denumerable). 001 1/8
010 3/8
7a: Defn.  Define a fnc BinOne:(0,1)—BITS that 10T 5/8

produces the binary numeral of a point. Specifically, 110 7/8
BinOne(r) is the unique bit-sequence b such that

0001 1/16
< 3, 0010 3/16
n o — B
Do = T 0101 5/16
n=1 0110 7/16
. . . = 1001 9/16
and: If x is a dyadic rational, then b is eventually 1010 11/16
constant 1. [E.g BinOne(3/4) = 10111--- = 101.] 1101 13/16
Define BinDTer:BiTs—[0,1] |Binary to Doubled- 1110 15/16
Ternary] by _
) . >, 2b, 00001 1/32
BinDTer(b) = Z 3 00010 3/32
n=1 00101 5/32
So BinDTer(101) is the number whose base-3 numeral 00110 7/32
is 2022+, is 2+ 1 = I. The range of BinDTer is S :
. . .9 11110 31/32
the famous “middle thirds” Cantor set. —
Exercise-4: Both BinOne and BinDTer are injections. [ oooool 1/64
000011 3/64
7b: S-B corollary. It is the case that R < P(N). 900101 5/_64
Proof. Inject R—BITS by 1111O§ 61/64
BinOne 111110 63/64
R=(0,1) — Birs. 0000001 1/128

In the other direction, 0000011 3/128

Brrs Do [0,1] = R,

injecting BITs—R. Now apply Schroder-Bernstein. ¢
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8: Power-of-reals Thm.
a: The plane is equi-numerous with the line.
b: For each posint k, we have that RF < R.

c: Cartesian-power RN is equi-numerous with R. ¢

w
Pfof ([@)). Map BITsxBITs < BITs by interweaving
the bits, as follows.

W(a,€) = a1crazcoaszcsagcy ...

Pick your favorite bijection B:R—B1Ts. Then

f(z,9) = B (W(B(), B(y)))

bijects the plane RxR to the line R. ¢

Pfof (blfc).  |Note @ is the k=2 case of @] To prove

that BiTs” = BITs, we can interleave k bit-seqs.

Alternatively, producing an injection
¢:BrrsY < BiITs
establishes (alfblic) in one swell foop.  [Trivially
Brts—Bi1TsY, so S-B thm says Birs® = Birs" = BITS.] We
make our ¢ an actual bijection, as follows: Notice
that Brrs! can be viewed as a sequence of bit-segs;
i.e, it is a bit-quadrant, ie, a bit at each point of NxN.
Pick your favorite bijection showing NxN =< N/ e.g,
diagonal raster-scan. Then

by (22
Brrst = oNVN y oN — Brrs. ¢

Explicit bijection :BITS < (0, 1]

Page 5 of

9: Continuous-fncs Thm.

. s R _ oR ROte {F‘unctions only taking}
i Firstly, R® < 2% X< on values 5 and 7. ’

note

ii: Also, C(R—R) < R < {Constant fncs}. %

(7)

Pfof (). R® =< [2M]® < 2"® by CE-Lem (2F). Etc.4

Challenging: Foxercise 5.

Pf of . An injection R—C(R—R) is p — [z ],
e.g, the number 4 maps to the constant-function-4.
Courtesy Schroéder-Bernstein, then, ISTProduce an

injection in the other direction. = Happily,
L
CR—R) = RQ < NN PEF gy e g o

9a: Lemma.  The mapping C(R—R)—RY defined
by restriction [+ flg, is an injection. O

Proof. Letting h := f|q, we need to recover f from h.
Given a point peR, take a sequence q of rationals
s.t ¢, — p. Our [unknown| f is cts at p, so

f(p) = lim f(gn) & lim £(gn) . ¢

n—o0

Challenge. Define a: C(R—R) — RQ by a(f) = flo-
Is a() surjective?

For f € C(R—R), restriction f|g lies in RQ; but is
it necessarily a continuous map Q—R ?

If you think “9%es”, then: Does the above «() map
onto C(Q—R)? 0
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Algebraic numbers

A complex number v is |algebraic| if it is a root of
some non-zip intpoly [equiv., ratpoly] f. Thus

/19 and B = [1 — V13]/6

a =
are algebraic numbers, since « is a root of z° — 19,

and B is a root of 32° —x — 1. Evidently each ra-
tional number P/Q is algebraic, since it is a root of
intpoly Qx — P.

Each algebraic number ~ has an associated
posint called its degree, written Deg(y). Writing
d := Deg(~), then v is a root of some degree-d intpoly,
but is the root of no lower-degree [non-zip| intpoly.

The rationals are precisely those numbers of de-
gree 1. The above a has Deg(a) < 5. The above
B has Deg(3) = 2, since v/13 is irrational.

Use A for the set of algebraic numbers in C. We
see that A is stratified into a hierarchy by degree.
The numbers in the complement, C ~ A, transcend
this hierarchy so —not surprisingly— each such number
is said to be transcendental. Although this is not
obvious, each of these three numbers

m, e, T = Zbi

n=1 """

. on!
, where by, == 2",

is transcendental [77]

We define the degree of a transcendental number
to be oo. That is to say, the degree of a number v € C
is the infimum of numbers d € [1..00) such that v is
a zero of some degree-d intpoly.

“3Such a 7 is called a Liouville number. There is an explana-
tion of Liouville numbers on my Teaching Page.

Algebraic numbers

Page 6 of

Defn. Algebraists use notation Z[z| for the set of Z-co-
efficient polynomials written using variable “z”. They
use Q[z] for the set of rational-coeff polynomials. [

11: Lemma.  Sets Z[z] and Q[z] are equi-numerous,
and each is countably-infinite. %

Pf. Certainly Q[z| = Z[x] = N[z]|, since Q = 7Z = N.
Let p, be the k™'-prime; so py=2, p;=3, py=5, .. ..
A N-coefficient polynomial can be written uniquely as

e Co+61$+02$2+03$3+...,

where oo-sequence € is eventually-constant-zero.
Mapping () to

i: lo_o[ [pk]Ck )

k=0

is well-defined [since € is eventually-const-zero| and is an
bijection N[:L‘}‘—»Z+. [E.g7 Zip maps to 2°.3%.50... = 1.
And 32”2 + z* maps to ps - py=5"-11=1375] ¢

12: Algebraic-numbers Thm.  The set A of algebraic
numbers is denumerable. O

Pf. Each [non-zip| intpoly has only finitely-many
roots. And Lemma (|11)) asserts only countably many
intpolys. Thus A is a countable union of countable
sets, hence is countable, courtesy , the Countable-
card theorem. ¢

(ﬂnﬁf now, the /‘lepena(ices ! See next pa‘go.)
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§A  Schroder-Bernstein computation

S-B Challenge. Let’s use Schroder-Bernstein to con-
struct a bijection 0:7.,— Q... [Since Z+ and Q4 are not
disjoint, I'll use blue for Z. and its elements, and use reddish
colors for Q4 and its elements.] Define the Divides map

D:7.—Q. by
o D(n) = n/3.

Easily, D is well-defined, and is an injection.

Each positive rational can be uniquely written p/q,
where p_Lq are posints. Define R:Q—7 |it applies to
Ratios] by

R(p/q) = 271370,

[For example, R(1/1) = 2'71.3'71 = 2°3° = 1. And
R(7/3) = 277%.3°7! = 576.] This R is well-defined, and
is injective because prime-factorization is unique.

Let 6:7,.—Q4 be the (D, R)-good bijection with
the smallest backward set. [So 6 uses R only on those
(D, R)-orbits that start in Q.

Compute 6(18). Compute 6(1). O

Want to think about it first? Good idea!

WARNING: 4 soln is on the next page.
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Looking into the Past. When does an n € Z. have
an R-preimage? Exactly when 7 factors as 2°~1.39~1
with posints p and ¢ coprime to each other.

Backtracing 18. This gives
Ly Q4
18 N
o 2/3 [since 1,8:22_133_1]
2
N

Pa 2/1 [since 2:2271«3171]

This 6 has no R-preimage. For although 6 is a product
of powers of 2 and 3, the exponents are not coprime:
6 =2271.32"1 and 2 is not coprime to 2. Hence:

f: 0(18) 24 p(18) = 18/3 = 6/1.

Backtracing 4. We compute:

- Q:
(J; 2‘ 3/1 [since 4 =23"1.3171]
1 < 1/3 [since 9 =2'"1.33"1]

i — 9l—-1,gl-1
3 < 1/1  [since 1 =2'"1.3'71]

1/2]| [since 3 =2'"1.3>71].
Backtracing terminates with %, since 3 - % is not
inZ, ie, 1 € Range(D). Thus

i 0(4) 24 R1(4) = 3/1 = 3. ¢

A SCHRODER-BERNSTEIN COMPUTATION

Page 8 of

Forward tracing 6. As an example, let’s follow the
(D, R)-orbit of 6 a bit further:

Ly Q4
N
o 2/1
TN
. o 23
TN
A
2 \ [Since 32226_131_1]
o 32/3
19327352832 [since 19327352832 = 23271.3371]

Discussion. Whether the S-B algorithm is construc-
tive depends one’s definition of “constructive”. How to
constructively tell if an orbit has no beginning?
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S-B ezer. Let X :=[3..00) and Q := [4..00). Define 0 backwards. Back-tracing from the €2 side:

9:X—>Q by g(n):=n-+7 and Omega X
! 375
QX =3k + [-1]~.
h:Q— by h(k) 3k + [-1] P 368
With 6 the (unique, in this case) S-B map X <2, com- 123 --->
pute: 0(10,11,...,19) and 6(50, 51, ..., 59). <--- 116
. . 39 --->
Compute 0 () of various numbers. . 39
What is the smallest k& € 2 whose backwards g-h- 11 ——->
orbit has length 57 O <o__ 4
Two computations. To help out: Hence. ..
Back-tracing the pair-orbit: theta~{-1}(375) = G~{-1}(375) = 368.
X Omega
206 Again from €2, back-tracing:
<--- 69
62 ---> Omega X
<--- 21 105
14 —-—> <--- 98
Koo 5 33 --->
<--- 26
Thus. .. 9 --->
theta(206) = H~{-1}(206) = 69. We ended on the Omega side, so

theta~{-1}(105) = H(105) = 314 .

Is 7T is on the way? ¢
Back-tracing the pair-orbit:
X Omega
368
<--- 123
116 --->
<--- 39
32 --->
<--- 11
4 --->
Consequently. ..

theta(368) = G(368) = 375.
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§B  Appendix: AC = WO

Orders

Below, order means strict total-order. For an order-
symbol <, <, C, use <, <, C, for the non-strict
versions.

Fixing an order < on set X and a p € X, let

X = {re X |z <p},

and analogously for X =7. Subset ICX is an “initial
segment of X7 if |Vsel,VreX: z<s = z €l
Every non-void init-seg is of form X<P or X <P,

For orders (X, <) and (£2, <), an “order-embed-

emb

ding, f, of X into 27, written [:X — (2, means

Va,be X: a<b IFF ¢(a) < p(b).

[Another name is an “into—isomorphism”.]
init, emb

Write [ X —— 2 if f:X < 2 and Range(f) is
an initial-segment of £2.

14a: Prop'n. For well-orders (X ,<) and (§2, <), sup-
init

pose @:X% 2 and \: X — (2. Then o = \.

Pf. Assuming ¢ # A, let t€ X be the smallest X-
value s.t, WLOG, A(t) > ¢(t) = 7. For each = < t,
then, A(z) = ¢(x) <7 < A(t). Thus A() skips over
7, hence is not an init-seg map. 3%

14b: Lemma.  Fix well-orders (X,<) and (§2,<).
If they are order-isomorphic, then the isomorphism is
unique.

If not, then exactly one of them is ord-iso to a subset
the other. Moreover, it admits an ord-iso to an initial-

. Init . .
segment, and this — map is unique. O

Pf. Let C be the set of pe X for which init-seg X= ad-

mits a map fp:XSP M0 For s > p, both in C, our
Prop'n (T4a)) implies that the restriction of f, to X=F
equals f,. Consequently, the union

Y = U Ip
peC

is a well-defined map into §2. Its domain is initial-
segment

Orders

Page 10 of

I =

U x=r.

peC

This ¢ is an ord-iso, since each f, is, and maps onto
£2-init-seg
A = U Range(fp) .

peC

Which direction? If I equals X, then ¢: X <% (2.

Otherwise, let s :== Min(X ~ I). Could A fail to be

all of 27 No!, since otherwise we could extend ¢ by
init,

mapping s to Min(£2 ~. A). Hence p 102 — X. ¢

14c: Corollary.  On the proper-class of Well-Order-

. init .
types, relation < is a |laz, i.e, non-strict| well-order.{)

Well-ordering Aziom. The WOAxiom states that each
set admits a well-order. O

15: WOA =AC thm. Assuming WOAxiom, each col-
lection C of non-void sets, admits a choice fnc. O

Proof. —Let < be a well-order on U = [J(C). This
engenders choice-fnc A + Min~(A), for each A € C.4
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Zermelo’s pf AC = Well-ordering Principle

In 1904, Ernst Zermelo proved the then-surprising re-
sult that AC implies WOAxiom.

16a: Shy-function. On a set X, let M = 2X < {X}
be the collection of proper subsets. The Axiom-of-Choice
gives the existance of a shy-fnc Y:01— X satisfying

Tz vSem: YS)e X \S,

[The shY-fnc picks an X-element Y(S) that avoids S.| A shy-
fnc comes from AC applied to collection {X ~ S}geon
of non-void sets.

Henceforth, there is a fixed a shy-fnc Y on X.|.

On a subset SCX, a well-order < is “good on §”
[or “pair (S, <) is good”| if

i vteS: Y(S™) = t. O

16b: Obs. Fix a good (S,=<). For each
proper —<-init-seg I & S, let t = Min™(S \ I). Thus
[ = S~ Hence

£: Min* (S \I) = Y(I). O

16¢: Shy lemma. For subsets S, T C X, suppose pairs
(S,<) and (T, <) are each good. Then either SCT
orT'CS.

When SCT, then S is a <-initial-segment. Further,
< equals <|g; the <-order restricted to S.

init

[IOWords, (S, <) < (T, <) via the identity-map.| O

16d: Prelim. A subset J C X is mutual if

J C SNT, together with

J is init-seg w.r.t < and w.r.t <, and

O
orders < and < agree on J.

Pf. Let C comprise those peS s.t S=P is mutual.

Automatically, the union |I = U, S=P | is mutual.
[We don’t need this, but note C = I.]
Inclusion. If IS SNT, then (£) gives

note

Min® (S~ 1) = Y(I) = Min* (T~ 1) '€ SNT.

Zermelo’s pf AC = Well-ordering Principle
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With y = Y(I), then S=Y = IU{y} = T=Y. Or-
ders < and < agree on ILI{y}, yielding 3¢ that y is
n 1= §e,
peC
If S=1, then S C T is a <-init-segment on which
orders < and < agree. And if T'=1,then 7" C S is a
<-init-segment on which orders < and < agree. ¢

Prelim and Caveat. Consider C, a collection of (S, <g)

pairs with <g a partial-order on SCX. This C is

consistent if for each (5, <gs) and (1), <7), partial-

orders <g and <7 agree on S N7T. When, further,

always either S C 7T or 1" C S, then C is nested.
Define relation

U <s

(S,<s)€C

*: < = onset U :=

U s.

(S,=s)€eC

When C consistent, then < is a partial-order [exercise].
If each <g is a total-order, and C is nested, then < is
a total-order [exercise].

If, in addition, each <g is a well-order, must <
be a WOrder? No! Let S, :=[n..)CZ, for
n=1,2,..., with order <,, being <|g . The (*)-union
gives relation < on U = Z; not a well-order. O

17: Zermelo's W-O Thm. If a set X admits a shy-fnc,
then X admits a well-order. O

Pf.  Let C comprise all good pairs (S, <g), where
ScX, and use (*) to define relation < on set U. Our
C is nested, courtesy the Shy lemma; hence < is a
total-order.

Fix a non-void subset BCU.

For j=1,2, consider pairs (S;, <;) having intersec-
tion B M S, non-void. Let s; be the <;-min of BN 5;.
By the Shy lemma, WLOG S, is a <o-init-seg of So;
thus so = s1. Hence s; is Min~(B N U).

< is a well-order.

Well-order (U,<) is good. Fix a t € U. There
exists a good (S, <) with ¢ € S. The Shy lemma im-
plies S is a <-init-seg. Thus U<t = S~ = ¢,
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U is everything. If UG X, let y:=Y(U). Ex-
tend < to well-order < on U := UL{y} by defining
u <y for each u € U. Easily, <IAJ, <) is good, contra-
dicting that C comprised all good pairs. ¢
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