date unsetenv DISPLAY cd ~/Symbolic/Maple/ maple pollux: pollux: Sun Nov 12 18:05:50 EST 1995 pollux: pollux: {{Maple}} |\^/| Maple V Release 3 (University of Florida) ._|\| |/|_. Copyright (c) 1981-1994 by Waterloo Maple Software and the \ MAPLE / University of Waterloo. All rights reserved. Maple and Maple V <____ ____> are registered trademarks of Waterloo Maple Software. | Type ? for help. 20872 # Part e of the first problem on TakeHome B. > int( y*2* sqrt(1-y^2) , y=0..1) ; 2/3 # The quote symbol, " ,below means `the previously printed value'. > ymoment := " ; ymoment := 2/3 > area := (1/2)*Pi*1^2; area := 1/2 Pi > ycentroid := ymoment / area ; 4 ycentroid := ---- 3 Pi > # Consider the big disk and small disk, of radius b and s respectively. > ycen_b := b*ycentroid ; b ycen_b := 4/3 ---- Pi > xcen_b := 0 ; xcen_b := 0 > ycen_s := s*ycentroid ; s ycen_s := 4/3 ---- Pi # Center of the small disk is translated by b-s from the origin. > translation := b - s ; translation := b - s > xcen_s := 0 + translation ; xcen_s := b - s > weight_b := b^2*area ; 2 weight_b := 1/2 b Pi > weight_s := -(s^2*area) ; # NEGATIVE, because we are REMOVING the small disk. 2 weight_s := - 1/2 s Pi # Now compute the location of the centroid for the green figure. Let's # remind ourselves of the value we have computed so far: > xcen_b; ycen_b; xcen_s; ycen_s; 0 b 4/3 ---- Pi b - s s 4/3 ---- Pi > weight_b ; weight_s; 2 1/2 b Pi 2 - 1/2 s Pi > xmoment_both := (weight_b * xcen_b) + (weight_s * xcen_s) ; 2 xmoment_both := - 1/2 s Pi (b - s) > xcen_both := xmoment_both/(weight_b + weight_s) ; 2 s Pi (b - s) xcen_both := - 1/2 --------------------- 2 2 1/2 b Pi - 1/2 s Pi > ymoment_both := (weight_b * ycen_b) + (weight_s * ycen_s) ; 3 3 ymoment_both := 2/3 b - 2/3 s > ycen_both := ymoment_both/(weight_b + weight_s) ; 3 3 2/3 b - 2/3 s ycen_both := --------------------- 2 2 1/2 b Pi - 1/2 s Pi > dist_squared := xcen_both^2 + ycen_both^2 ; 4 2 2 3 3 2 s Pi (b - s) (2/3 b - 2/3 s ) dist_squared := 1/4 ------------------------ + ------------------------ 2 2 2 2 2 2 (1/2 b Pi - 1/2 s Pi) (1/2 b Pi - 1/2 s Pi) > dist_squared := simplify(") ; 4 3 2 2 3 4 2 4 16 b + 32 s b + 48 s b + 32 s b + 9 s Pi + 16 s dist_squared := 1/9 ------------------------------------------------------- 2 2 (b + s) Pi # Now we plug in the numbers from the problem. > b := 1 ; s := 1/2 ; b := 1 s := 1/2 > dist_squared ; 2 49 + 9/16 Pi 4/81 ------------- 2 Pi # Now I check the answer on Chris,Stacey,John's paper. > chrstajoh := (9*Pi^2 + 784)/ (18*Pi)^2 ; 2 9 Pi + 784 chrstajoh := 1/324 ----------- 2 Pi > evalb(simplify(dist_squared = chrstajoh)) ; true # It is correct. # Now I check the answer on Adrienne and Byron's paper. > aby := ((1/36) + (196/(81*Pi^2))) ; 196 aby := 1/36 + ------ 2 81 Pi > evalb(simplify(dist_squared = aby)) ; true # It is correct.