

Primer on Cardinalities

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/teaching.html>
 8 April, 2024 (at 12:06)

1a: **Defn: Exponentiation.** Given sets D and C , logicians define the symbol C^D as

$$C^D := \{\text{The set of \underline{all} fncs from } D \rightarrow C\}.$$

These functions have **Domain D** and **Co-domain C** . Note well that C^D is a *set of functions*. For example, let $\Omega := \{\alpha, \beta, \gamma\}$ and $B := \{0, 1\}$. Then B^Ω comprises the $2^3 = 8$ many fncs

$$\begin{array}{ll} \alpha, \beta, \gamma \mapsto 0, 0, 0; & \alpha, \beta, \gamma \mapsto 1, 0, 0; \\ \alpha, \beta, \gamma \mapsto 0, 0, 1; & \alpha, \beta, \gamma \mapsto 1, 0, 1; \\ \alpha, \beta, \gamma \mapsto 0, 1, 0; & \alpha, \beta, \gamma \mapsto 1, 1, 0; \\ \alpha, \beta, \gamma \mapsto 0, 1, 1; & \alpha, \beta, \gamma \mapsto 1, 1, 1. \end{array}$$

In contrast, Ω^B comprises these $3^2 = 9$ fncs:

$$\begin{array}{lll} 0, 1 \mapsto \alpha, \alpha; & 0, 1 \mapsto \beta, \alpha; & 0, 1 \mapsto \gamma, \alpha; \\ 0, 1 \mapsto \alpha, \beta; & 0, 1 \mapsto \beta, \beta; & 0, 1 \mapsto \gamma, \beta; \\ 0, 1 \mapsto \alpha, \gamma; & 0, 1 \mapsto \beta, \gamma; & 0, 1 \mapsto \gamma, \gamma. \end{array}$$

Note, for finite sets P and Q , that $|P^Q| = |P|^{|Q|}$. It is for that reason that logicians use this Set^{Set} notation. [N.B: Consider sets $A \asymp B$ with $A \neq B$. Although sets A^B and B^A have the same *cardinality*, they are *not* the same set; this, since the fncs in A^B have B as their domain, whereas those in B^A have A as their domain, yet $B \neq A$.] \square

1b: **Defn: Powerset.** The **powerset** of a set Ω , written $\mathcal{P}(\Omega)$, is the set of *all* subsets of Ω . Why do logicians sometimes write $\{0, 1\}^\Omega$ to mean $\mathcal{P}(\Omega)$?

Well, there is a natural bijection between the two: A function $f: \Omega \rightarrow \{0, 1\}$ yields a subset $S_f \subset \Omega$ by $S_f := \{x \in \Omega \mid f(x) = 1\}$. Easily, the map $f \mapsto S_f$ is a bijection from $\{0, 1\}^\Omega$ onto $\mathcal{P}(\Omega)$.

Logicians often write the powerset as 2^Ω , rather than $\{0, 1\}^\Omega$, since all that was important about the base set $\{0, 1\}$ was that it had 2 elements; it was not important what those elements were. \square

ENTRANCE. Two sets A and B are **equinumerous**, or “**bijective** with each other”, if *there exists* a bijection $A \leftrightarrow B$. [BTWay, we use a hook-arrow to indicate an **injection**, e.g, $A \hookrightarrow B$, and a doublehead-arrow, e.g $A \leftrightarrow B$ to

indicate a **surjection**. Hence \leftrightarrow indicates a bijection.] Write the **equinumerous** relation as

$$A \asymp B.$$

Write $A \preccurlyeq B$ if *there exists* an injection $A \hookrightarrow B$. Finally, let $A \prec B$ mean that $A \preccurlyeq B$ yet $A \not\asymp B$.

Easily, \asymp is an equivalence relation. [On the class of cardinalities, relation \preccurlyeq is a pre-order. Is \preccurlyeq a *partial-order*? Is \preccurlyeq a *total-order*?]

Call S **countably-infinite** or **denumerable** if $S \asymp \mathbb{N}$. Set S is **countable** if $S \preccurlyeq \mathbb{N}$, i.e, S is bijective with some subset of \mathbb{N} . [So a countable set is either *finite* or *countably-infinite*.] \square

2a: **Lemma.** Suppose sets $P \asymp \tilde{P}$ and $Q \asymp \tilde{Q}$. Then $P^Q \asymp \tilde{P}^{\tilde{Q}}$. **Proof.** Exercise 1 soln is below.

Proof. By hypothesis, there are bijections $\varepsilon: \tilde{Q} \leftrightarrow Q$ and $\beta: P \leftrightarrow \tilde{P}$ [ε for “exponent”, β for “base”]. We biject $P^Q \leftrightarrow \tilde{P}^{\tilde{Q}}$ by mapping $f \mapsto \tilde{f}$ as in this diagram:

$$\begin{array}{ccc} Q & \xleftarrow{\varepsilon} & \tilde{Q} \\ f \downarrow & & \tilde{f} \downarrow \\ P & \xrightarrow{\beta} & \tilde{P} \end{array}$$

so $\tilde{f} := \beta \circ f \circ \varepsilon$. [I.e, $\tilde{f}(\tilde{x}) := \beta(f(\varepsilon(\tilde{x})))$ for arbitrary $\tilde{x} \in \tilde{Q}$.] The $f \mapsto \tilde{f}$ mapping is (*exercise!*) a bijection. [Can you write down its inverse-map?] \spadesuit

2b: **Card-Exponentiation Lemma (CE-Lemma).** Consider any three sets Ω , B and C . Then $\Omega^{B \times C} \asymp [\Omega^B]^C$. **Proof.** Exercise 2 soln is below.

Proof. Define $\Theta: \Omega^{B \times C} \leftrightarrow [\Omega^B]^C$ by

$$\Theta(f) := \left[c \mapsto \left[b \mapsto f(b, c) \right] \right].$$

Its inverse-map $\Upsilon: [\Omega^B]^C \leftrightarrow \Omega^{B \times C}$ is

$$\Upsilon(g) := \left[(b, c) \mapsto \left[g(c) \right](b) \right].$$

3: Countable-card Theorem. Below, S represents an arbitrary non-void countable set.

- a: An arbitrary subset of a countable set is countable. In particular, an arbitrary infinite subset of a countable set is countably-infinite.
- b: Each of these is countably-infinite:
 $\mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, S \times \mathbb{N}$.
- c: A union of countably many countable sets is countable. \diamond

4a: Defn. In referring to intervals, let **LCRO** mean “Left-Closed Right-Open” and let **LORC** mean “Left-Open Right-Closed”.

Use $\overline{\mathbb{R}} := [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ to denote the **extended reals**. In $\overline{\mathbb{R}}$, as an example, the set $[-\infty, 5]$ is a LCRO-interval, and $(7, \infty]$ is a LORC-interval. Both $[-4, \infty]$ and $\overline{\mathbb{R}}$ itself are closed intervals. All of these examples are *unbounded* intervals, whereas $(-4, 7]$ is a bounded interval.

In the theorem below, the word “interval” means “non-trivial interval”. That is, we exclude 1-point closed intervals, e.g. $[7, 7] \stackrel{\text{note}}{=} \{7\}$, as well as the empty interval, e.g. $(7, 7) \stackrel{\text{note}}{=} (7, 7) \stackrel{\text{note}}{=} [7, 7]$, each of which is the emptyset. [BTW, the emptyset is open.] \square

4b: Interval-card Theorem. Each non-trivial sub-interval of $\overline{\mathbb{R}}$ is equi-numerous with \mathbb{R} . \diamond

Proof. For $k = 1, 2$, consider intervals $J_k := [a_k, b_k]$, with positive (finite) lengths $L_k := b_k - a_k$. Then the affine map

$$x \mapsto a_2 + \frac{L_2}{L_1} \cdot [x - a_1]$$

bijects J_1 onto J_2 . The same map works for two open intervals, two LCRO-intervals, or two LORC-intervals.

Let $\mathcal{H} := \{\frac{1}{n}\}_{n=1}^{\infty}$ comprise the harmonic numbers. Define $f: [0, 1] \rightarrow [0, 1]$ as follows. $\heartsuit 1$

4c: For $x \in \mathcal{H}$: Let $n := \frac{1}{x}$, then map $x \mapsto \frac{1}{n+1}$.
For $x \notin \mathcal{H}$: Map $x \mapsto x$.

This f is a bijection. And $g(x) := 1 - x$ bijects $[0, 1]$ onto $(0, 1]$. Defining $h: (0, 1] \rightarrow (0, 1)$ by rule (4c) also gives a bijection. Hence

$$[0, 1] \xrightarrow{f} [0, 1] \xrightarrow{g} (0, 1] \xrightarrow{h} (0, 1). \text{ Thus:}$$

All bounded intervals have the same cardinality.

Unbounded intervals. Extending $\tan()$ to $\overline{\mathbb{R}}$, note that \tan bijects $J := [-\frac{\pi}{2}, \frac{\pi}{2}]$ onto the closed interval $\overline{\mathbb{R}}$. Consequently, every (bounded or unbounded) closed/open/LORO/LCRO sub-interval of $\overline{\mathbb{R}}$ is carried by \arctan to a corresponding subinterval of J .

$\heartsuit 1$ This (4c) uses one of our “Cantor’s-Hotel maps” from class.

Since these latter intervals are all bounded intervals, our earlier argument shows that they are all bijective with each other. ♦
♦

5: Cantor's diagonalization thm.

i: Firstly, $\mathbb{N} \prec \mathbb{R}$. Moreover, for each function $f: \mathbb{N} \rightarrow \mathbb{R}$ there is an explicit construction of a point $\text{NewPt}_f \in \mathbb{R}$ which is not in $\text{Range}(f)$.

ii: Every set S satisfies that $S \prec \mathcal{P}(S)$. Moreover, for each fnc $f: S \rightarrow \mathcal{P}(S)$, this set,

$$\text{NewSet}_f := \{z \in S \mid f(z) \not\ni z\}$$

is not in $\text{Range}(f)$. ♦

Proof of (i). Map $x \mapsto x$ injects \mathbb{N} into \mathbb{R} , so $\mathbb{N} \preccurlyeq \mathbb{R}$.

Recall $\mathbb{N} \asymp \mathbb{Z}_+$ and $\mathbb{R} \asymp (0, 1)$. Given $g: \mathbb{Z}_+ \rightarrow (0, 1)$ we build $\text{NewPt}_g \in (0, 1)$ with $\text{NewPt}_g \notin \text{Range}(g)$, as follows. For $x \in (0, 1)$, define digits \mathbf{d}_n^x so that

$$\sum_{n=1}^{\infty} \frac{\mathbf{d}_n^x}{10^n} = x.$$

Moreover, when x is a 10-adic rational, use the expansion which is eventually '9'. [Any fixed rule will work.]

If we write the decimal expansions of $g(1), g(2), \dots$ in a two-dimensional table, then digits $\delta_n := \mathbf{d}_n^{g(n)}$ lie along the diagonal, whence the name of the proof.

For a digit d , let

$$\bar{d} := \begin{cases} 3 & , \text{ if } d \neq 3; \\ 7 & , \text{ otherwise.} \end{cases}$$

Finally, define digit $\alpha_n := \bar{d}_n$. Then point

$$\text{NewPt}_g := \sum_{n=1}^{\infty} \frac{\alpha_n}{10^n}$$

lies in $(0, 1)$ and [Exercise 3] is **not** in $\text{Range}(g)$. ♦

Proof of (ii). Injection $x \mapsto \{x\}$ shows that $S \preccurlyeq \mathcal{P}(S)$.

To see that $S \not\prec \mathcal{P}(S)$, note: For each $z \in S$, the symmetric-difference $\text{NewSet}_f \Delta f(z)$ owns z ; hence NewSet_f differs from $f(z)$. ♦

♦2 BTWay, fnc $x \mapsto e^x$ bijects $\mathbb{R} \leftrightarrow \mathbb{R}_+$, and $x \mapsto e^x / (e^x + 1)$ maps $\mathbb{R} \leftrightarrow (0, 1)$. Indeed, each an order-preserving homeomorphism. The latter fnc is the **sigmoid** function.

Schröder-Bernstein

Here, we examine cardinality relations between two sets, \mathbf{X} and $\mathbf{\Omega}$. The below arguments do not require these sets be disjoint, but the idea is easier understand when they are. At no cost, we can arrange that \mathbf{X} be disjoint from $\mathbf{\Omega}$ by replacing \mathbf{X} by $\mathbf{X} \times \{1\}$, and replacing $\mathbf{\Omega}$ by $\mathbf{\Omega} \times \{2\}$.

Consider a map $g: \mathbf{X} \rightarrow \mathbf{\Omega}$, an injection $h: \mathbf{\Omega} \hookrightarrow \mathbf{X}$, and a subset $B \subset h(\mathbf{\Omega})$ ^{note} $\subset \mathbf{X}$. These determine a function $\theta: \mathbf{X} \rightarrow \mathbf{\Omega}$ by setting $F := \mathbf{X} \setminus B$, and defining

$$\theta|_B := h^{-1}|_B, \text{ and } \theta|_F := g|_F.$$

Let $\llbracket g, h: B \rrbracket$ denote this function θ .

[So we map Forward on F , and Backward on B .]

Given g, h and B as above, with g an *injection*, say that "*the set B is (g, h) -backward-good*" if the resulting function $\theta: \mathbf{X} \rightarrow \mathbf{\Omega}$ of (6.1) is a *bijection*, and call θ an " *(g, h) -good bijection*". The corresponding forward set $F := \mathbf{X} \setminus B$ is *(g, h) -forward-good*.

6.2: Weak Schröder-Bernstein thm. For sets \mathbf{X} and $\mathbf{\Omega}$: If $\mathbf{X} \preccurlyeq \mathbf{\Omega}$ and $\mathbf{X} \succcurlyeq \mathbf{\Omega}$, then $\mathbf{X} \asymp \mathbf{\Omega}$. ♦

6.3: Schröder-Bernstein Thm [S-B thm]. Fix injections

$$\mathbf{X} \xrightarrow{g} \mathbf{\Omega} \text{ and } \mathbf{X} \xleftarrow{h} \mathbf{\Omega}.$$

Then there exists an (g, h) -good bijection.

Indeed, defining the collection of points in each set with no pre-image in the other set,

$$\widehat{\mathbf{X}} := \mathbf{X} \setminus h(\mathbf{\Omega}) \text{ and } \widehat{\mathbf{\Omega}} := \mathbf{\Omega} \setminus g(\mathbf{X}),$$

we have this: The Smallest and Largest, in the sense of inclusion, (g, h) -backward-good sets are

$$6.4: \quad \mathcal{S}_{\langle g, h \rangle} := \bigcup_{n=0}^{\infty} [h \circ g]^{\circ n}(h(\widehat{\mathbf{\Omega}})) \text{ and}$$

$$6.5: \quad \mathcal{L}_{\langle g, h \rangle} := \mathbf{X} \setminus \left[\bigcup_{n=0}^{\infty} [h \circ g]^{\circ n}(\widehat{\mathbf{X}}) \right],$$

resp.. In particular, $\mathcal{S}_{\langle g, h \rangle} \subset \mathcal{L}_{\langle g, h \rangle} \subset \text{Range}(h)$. ♦

Proof. Use the 4-orbit picture from class. ♦

Bits

Define half-open and open intervals in the reals,

$$L := [0, 1] \quad \text{and} \quad R := (0, 1] \quad \text{and} \quad J := (0, 1).$$

Recall that each dyadic rational has two binary numerals; the remaining reals each have one binary numeral. Define the all-zero and all-one names

$$\bar{0} := 000\cdots, \quad \text{and} \quad \bar{1} := 111\cdots,$$

Let EC be the set of eventually constant-1 or eventually constant-0 names.

Below, I'll use “*word*” for a *finite* string bits, e.g. “10010”. I'll use “*name*” for a (one-sided) *infinite* string, e.g. 10111100100100100100... (e.g., start with “10111” then repeat the pattern “100” forever.)

Let $\text{BITS} := 2^{\mathbb{Z}^+}$ be the set of bit-sequences

$$\vec{b} = b_1 b_2 b_3 \dots, \quad \text{with each } b_j \in \{0, 1\}.$$

So $\text{BITS} \asymp \mathcal{P}(\text{denumerable})$.

7a: Defn. Define a fnc $\text{BinOne} : (0, 1) \rightarrow \text{BITS}$ that produces the binary numeral of a point. Specifically, $\text{BinOne}(x)$ is the unique bit-sequence \vec{b} such that

$$\sum_{n=1}^{\infty} \frac{b_n}{2^n} = x,$$

and: If x is a dyadic rational, then \vec{b} is eventually constant 1. [E.g. $\text{BinOne}(3/4) = 10111\cdots = 10\bar{1}$.]

Define $\text{BinDTer} : \text{BITS} \rightarrow [0, 1]$ [Binary to Doubled-Ternary] by

$$\text{BinDTer}(\vec{b}) := \sum_{n=1}^{\infty} \frac{2b_n}{3^n}.$$

So $\text{BinDTer}(10\bar{1})$ is the number whose base-3 numeral is .2022..., is $\frac{2}{3} + \frac{1}{9} = \frac{7}{9}$. The range of BinDTer is the famous “middle thirds” *Cantor set*.

Exercise-4: Both BinOne and BinDTer are injections. \square

7b: S-B corollary. It is the case that $\mathbb{R} \asymp \mathcal{P}(\mathbb{N})$. \diamond

Proof. Inject $\mathbb{R} \rightarrow \text{BITS}$ by

$$\mathbb{R} \asymp (0, 1) \xrightarrow{\text{BinOne}} \text{BITS}.$$

In the other direction,

$$\text{BITS} \xrightarrow{\text{BinDTer}} [0, 1] \hookrightarrow \mathbb{R},$$

injecting $\text{BITS} \rightarrow \mathbb{R}$. Now apply Schröder-Bernstein. \diamond

Explicit bijection $\psi: \text{BITS} \leftrightarrow (0, 1]$

In half-open $(0, 1]$, let DY be this sequence of dyadiques:

$$\text{DY} = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{16}, \frac{3}{16}, \frac{5}{16}, \frac{7}{16}, \dots, \frac{15}{16}, \frac{1}{32}, \frac{3}{32}, \dots, \frac{31}{32}, \dots \right).$$

Define

$$\psi(\vec{a}) := \begin{cases} \mu(\vec{a}) & , \text{ if } \vec{a} \in \text{EC} ; \\ \sum_{n=1}^{\infty} \frac{a_n}{2^n} & , \text{ Otherwise} \end{cases}$$

where map $\mu: \text{EC} \leftrightarrow \text{DY}$ is:

<i>Eventually constant</i>	<i>Dyadic number</i>
\vec{a}	$\mu(\vec{a})$
$\bar{1}$	$1/1$
$\bar{0}$	$1/2$
$0\bar{1}$	$1/4$
$1\bar{0}$	$3/4$
$00\bar{1}$	$1/8$
$01\bar{0}$	$3/8$
$10\bar{1}$	$5/8$
$11\bar{0}$	$7/8$
$000\bar{1}$	$1/16$
$001\bar{0}$	$3/16$
$010\bar{1}$	$5/16$
$011\bar{0}$	$7/16$
$100\bar{1}$	$9/16$
$101\bar{0}$	$11/16$
$110\bar{1}$	$13/16$
$111\bar{0}$	$15/16$
$0000\bar{1}$	$1/32$
$0001\bar{0}$	$3/32$
$0010\bar{1}$	$5/32$
$0011\bar{0}$	$7/32$
\vdots	\vdots
$1111\bar{0}$	$31/32$
$00000\bar{1}$	$1/64$
$00001\bar{1}$	$3/64$
$00010\bar{1}$	$5/64$
\vdots	\vdots
$11110\bar{0}$	$61/64$
$11111\bar{0}$	$63/64$
$000000\bar{1}$	$1/128$
$000001\bar{1}$	$3/128$
\vdots	\vdots

8: Power-of-reals Thm.

- a: The plane is equi-numerous with the line.
- b: For each posint k , we have that $\mathbb{R}^k \asymp \mathbb{R}$.
- c: Cartesian-power $\mathbb{R}^{\mathbb{N}}$ is equi-numerous with \mathbb{R} . \diamond

Pf of (a). Map $\text{BITS} \times \text{BITS} \xrightarrow{W} \text{BITS}$ by interweaving the bits, as follows.

$$W(\vec{a}, \vec{c}) := a_1 c_1 a_2 c_2 a_3 c_3 a_4 c_4 \dots$$

Pick your favorite bijection $\mathcal{B}: \mathbb{R} \leftrightarrow \text{BITS}$. Then

$$f(x, y) := \mathcal{B}^{-1}(W(\mathcal{B}(x), \mathcal{B}(y)))$$

bijects the plane $\mathbb{R} \times \mathbb{R}$ to the line \mathbb{R} . \diamond

Pf of (b,c). [Note (a) is the $k=2$ case of (b).] To prove that $\text{BITS}^k \asymp \text{BITS}$, we can interleave k bit-seqs.

Alternatively, producing an injection

$$\varphi: \text{BITS}^{\mathbb{N}} \hookrightarrow \text{BITS}$$

establishes (a,b,c) in one swell foop. [Trivially $\text{BITS} \hookrightarrow \text{BITS}^{\mathbb{N}}$, so S-B thm says $\text{BITS}^k \asymp \text{BITS}^{\mathbb{N}} \asymp \text{BITS}$.] We make our φ an actual bijection, as follows: Notice that $\text{BITS}^{\mathbb{N}}$ can be viewed as a sequence of bit-seqs; i.e, it is a bit-quadrant, ie, a bit at each point of $\mathbb{N} \times \mathbb{N}$. Pick your favorite bijection showing $\mathbb{N} \times \mathbb{N} \asymp \mathbb{N}$, e.g, diagonal raster-scan. Then

$$\text{BITS}^{\mathbb{N}} = 2^{\mathbb{N} \times \mathbb{N}} \xrightarrow{\text{by (2a)}} 2^{\mathbb{N}} = \text{BITS}. \quad \diamond$$

9: Continuous-fncs Thm.

i: Firstly, $\mathbb{R}^{\mathbb{R}} \asymp 2^{\mathbb{R}} \xrightarrow{\text{note}} \{\text{Functions only taking values 5 and 7}\}$.

ii: Also, $\mathbf{C}(\mathbb{R} \rightarrow \mathbb{R}) \asymp \mathbb{R} \xrightarrow{\text{note}} \{\text{Constant fncs}\}$. \diamond

Challenging: Exercise 5. $(?)$

Pf of (i). $\mathbb{R}^{\mathbb{R}} \asymp [2^{\mathbb{N}}]^{\mathbb{R}} \asymp 2^{\mathbb{N} \times \mathbb{R}}$, by CE-Lem (2b). Etc. \diamond

Pf of (ii). An injection $\mathbb{R} \hookrightarrow \mathbf{C}(\mathbb{R} \rightarrow \mathbb{R})$ is $p \mapsto [x \mapsto p]$, e.g, the number 4 maps to the constant-function-4.

Courtesy Schröder-Bernstein, then, ISTProduce an injection in the other direction. Happily,

$$\mathbf{C}(\mathbb{R} \rightarrow \mathbb{R}) \xrightarrow{\text{Lem (9a)}} \mathbb{R}^{\mathbb{Q}} \asymp [2^{\mathbb{N}}]^{\mathbb{N}} \xrightarrow{\text{by CE}} 2^{\mathbb{N} \times \mathbb{N}} \xrightarrow{\text{Etc.}} \mathbb{R}. \quad \diamond$$

9a: Lemma. The mapping $\mathbf{C}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R}^{\mathbb{Q}}$ defined by restriction $f \mapsto f|_{\mathbb{Q}}$, is an injection. \diamond

Proof. Letting $h := f|_{\mathbb{Q}}$, we need to recover f from h . Given a point $p \in \mathbb{R}$, take a sequence \vec{q} of rationals s.t $q_n \rightarrow p$. Our [unknown] f is cts at p , so

$$f(p) = \lim_{n \rightarrow \infty} f(q_n) \stackrel{\text{def}}{=} \lim_{n \rightarrow \infty} h(q_n). \quad \diamond$$

Challenge. Define $\alpha: \mathbf{C}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R}^{\mathbb{Q}}$ by $\alpha(f) := f|_{\mathbb{Q}}$. Is $\alpha()$ surjective?

For $f \in \mathbf{C}(\mathbb{R} \rightarrow \mathbb{R})$, restriction $f|_{\mathbb{Q}}$ lies in $\mathbb{R}^{\mathbb{Q}}$; but is it necessarily a continuous map $\mathbb{Q} \rightarrow \mathbb{R}$?

If you think “Yes”, then: Does the above $\alpha()$ map onto $\mathbf{C}(\mathbb{Q} \rightarrow \mathbb{R})$? \square

Algebraic numbers

A complex number γ is *algebraic* if it is a root of some non-zip intpoly [equiv., ratpoly] f . Thus

$$\alpha := \sqrt[5]{19} \quad \text{and} \quad \beta := [1 - \sqrt{13}]/6$$

are algebraic numbers, since α is a root of $x^5 - 19$, and β is a root of $3x^2 - x - 1$. Evidently each rational number P/Q is algebraic, since it is a root of intpoly $Qx - P$.

Each algebraic number γ has an associated posint called its *degree*, written $\text{Deg}(\gamma)$. Writing $\mathbf{d} := \text{Deg}(\gamma)$, then γ is a root of some degree- \mathbf{d} intpoly, but is the root of *no lower-degree* [non-zip] intpoly.

The rationals are precisely those numbers of degree 1. The above α has $\text{Deg}(\alpha) \leq 5$. The above β has $\text{Deg}(\beta) = 2$, since $\sqrt{13}$ is irrational.

Use \mathbb{A} for the *set* of algebraic numbers in \mathbb{C} . We see that \mathbb{A} is stratified into a *hierarchy* by degree. The numbers in the complement, $\mathbb{C} \setminus \mathbb{A}$, *transcend* this hierarchy so—not surprisingly—each such number is said to be *transcendental*. Although this is not obvious, each of these three numbers

$$\pi, \quad e, \quad \tau := \sum_{n=1}^{\infty} \frac{1}{b_n}, \quad \text{where } b_n := 2^{n!},$$

is transcendental.^{♡3}

We define the *degree* of a transcendental number to be ∞ . That is to say, the degree of a number $\gamma \in \mathbb{C}$ is the *infimum* of numbers $d \in [1.. \infty)$ such that γ is a zero of some degree- d intpoly.

Defn. Algebraists use notation $\mathbb{Z}[x]$ for the set of \mathbb{Z} -coefficient polynomials written using variable “ x ”. They use $\mathbb{Q}[x]$ for the set of rational-coeff polynomials. \square

11: Lemma. *Sets $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are equi-numerous, and each is countably-infinite.* \diamond

Pf. Certainly $\mathbb{Q}[x] \asymp \mathbb{Z}[x] \asymp \mathbb{N}[x]$, since $\mathbb{Q} \asymp \mathbb{Z} \asymp \mathbb{N}$.

Let p_k be the k^{th} -prime; so $p_0=2, p_1=3, p_2=5, \dots$. A \mathbb{N} -coefficient polynomial can be written uniquely as

$$\dagger: \quad c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots,$$

where ∞ -sequence \vec{c} is eventually-constant-zero. Mapping (\dagger) to

$$\ddagger: \quad \prod_{k=0}^{\infty} [p_k]^{c_k},$$

is well-defined [since \vec{c} is eventually-const-zero] and is an bijection $\mathbb{N}[x] \hookrightarrow \mathbb{Z}_+$. [E.g, Zip maps to $2^0 \cdot 3^0 \cdot 5^0 \dots = 1$. And $3x^2 + x^4$ maps to $p_2^3 \cdot p_4^1 = 5^3 \cdot 11 = 1375$.] \spadesuit

12: Algebraic-numbers Thm. *The set \mathbb{A} of algebraic numbers is denumerable.* \diamond

Pf. Each [non-zip] intpoly has only finitely-many roots. And Lemma (11) asserts only countably many int polys. Thus \mathbb{A} is a countable union of countable sets, hence is countable, courtesy (3), the Countable-card theorem. \spadesuit

(*And now, the Appendices!* See next page.)

^{♡3}Such a τ is called a *Liouville number*. There is an explanation of Liouville numbers on my Teaching Page.

§A Schröder-Bernstein computation

S-B Challenge. Let's use Schröder-Bernstein to construct a bijection $\theta: \mathbb{Z}_+ \rightarrow \mathbb{Q}_+$. [Since \mathbb{Z}_+ and \mathbb{Q}_+ are not disjoint, I'll use blue for \mathbb{Z}_+ and its elements, and use reddish colors for \mathbb{Q}_+ and its elements.] Define the Divides map $D: \mathbb{Z}_+ \rightarrow \mathbb{Q}_+$ by

$$D(n) := n/3.$$

Easily, D is well-defined, and is an injection.

Each positive rational can be uniquely written p/q , where $p \perp q$ are posints. Define $R: \mathbb{Q}_+ \rightarrow \mathbb{Z}_+$ [it applies to Ratios] by

$$R(p/q) := 2^{p-1} \cdot 3^{q-1}.$$

[For example, $R(1/1) = 2^{1-1} \cdot 3^{1-1} = 2^0 3^0 = 1$. And $R(7/3) = 2^{7-1} \cdot 3^{3-1} = 576$.] This R is well-defined, and is injective because prime-factorization is *unique*.

Let $\theta: \mathbb{Z}_+ \rightarrow \mathbb{Q}_+$ be the (D, R) -good bijection with the *smallest* backward set. [So θ uses R^{-1} *only* on those (D, R) -orbits that start in \mathbb{Q}_+ .]

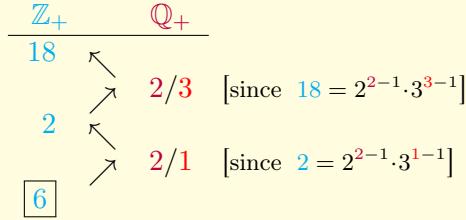
Compute $\theta(18)$. Compute $\theta(4)$. □

Want to think about it first? Good idea!

WARNING: A soln is on the next page.

Looking into the Past. When does an $n \in \mathbb{Z}_+$ have an R -preimage? Exactly when n factors as $2^{p-1} \cdot 3^{q-1}$ with posints p and q coprime to each other.

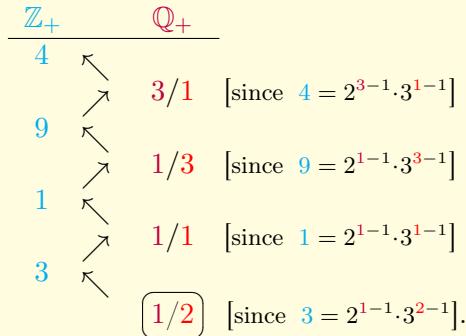
Backtracing 18. This gives



This 6 has no R -preimage. For although 6 is a product of powers of 2 and 3, the exponents are *not* coprime: $6 = 2^{2-1} \cdot 3^{2-1}$, and 2 is not coprime to 2. Hence:

$$\dagger: \quad \theta(18) \xrightarrow{\text{Fwd}} D(18) = 18/3 = 6/1.$$

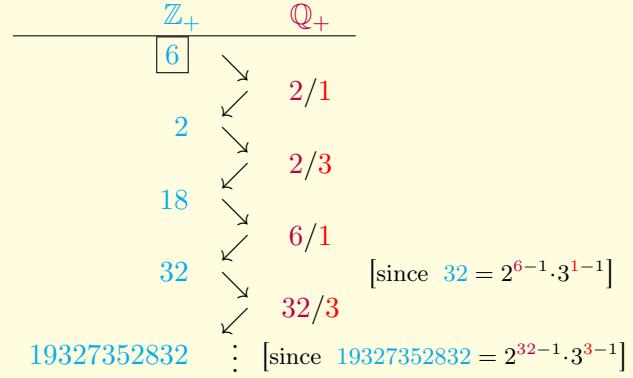
Backtracing 4. We compute:



Backtracing terminates with $\frac{1}{2}$, since $3 \cdot \frac{1}{2}$ is not in \mathbb{Z}_+ i.e., $\frac{1}{2} \notin \text{Range}(D)$. Thus

$$\ddagger: \quad \theta(4) \xrightarrow{\text{Bwd}} R^{-1}(4) = 3/1 = 3. \quad \spadesuit$$

Forward tracing 6. As an example, let's follow the (D, R) -orbit of 6 a bit further:



Discussion. Whether the S-B algorithm is constructive depends one's definition of "constructive". How to constructively tell if an orbit has no beginning?

S-B exer. Let $\mathbf{X} := [3.. \infty)$ and $\Omega := [4.. \infty)$. Define

$$\begin{aligned} g: \mathbf{X} \rightarrow \Omega &\quad \text{by} \quad g(n) := n + 7 \quad \text{and} \\ h: \Omega \rightarrow \mathbf{X} &\quad \text{by} \quad h(k) := 3k + [-1]^k. \end{aligned}$$

With θ the (unique, in this case) S-B map $\mathbf{X} \leftrightarrow \Omega$, compute: $\theta(10, 11, \dots, 19)$ and $\theta(50, 51, \dots, 59)$.

Compute $\theta^{-1}()$ of various numbers.

What is the smallest $k \in \Omega$ whose backwards g -orbit has length 5? \square

θ backwards. Back-tracing from the Ω side:

$$\begin{array}{ccc} \Omega & & \mathbf{X} \\ \text{Omega} & & \mathbf{X} \\ 375 & & 368 \\ <--- & & 368 \\ 123 & \dashrightarrow & 116 \\ <--- & & 116 \\ 39 & \dashrightarrow & 32 \\ <--- & & 32 \\ 11 & \dashrightarrow & 4 \\ <--- & & 4 \end{array}$$

Hence...

$$\theta^{-1}(375) = G^{-1}(375) = 368.$$

Again from Ω , back-tracing:

$$\begin{array}{ccc} \Omega & & \mathbf{X} \\ \text{Omega} & & \mathbf{X} \\ 105 & & 98 \\ <--- & & 98 \\ 33 & \dashrightarrow & 26 \\ <--- & & 26 \\ 9 & \dashrightarrow & \end{array}$$

We ended on the Omega side, so

$$\theta^{-1}(105) = H(105) = 314.$$

Is π is on the way? ◆

Thus...

$$\theta(206) = H^{-1}(206) = 69.$$

=====

Back-tracing the pair-orbit:

$$\begin{array}{ccc} \mathbf{X} & & \Omega \\ 368 & & 123 \\ <--- & & 123 \\ 116 & \dashrightarrow & 39 \\ <--- & & 39 \\ 32 & \dashrightarrow & 11 \\ <--- & & 11 \\ 4 & \dashrightarrow & \end{array}$$

Consequently...

$$\theta(368) = G(368) = 375.$$

§B Appendix: AC \implies WO

Orders

Below, **order** means *strict total-order*. For an order-symbol $<$, \prec , \sqsubset , use \leq , \preccurlyeq , \sqsubseteq , for the non-strict versions.

Fixing an order $<$ on set \mathbf{X} and a $p \in \mathbf{X}$, let

$$\mathbf{X}^{<p} := \{x \in \mathbf{X} \mid x < p\},$$

and analogously for $\mathbf{X}^{\leq p}$. Subset $\mathbf{I} \subset \mathbf{X}$ is an “*initial segment* of \mathbf{X} ” if $\forall s \in \mathbf{I}, \forall x \in \mathbf{X}: x < s \Rightarrow x \in \mathbf{I}$. Every non-void init-seg is of form $\mathbf{X}^{<p}$ or $\mathbf{X}^{\leq p}$.

For orders $\langle \mathbf{X}, < \rangle$ and $\langle \Omega, \prec \rangle$, an “*order-embedding*, f , of \mathbf{X} into Ω ”, written $f: \mathbf{X} \xrightarrow{\text{emb}} \Omega$, means

$$\forall a, b \in \mathbf{X}: a < b \text{ IFF } \varphi(a) \prec \varphi(b).$$

[Another name is an “*into-isomorphism*”.]

Write $f: \mathbf{X} \xrightarrow{\text{init}} \Omega$ if $f: \mathbf{X} \xrightarrow{\text{emb}} \Omega$ and $\text{Range}(f)$ is an *initial-segment* of Ω .

14a: Prop'n. For well-orders $\langle \mathbf{X}, < \rangle$ and $\langle \Omega, \prec \rangle$, suppose $\varphi: \mathbf{X} \xrightarrow{\text{init}} \Omega$ and $\lambda: \mathbf{X} \xrightarrow{\text{init}} \Omega$. Then $\varphi = \lambda$. \diamond

Pf. Assuming $\varphi \neq \lambda$, let $\mathbf{t} \in \mathbf{X}$ be the *smallest* \mathbf{X} -value s.t. WLOG, $\lambda(\mathbf{t}) \succ \varphi(\mathbf{t}) =: \tau$. For each $x < \mathbf{t}$, then, $\lambda(x) = \varphi(x) \prec \tau \prec \lambda(\mathbf{t})$. Thus $\lambda()$ skips over τ , hence is not an init-seg map. \bowtie

14b: Lemma. Fix well-orders $\langle \mathbf{X}, < \rangle$ and $\langle \Omega, \prec \rangle$. If they are order-isomorphic, then the isomorphism is unique.

If not, then exactly one of them is ord-iso to a subset the other. Moreover, it admits an ord-iso to an initial-segment, and this $\xrightarrow{\text{init}}$ map is unique. \diamond

Pf. Let \mathcal{C} be the set of $p \in \mathbf{X}$ for which init-seg $\mathbf{X}^{\leq p}$ admits a map $f_p: \mathbf{X}^{\leq p} \xrightarrow{\text{init}} \Omega$. For $s > p$, both in \mathcal{C} , our Prop'n (14a) implies that the restriction of f_s to $\mathbf{X}^{\leq p}$ equals f_p . Consequently, the union

$$\varphi := \bigcup_{p \in \mathcal{C}} f_p$$

is a well-defined map into Ω . Its domain is initial-segment

$$\mathbf{I} := \bigcup_{p \in \mathcal{C}} \mathbf{X}^{\leq p}.$$

This φ is an ord-iso, since each f_p is, and maps onto Ω -init-seg

$$\Lambda := \bigcup_{p \in \mathcal{C}} \text{Range}(f_p).$$

Which direction? If \mathbf{I} equals \mathbf{X} , then $\varphi: \mathbf{X} \xrightarrow{\text{init}} \Omega$.

Otherwise, let $\mathbf{s} := \text{Min}(\mathbf{X} \setminus \mathbf{I})$. Could Λ fail to be all of Ω ? *No!*, since otherwise we could extend φ by mapping \mathbf{s} to $\text{Min}(\Omega \setminus \Lambda)$. Hence $\varphi^{-1}: \Omega \xrightarrow{\text{init}} \mathbf{X}$. \spadesuit

14c: Corollary. On the proper-class of Well-Order-types, relation $\xrightarrow{\text{init}}$ is a [lax, i.e, non-strict] well-order. \diamond

Well-ordering Axiom. The WOAxiom states that each set admits a well-order. \square

15: WOA \Rightarrow AC thm. Assuming WOAxiom, each collection \mathcal{C} of non-void sets, admits a choice fnc. \diamond

Proof. Let $<$ be a well-order on $\mathbf{U} := \bigcup(\mathcal{C})$. This engenders choice-fnc $A \mapsto \text{Min}^<(A)$, for each $A \in \mathcal{C}$. \spadesuit

Zermelo's pf **AC \Rightarrow Well-ordering Principle**

In 1904, Ernst Zermelo proved the then-surprising result that AC implies WOAxiom.

16a: *Shy-function.* On a set \mathbf{X} , let $\mathfrak{M} := 2^{\mathbf{X}} \setminus \{\mathbf{X}\}$ be the collection of *proper* subsets. The Axiom-of-Choice gives the existance of a *shy-fnc* $\mathcal{Y}: \mathfrak{M} \rightarrow \mathbf{X}$ satisfying

$$\dagger: \quad \forall S \in \mathfrak{M}: \quad \mathcal{Y}(S) \in \mathbf{X} \setminus S,$$

[The shy-fnc picks an \mathbf{X} -element $\mathcal{Y}(S)$ that *avoids* S .] A shy-fnc comes from AC applied to collection $\{\mathbf{X} \setminus S\}_{S \in \mathfrak{M}}$ of non-void sets.

Henceforth, there is a fixed a shy-fnc \mathcal{Y} on \mathbf{X} .

On a subset $S \subset \mathbf{X}$, a well-order \prec is “*good* on S ” [or “pair $\langle S, \prec \rangle$ is *good*”] if

$$\ddagger: \quad \forall t \in S: \quad \mathcal{Y}(S^{\prec t}) = t. \quad \square$$

16b: *Obs.* Fix a good $\langle S, \prec \rangle$. For each proper \prec -init-seg $\mathbf{I} \subsetneq S$, let $\mathbf{t} := \text{Min}^{\prec}(S \setminus \mathbf{I})$. Thus $\mathbf{I} = S^{\prec \mathbf{t}}$. Hence

$$\mathcal{L}: \quad \text{Min}^{\prec}(S \setminus \mathbf{I}) = \mathcal{Y}(\mathbf{I}). \quad \square$$

16c: **Shy lemma.** For subsets $S, T \subset \mathbf{X}$, suppose pairs $\langle S, \prec \rangle$ and $\langle T, \prec \rangle$ are each good. Then either $S \subset T$ or $T \subset S$.

When $S \subset T$, then S is a \prec -initial-segment. Further, \prec equals $\prec|_S$; the \prec -order restricted to S .

[IOWords, $\langle S, \prec \rangle \xrightarrow{\text{init}} \langle T, \prec \rangle$ via the identity-map.] \diamond

16d: *Prelim.* A subset $J \subset \mathbf{X}$ is *mutual* if $J \subset S \cap T$, together with

J is init-seg w.r.t \prec and w.r.t \prec , and orders \prec and \prec agree on J . \square

Pf. Let \mathcal{C} comprise those $p \in S$ s.t. $S^{\leq p}$ is *mutual*. Automatically, the union $\mathbf{I} := \bigcup_{p \in \mathcal{C}} S^{\leq p}$ is mutual. [We don't need this, but note $\mathcal{C} = \mathbf{I}$.]

Inclusion. If $\mathbf{I} \subsetneq S \cap T$, then (L) gives

$$\text{Min}^{\prec}(S \setminus \mathbf{I}) = \mathcal{Y}(\mathbf{I}) = \text{Min}^{\prec}(T \setminus \mathbf{I}) \stackrel{\text{note}}{=} S \cap T.$$

With $\mathbf{y} := \mathcal{Y}(\mathbf{I})$, then $S^{\leq \mathbf{y}} = \mathbf{I} \cup \{\mathbf{y}\} = T^{\leq \mathbf{y}}$. Orders \prec and \prec agree on $\mathbf{I} \cup \{\mathbf{y}\}$, yielding \prec that \mathbf{y} is in $\mathbf{I} \stackrel{\text{recall}}{=} \bigcup_{p \in \mathcal{C}} S^{\leq p}$.

If $S = \mathbf{I}$, then $S \subset T$ is a \prec -init-segment on which orders \prec and \prec agree. And if $T = \mathbf{I}$, then $T \subset S$ is a \prec -init-segment on which orders \prec and \prec agree. \spadesuit

Prelim and Caveat. Consider \mathcal{C} , a collection of $\langle S, \prec_S \rangle$ pairs with \prec_S a partial-order on $S \subset \mathbf{X}$. This \mathcal{C} is *consistent* if for each $\langle S, \prec_S \rangle$ and $\langle T, \prec_T \rangle$, partial-orders \prec_S and \prec_T agree on $S \cap T$. When, further, always either $S \subset T$ or $T \subset S$, then \mathcal{C} is *nested*.

Define relation

$$*: \quad \prec := \bigcup_{\langle S, \prec_S \rangle \in \mathcal{C}} \prec_S \quad \text{on set} \quad \mathbf{U} := \bigcup_{\langle S, \prec_S \rangle \in \mathcal{C}} S.$$

When \mathcal{C} *consistent*, then \prec is a partial-order [exercise]. If each \prec_S is a *total*-order, and \mathcal{C} is *nested*, then \prec is a *total*-order [exercise].

If, in addition, each \prec_S is a well-order, must \prec be a WOrder? *No!* Let $S_n := [-n.. \infty) \subset \mathbb{Z}$, for $n = 1, 2, \dots$, with order \prec_n being $\prec|_{S_n}$. The (*)-union gives relation \prec on $\mathbf{U} = \mathbb{Z}$; not a well-order. \square

17: **Zermelo's W-O Thm.** If a set \mathbf{X} admits a shy-fnc, then \mathbf{X} admits a well-order. \diamond

Pf. Let \mathcal{C} comprise all good pairs $\langle S, \prec_S \rangle$, where $S \subset \mathbf{X}$, and use (*) to define relation \prec on set \mathbf{U} . Our \mathcal{C} is nested, courtesy the Shy lemma; hence \prec is a total-order.

\prec is a well-order. Fix a non-void subset $B \subset \mathbf{U}$.

For $j=1,2$, consider pairs $\langle S_j, \prec_j \rangle$ having intersection $B \cap S_j$ non-void. Let \mathbf{s}_j be the \prec_j -min of $B \cap S_j$. By the Shy lemma, WLOG S_1 is a \prec_2 -init-seg of S_2 ; thus $\mathbf{s}_2 = \mathbf{s}_1$. Hence \mathbf{s}_1 is $\text{Min}^{\prec}(B \cap \mathbf{U})$.

Well-order $\langle \mathbf{U}, \prec \rangle$ is good. Fix a $t \in \mathbf{U}$. There exists a good $\langle S, \prec \rangle$ with $t \in S$. The Shy lemma implies S is a \prec -init-seg. Thus $\mathbf{U}^{\prec t} = S^{\prec t} = t$.

U is everything. If $\mathbf{U} \subsetneq \mathbf{X}$, let $\mathbf{y} := \mathcal{Y}(\mathbf{U})$. Extend \prec to well-order \lessdot on $\widehat{\mathbf{U}} := \mathbf{U} \cup \{\mathbf{y}\}$ by defining $u \lessdot \mathbf{y}$ for each $u \in \mathbf{U}$. Easily, $\langle \widehat{\mathbf{U}}, \lessdot \rangle$ is good, contradicting that \mathcal{C} comprised *all* good pairs. \spadesuit

Filename: Problems/SetTheory/primer-cardinality.latex
As of: Monday 13Apr2020. Typeset: 8Apr2024 at 12:06.