

An eventually derivative-zero f must be a polynomial

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

23 September, 2017 (at 16:17)

ABSTRACT: At each point x , *some* derivative of f is zero. Then f is a polynomial.

Conventions. Given a C^∞ -fnc f on \mathbb{R} , let $\kappa_f(x)$ be the infimum of natnums k st. $f^{(k)}(x)$ is zero. ^{♡1} Let **interval** henceforth mean a *non-void* open interval in X .

1: Theorem. *X is an open interval and $f: X \rightarrow \mathbb{R}$ is C^∞ such that $\kappa = \kappa_f$ is everywhere finite (but not necessarily bounded). Then f is a polynomial.* \diamond

The Setup. Each interval has infinitely-many points. So

If two polynomials agree as-functions on an interval, then they are the same polynomial.

2:

An interval J is **good** if $f|_J$ is a poly; i.e, for some natnum N the restriction $f^{(N)}|_J$ is identically-zero. Courtesy (2), the union of touching good-intervals is good. So each good interval lies inside a *maximal* good J , and each two maximal-goods are disjoint. We redefine **good** to mean maximally-good. Letting \mathcal{G} be the collection of good intervals, our goal is to show that

$B := X \setminus \bigsqcup(\mathcal{G})$, the set of **bad** points,

is empty. By maximality:

3: *Each endpoint of a good J is either bad or is an endpoint of X .*

(If an endpt of J isn't in X , then it must be an endpoint of X .)

Proof that $B = \emptyset$. FTSOC, suppose that $B \neq \emptyset$. Since B is closed, it is a complete metric space and so the BCT (Baire Category Thm) applies. Now

$$K_n := \{b \in B \mid f^{(n)}(b) = 0\}$$

^{♡1}Everywhere, function $f(x) := |x^3|$ has *some* derivative equaling zero. Yet f is not a poly on \mathbb{R} . But also note that f'' is *not* differentiable at $x=0$.

is B -closed, since $f^{(n)}$ is cts. But $\bigcup_0^\infty K_n = B$. By BCThm *some* K –say K_7 – has B -interior. I.e, there is an X -interval I so that: $I \cap B$ is non-void and $f^{(7)} \equiv 0$ on $I \cap B$. We can thus redefine X to be this I and have $f^{(7)}$ is identically-zero on B .

At a good point z , note that $f^{(k)}(z) = 0$ for all large k . Thus we may redefine f to be $f^{(7)}$ and now have

†: *$f()$ is identically-zero on B .*

For κ_f is certainly bounded at good points, and at bad points κ_f is zero.

Accumulation points. Could a bad point b be an isolated point of B ? But then for some points $a < b < c$ our f is, say, a deg-5 poly on interval (a, b) and is a deg-8 poly on (b, c) . Then $f^{(9)}$ would be identically-zero on (a, c) , except at b (since b is bad). But f is continuous.

So each bad point b is an accumulation pt of B . And for bad pts $z_j \neq b$ with $z_j \rightarrow b$, the difference-quotients $\frac{f(z_j) - f(b)}{z_j - b}$ are all zero. So $f'(b)$ must be zero. Since this holds at every bad point, iterating tells us:

‡: *Each derivative of f is identically-zero on B .*

Using endpoints. Our $B \neq \emptyset$ so $f \not\equiv 0$ on X . Courtesy (‡), then, there is a good interval J on which f is not zip; say $f|_J$ has degree 5. But then $f^{(5)}$ is a non-zero constant on J . And one endpoint, b , of J must be in X ; so b is bad. Thus $f^{(5)}(b) = 0$, so $f^{(5)}$ is not cts at b . \diamond

Filename: [Problems/Polynomials/polyderivzero.latex](#)
As of: Monday 08Mar2004. Typeset: 23Sep2017 at 16:17.