

# Complex Analysis

## Ph.D Exam

King  
Profs Shen  
Walsh

**Notes.** Please write up solutions to the eight problems C1–C8, below. Please write LARGE, as the grader's eyes are older and weaker than your eyes...

A **square**  $S \subset \mathbb{C}$  is a set of the form  $[a, a+L] \times [b, b+L]$ , where  $L$  is positive. Use “ $s := \text{Foo}$ ” to mean that Foo is the *definition* of the new symbol  $s$ .

**C1:** Find complex numbers  $a, b, c, d$ , with  $ad - bc \neq 0$ , so that the Möbius transformation

$$\mu(z) := \frac{az + b}{cz + d}$$

carries the imaginary axis to the circle whose radius is 2 and whose center is  $3 = 3 + 0i$ .

**C2:** With  $B$  the open unit ball  $|z| < 1$ , consider a non-constant analytic function  $h: B \rightarrow \mathbb{C}$ .

**i** Suppose that  $\operatorname{Re}(h(z)) \geq 0$  for each  $z \in B$ . Prove that the inequality can then be strengthened to “ $>$ ”.

**ii** With  $\operatorname{Re}(h(z)) > 0$  on  $B$ , suppose further that  $h(0) = 1$ . Prove, for each  $z \in B$ , that

$$\frac{1 - |z|}{1 + |z|} \leq |h(z)| \leq \frac{1 + |z|}{1 - |z|}.$$

**Soln-C2:** Let  $H$  be the open half-plane  $\operatorname{Re}(z) > 0$ . I will show that  $\forall z \in B$ :

$$1: \quad \frac{1 - |z|}{1 + |z|} \leq |h(z)|.$$

Since  $w \mapsto \frac{1}{w}$  is an analytic map  $H \rightarrow H$ , it follows that  $\frac{1}{h}$  maps  $B \rightarrow H$ . Applying (??) to  $\frac{1}{h}$ , then taking reciprocals, yields

$$\frac{1 + |z|}{1 - |z|} \geq |h(z)|,$$

which is the other requested inequality.

**Proving (??) with the Schwarz Lemma.** The Möbius map  $\mu(w) := \frac{1-w}{1+w}$  carries  $H$  to  $B$ , sending  $1 \mapsto 0$ . Thus

$$f := \mu \circ h$$

is an analytic map  $B \rightarrow B$  with  $f(0) = 0$ , and so we may apply the Schwarz lemma to conclude that  $|z| \geq |f(z)|$ , having fixed a particular point  $z \in B$ . That is,

$$* : \quad |z| \geq \left| \frac{1 - h(z)}{1 + h(z)} \right|.$$

But if  $M \neq 1$  is a complex number then  $\frac{|1-M|}{|1+M|} \geq \frac{1-|M|}{1+|M|}$ . Letting  $W := |h(z)|$  and  $Z := |z|$ , then (\*) implies that

$$2: \quad Z \geq \frac{1 - W}{1 + W} \stackrel{\text{note}}{=} \mu(W).$$

**$\mu$  reverses order on  $\mathbb{R}_+$ .** Note that

$$\mu(w) = -1 + \frac{2}{1+w}.$$

Thus  $\mu()$  is order-reversing on the positive reals. Hence (??) implies that

$$??' : \quad \mu(Z) \leq \mu(\mu(W)).$$

Since  $\mu$  is its own inverse function ( $\mu$  is an involution), the RHS equals  $W$ . Hence (??') is (??).

**①**

**C3:** Suppose that  $P()$  is a monic polynomial with degree  $N \geq 1$ . With  $\alpha_1, \dots, \alpha_N$  an enumeration [with multiplicity] of the zeros of  $P()$ , suppose that  $\forall k : \operatorname{Re}(\alpha_k) > 0$ .

Prove that all the zeros of the *derivative*,  $P'$ , also lie in the positive half-plane, as follows: Establish that

$$\frac{P'(z)}{P(z)} = \frac{1}{z - \alpha_1} + \frac{1}{z - \alpha_2} + \dots + \frac{1}{z - \alpha_N},$$

then use it to complete the proof.

**②**

Prove Lucas's theorem: *If all the zeros of a non-constant polynomial  $P$  lie in a convex polygon  $Q \subset \mathbb{C}$ , then all the zeros of  $P'$  lie in  $Q$ .*

**③**

Show that (②) can *fail* if  $P()$  is allowed to be a rational function: Namely, by letting

$$P(z) := \frac{z}{z^2 + 1},$$

find a half-plane  $H$  which owns a zero of  $P'$  but has no zero of  $P$ .

**C4:** Use the Residue Calculus to compute

$$I := \int_0^{+\infty} \frac{1}{[x^4 + 4] \cdot [x^2 + 9]^9} dx.$$

To save arithmetic, you may define some **explicit** points  $P_1, \dots, P_L \in \mathbb{C}$  (what should  $L$  be?) and **explicit** functions  $h_1, \dots, h_L$ , and then may express your answer explicitly in the form

$$I = [h_1(P_1) + \dots + h_L(P_L)] \cdot \text{Constant}.$$

(Do not bother to perform the function-evaluation.)

**C5:** a State (but do not prove) **Morera's Theorem**. (You may use this without proof in (b), if you so wish.)

b Prove this version of the **Schwarz Reflection Principle**: Suppose  $f$  is continuous in the closed upper half-plane  $H := \mathbb{R} \times [0, \infty)$  and is analytic on the interior of  $H$ . Further suppose that  $f$  is real-valued on the real-axis. By defining  $\Phi := f$  on  $H$ , and

$$\Phi(z) := \overline{f(\bar{z})}, \quad \text{for all } z \in \mathbb{C} \setminus H,$$

extend  $f$  to all of  $\mathbb{C}$ . **Then this  $\Phi$  is analytic.**

**C6:** 1 Please state **Picard's Theorem**.

2 Let  $h$  be meromorphic in the whole complex plane. Suppose that the range of  $h$  omits three distinct values (one of them can be  $\infty$ ). Prove that  $h$  is constant.

3 Suppose that  $f$  and  $g$  are entire functions such that, on  $\mathbb{C}$ ,

$$f^3 + g^3 = 1.$$

Prove that  $f$  and  $g$  are each constant functions. [Note: Symbol  $f^3$  means  $f \cdot f \cdot f$ .]

**Soln-C7:** FTSOContradiction, suppose that  $g$  is not constant.

Letting  $A, B, C$  denote the three cube-roots of  $-1$ , note that the two-variable polynomial  $x^3 + y^3$  factors as

$$[x - Ay][x - By][x - Cy].$$

(To see this, view  $y$  as a constant and factor the resulting cubic of  $x$ .) Consequently, we may write

$$1 = [f - Ag][f - Bg][f - Cg].$$

For each  $z \in \mathbb{C}$ , then,

$$* \quad f(z) - Ag(z) \neq 0$$

In particular,  $f$  and  $g$  have no common zeros. Thus the meromorphic function

$$h := \frac{f}{g}$$

takes the value  $\infty$  at each zero of  $g$ . And if  $z$  is *not* a zero of  $g$  then  $h(z) \neq A$ , courtesy of (\*).

The upshot is that  $\text{Range}(h)$  omits the value  $A$ . Similarly it omits (distinct) values  $B$  and  $C$ . So by the preceding part,  $h$  must be constant.

**Last step.** Calling this constant  $\kappa$ , we conclude that

$$1 = M \cdot g^3, \quad \text{where } M := \kappa^3 + 1.$$

Since  $g^3$  is a non-zero constant,  $\text{Range}(g)$  lies inside a 3-point set. Since  $\text{Range}(g)$  is connected,  $g$  must be constant.

**C7:** Fix a real  $b > 0$ . Write down an entire function,  $f$ , that vanishes *precisely* on the sequence  $(z_n)_{n=1}^{\infty}$ , where  $z_n := n^b$ .

**C8:** Show that all roots of polynomial  $P(z) := z^5 + 15z + 1$  lie in the ball  $|z| < 2$ , but that only one root satisfies  $|z| < \frac{3}{2}$ .

**Soln-C8:** Let  $C_r$  denote the radius- $r$  circle, centered at the origin. Let  $\text{Zeros}_r(f)$  denote the number of zeros of  $f()$  enclosed by  $C_r$ .

**Radius 2.** Let  $f(z) := z^5 + 1$ . If  $|z| \geq 2$  then  $|f(z)|$  dominates  $2^5 - 1 = 31$ . And for each  $z \in C_2$ ,

$$|P(z) - f(z)| = |15z| = 30 < 31.$$

Hence we may apply **Rouche's thm** to conclude that

$$\text{Zeros}_r(P) = \text{Zeros}_r(f) \stackrel{\text{note}}{=} 5.$$

**Radius 3/2.** Now let  $g(z) := 15z$ . For  $z \in C_{3/2}$  we note that  $|15z| = \frac{45}{2} > 22$ . And

$$|P(z) - g(z)| \leq |z^5| + 1 = \frac{3^5}{2^5} + 1.$$

We will conclude that  $\text{Zeros}_r(P) = \text{Zeros}_r(g) = 1$  if **Rouche's thm** applies. **Rouche's thm** certainly will apply, if

$$\frac{3^5}{2^5} \stackrel{?}{\leq} 22 - 1 \stackrel{\text{note}}{=} 7 \cdot 3.$$

I.e, if  $3^4 \leq 7 \cdot 2^5$ , which holds trivially.

End of Complex Analysis  
Ph.D Exam

**C10:** Prove the Cauchy-Goursat theorem: Suppose that  $f$  is analytic on a square  $S$ . Then

$$3: \quad \int_{\partial S} f(z) dz = 0,$$

where  $\partial S$  is the boundary of  $S$  oriented in the positive (counterclockwise) direction.

Note: You may use –without proof– that (??) holds when  $f$  is a polynomial. [Suggestion: For the sake of contradiction, suppose that there is an  $\varepsilon > 0$  for which  $|\int_{\partial S} f(z) dz| > \varepsilon \cdot \text{Area}(S)$ . Now subdivide  $S$  into four squares (etc.) and eventually argue that there must be a point  $P \in S$  where  $f$  is not differentiable.]

**C11:** a State the Great Picard Theorem.

b Suppose that  $p$  and  $q$  are not-constant polynomials. Prove that the equation

$$e^{p(z)} + q(z) = 0$$

has infinitely many solutions. [JK: We probably do not want TWO Picard's problems. Is there a standard theorem for them to cite to show that  $\exp(p(z))/q(z)$  has an essential singularity at  $\infty$ ?]

**C12:** With  $D$  the disk  $|z| \leq 1$ , suppose that  $u()$  is continuous on  $D$  and subharmonic on the interior of  $D$ . If

$$\frac{1}{2\pi} \int_{\partial D} u(z) dz = u(0),$$

then  $u$  is harmonic.

**C13:** Suppose that  $u()$  is a *non-negative* harmonic function on  $\mathbb{R} \times \mathbb{R}$ . Prove that  $u$  is a constant function.

**C14:** Let  $S$  be the square with the four corner-points  $(\pm 2, \pm 2)$ , and let  $\omega$  be a complex number properly *inside* the square.

① Locate all poles of  $h(z) := \frac{\tan(z/2)}{[z - \omega]^6}$ . At each pole which is *inside of*  $S$ , please compute the residue of  $h$ , expressing the answer as a function of  $\omega$ .

② Please compute  $\int_{\partial S} h(z) dz$ . (Do not bother to multiply-out factorials.)

**C8:** Let  $f: \Omega \rightarrow \Omega_0$  be an analytic map between open subsets of  $\mathbb{C}$ . Suppose that  $u: \Omega_0 \rightarrow \mathbb{R}$  is subharmonic.

If  $u$  has continuous second-order partial derivatives, prove that

$$\Delta(u \circ f) = |f'|^2 \cdot \Delta(u) \circ f.$$

(The Laplacian of  $u$ , written  $\Delta(u)$ , means  $u_{xx} + u_{yy}$ .)

1 **C6:** Please state Picard's Theorem.

2 Let  $f$  be meromorphic in the whole complex plane. Suppose that the range of  $f$  omits three distinct values (one of them can be  $\infty$ ). Prove that  $f$  is constant.

3 Suppose that  $f, g, h$  are entire functions such that

$$f^3 + g^3 = h^3.$$

Prove then that  $f$  and  $g$  are each of the form *Constant*  $\cdot h$ . [Note: Symbol  $f^3$  means  $f \cdot f \cdot f$ .]