

Please **LATEX** grammatical triple-spaced essays solving the problems. This final-project is due by **4PM, Friday, 24Apr2009**, slid completely under my office door, LIT402.

P1: Disjoint sets $A, B \subset \mathbb{R}$ are each dense in \mathbb{R} . Use **0** for the constant-zero fnc, and **1=1_R** for constant-one. Suppose that fncs $f_n \in \mathbf{C}(\mathbb{R} \rightarrow \mathbb{R})$ are such that

$$*: \quad f_n|_A \xrightarrow{n \rightarrow \infty} \mathbf{0}|_A \quad \text{and} \quad f_n|_B \xrightarrow{n \rightarrow \infty} \mathbf{1}|_B,$$

where each convergence is pointwise.

Use BCT to prove $\exists D \subset \mathbb{R}$, dense, such that for each $z \in D$ the sequence $[n \mapsto f_n(z)]$ is *not* convergent; indeed, its limsup $\geq \frac{2}{3}$ and its liminf $\leq \frac{1}{3}$.

[*H:* Prove $U_1 := \{x \in \mathbb{R} \mid \exists n \in [1.. \infty) \text{ s.t. } f_n(x) < \frac{1}{3}\}$ is open.]

How can you strengthen this thm? Prove a nice LEMMA which, used twice, establishes the THEOREM.

P2: Let \mathbf{A}_δ be the annulus $\{z \in \mathbb{C} \mid 0 < |z| < \delta\}$.

i Suppose coeff-seq $\vec{c} \subset \mathbb{C}$ is not-all-zero (i.e, there is a natnum K with $c_K \neq 0$) and that power-series

$$*1: \quad h(z) := \sum_{n=0}^{\infty} c_n z^n$$

has $R > 0$, where $R := \text{RoC}(\vec{c})$. Prove there exists $\delta > 0$ such that

$$*2: \quad \forall z \in \mathbf{A}_\delta : \quad h(z) \neq 0.$$

[*Sugg:* First make a LEMMA handling the $c_0 \neq 0$ case. In the gen case, you may want **Same-RoC lem** from the *Taylor's* pamphlet.]

ii PSes $f(z) := \sum_{n=0}^{\infty} \alpha_n z^n$ and $g(z) := \sum_{n=0}^{\infty} \beta_n z^n$ each have positive RoC. We have a sequence \vec{y} of *distinct* complex numbers, with $\lim(\vec{y}) = 0$, such that $\forall k: f(y_k) = g(y_k)$. Prove that $\boxed{\forall n: \alpha_n = \beta_n}$.

P3: Show no work.

a Differentiable fncs $f_n: [0, 1] \rightarrow \mathbb{R}$, where

$$f_n(x) := \boxed{\dots}, \quad \text{uniformly-conv}$$

to **0**. Yet the seq $(f'_n)_{n=1}^{\infty}$ of derivatives does *not* even *ptwise*-converge. Indeed $[\limsup_n f'_n(0)] = +\infty$ and $[\liminf_n f'_n(0)] = -\infty$, since

$$f'_n(0) = \boxed{\dots}$$

b

Let f_n denote the n^{th} Fibonacci number, where $f_0 = 0$ and $f_1 = 1$. Power-series $\sum_{n=0}^{\infty} f_n \cdot [x - 8]^n$ has RoC = $\boxed{\dots}$

P1: $\boxed{\dots}$ 105pts

P2: $\boxed{\dots}$ 105pts

P3: $\boxed{\dots}$ 55pts

Poorly stapled, or missing ord, name or honor sig : $\boxed{\dots}$ -15pts

Poorly proofread: $\boxed{\dots}$ -One Million pts

Total: $\boxed{\dots}$ 265pts

Print
name $\boxed{\dots}$

Ord: $\boxed{\dots}$

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: $\boxed{\dots}$