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Rings. In a ring (((Γ,+,0Γ, ·,1Γ))), if there is a
posint n so that 1Γ + 1Γ + n. . . + 1Γ equals 0Γ, then
the smallest such n is called the characteristic of
the ring, and I write Char(Γ) = n. If no such posint
exists, then I will write Char(Γ) = ∞; however, the
standard term is Char(Γ) = 0, and you will see this
in algebra texts and in some of my notes.

A ring is commutative (abbrev., comm-ring) if its
multiplication is commutative. In a comm-ring Γ, a
zero-divisor α ∈ Γ admits a non-zero elt β ∈ Γ (this
β need not be unique) so that αβ = 0Γ. Use ZD for zero-
divisor. [Letting ≡ denote ≡12 , in the Z12 ring, 9 is a ZD,
since 9 · 8 ≡ 0, yet 8 6≡ 0. OTOHand, even though 5 · 24 ≡ 0,
this doesn’t show that 5 is a Z12–ZD, since 24 ≡ 0.]

An integral domain Γ is a commutative ring with
no ZDs except for 0Γ, the trivial ZD. If the charac-
teristic of an integral domain is finite, then Char(Γ)
is a prime number. In particular, this holds if Γ is a
field.

1: Fact. If Γ is a field of finite order (finite cardinality)
then |Γ| = pk for some prime p and posint k. Con-
versely, for each such prime p and k∈Z+, there exists
a field of order pk, and this field is unique up to field-
isomorphism. ♦

Partial proof. For the prime p := Char(Γ), there is
a copy of Zp inside Γ, making Γ a Zp-vectorspace.
Letting k be the dimension of this vectorspace, then,
we obtain |Γ| = pk.

The remaining Facts take a fair amount of work
to prove. �

Totally-Ordered Sets. A TOS (((Γ,≺ ))) has an
antireflexive, transitive relation ≺ so that for each
α 6=β in Γ, either α ≺ β or α � β.

A subset S ⊂ Γ is “order-dense in Γ” if:

For each pair α ≺ β of elements in Γ, there
exists τ ∈ S with α ≺ τ ≺ β.

If S is order-dense as a subset of itself, then say that
“S is order self-dense ” . [E.g, TOS (((Q, <))) is order self-
dense, but (((Z, <))) is not.]

Least upper-bound property [LUBP]. In
TOS (((Γ,≺ ))), consider sets A,B ⊂ Γ and a point
γ ∈ Γ. Let

A 4 γ mean
[
∀α ∈ A, necessarily α 4 γ

]
;

A 4 B mean
[
∀α ∈ A and ∀β ∈ B: α 4 β

]
.

2.1:

An upper-bound for a set A ⊂ Γ is an element γ ∈
Γ such that A 4 γ. Use UBΓ(A) for the set of upper-
bnds, and LBΓ(A) for the lower-bnd–set. (Dispense with
the subscript if clear from context.) Our (((Γ,≺ ))) has the
LUBP if:

Each non-void A ⊂ Γ which is upper-bnded
[i.e UBΓ(A) 6= ∅] has a least upper-bound.
That is, UBΓ(A) has a minimum element.

2.2:

Reversing the inequalities yields the greatest lower-
bound property, abbreviated GLBP.

The LUB of a set A (when it has a LUB!) is called
the supremum of the set, and is written sup(A) or
supΓ(A). Similarly, the infimum is the GLB, writ-
ten inf(A).

2.3: LUBP theorem. TOS (((Γ,≺ ))) has the LUBP IFF
it has the GLBP. ♦

Proof of [LUBP ⇒ GLBP]. Fix a non-void lower-bnded
subset B ⊂ Γ; so A := LBΓ(B) is non-empty. My goal
is to produce a (hence the) greatest lower-bound for B,
using that

A
def
== LBΓ(B) , and†:

UBΓ(A) ⊃ B .‡:
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Since UBΓ(A) ⊃ B 6= ∅, and A is non-void, the
LUBP applies, and tells us that λ := supΓ(A) exists.
In particular

λ < A .†′:

Since λ is the least upper-bnd, λ 4 UBΓ(A) ⊃ B
and so λ 4 B. Restating, λ is a lower-bound of B .
(Note: λ might or might not be in B.)

And, by (†) and (†′), this λ dominates each lower-
bound of B. So λ is a greatest lower-bound of B. �

Making a Real Assumption. A TOS (((Γ,≺ )))
satisfing LUBP [equivalently, GLBP] is said to be order-
complete. We take as an axiom [or derive via Dedekind
cuts or Cauchy sequences] that

(((R, <))) is order-complete.2.4:

This means that the extended reals, R, satisfies a
slightly stronger property: Each♥1 subset A ⊂ R has
a sup(A) and an inf(A) in R. In consequence, sup()
and inf() are maps from the full P(R)→R.

Ordered-fields

An ordered-field (((Γ,+,0, ·,1;<))) is a field which is
an ordered set satisfying ∀α,β,τ ∈ Γ:

i : If α < β then α+τ < β+τ . That is, relation “<”
is translation invariant.

ii : If α,β > 0 then their product α·β > 0. I.e:
“Product is Positivity-Preserving” .

3: Ordered-field lemma. In an ordered-field Γ:

a: If α 6= 0, then [α > 0]⇔ [ α < 0].

b: Fix α>β. If µ > 0 then µα > µβ. If µ < 0 then
µα < µβ. Also, if µ ≥ 0 then [α≥β] ⇒ [µα ≥ µβ].
If µ ≤ 0 then [α≥β] ⇒ [µα ≤ µβ].

Now suppose αj > βj > 0, for j ∈ {1, 2}. Then
α1α2 > β1β2 > 0.

c: For each α 6= 0, necessarily α2 > 0. Hence 1 > 0.
♥1E.g, sup(∅) = ∞ and inf(∅) = ∞. Indeed, for A ⊂ R:[
A 6= ∅

]
⇐⇒

[
inf(A) 4 sup(A)

]
.

d: Char(Γ) =∞.

e: If 0 < α < β, then 0 < 1/β < 1/α. ♦

[Note to self: All but (e) holds for an ordered integral-
domain. Adapt this material for that generalization, then do
the field-of-quotients construction. ]

Proof of (a). By translation invariance, if α > 0 then
α− α > 0− α; etc.

Pf of (b). Saying α>β means α− β > 0, hence (ii)
implies µ[α− β] > 0, etc. Or if µ is negative, then
[ µ][α− β] > 0; so now (a) and associativity of mult
(and that [ µ] = µ) together imply that µ[α− β] < 0.

The two versions with non-strict inequality, “≥”,
follow from the strict inequalities.

Lastly, suppose αj > βj > 0. Multiplying the 2nd

by β1 gives β1α2 > β1β2. Multiplying the 1st by α2

gives α1α2 > β1α2. Transitivity yields α1α2 > β1β2.�

Pf of (c). If 1 negative, then (b) implies that 1 · 1 is
positive; a contraction. And 1 6= 0, by the axioms for
a field. Thus trichotomy forces that 1 is positive. �

Pf of (d). [I temporarily rename 0 to 0Γ and 1 to 1Γ.]
By (b), we now know that 0Γ < 1Γ. Since “<” is
translation-invariant, induction implies that for each
posint n, the sum 1Γ + 1Γ + n. . . + 1Γ is positive. �

Pf of (e). For γ > 0, its mult-inverse 1/γ is not 0
(since it has a mult-inv). Were 1/γ < 0, then (b) implies
γ · 1

γ
note
=== 1 is negative, contradicting (c). Hence

γ > 0 implies 1/γ > 0 .

By (ii), product αβ is positive, so 1
αβ > 0. Multi-

plying the given 0 < α < β by 1
αβ yields, courtesy (b),

that 0 < 1/β < 1/α. �
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4: Defn. For n ∈ N and β ∈ Γ, denote β + n. . . + β.
by nβ. For n ∈ Z−, use nβ for [ β] + n. . . + [ β]. Use
ZΓ for {n·1Γ | n ∈ Z}, etc. �

5: Exer. E1. Fix a field (((Γ,+,0, ·,1))). For n ∈ Z let
n̂ denote n·1 in Γ, as defined in (4).

i : For integers nj and dj ∈ Z with each d̂j 6= 0,
prove: If n1

d1
= n2

d2
then n̂1/d̂1 = n̂2/d̂2.

ii : Suppose p := Char(Γ) is finite, hence prime.
Prove n 7→ n̂ is a ring-homomorphism of Z into Γ.
Show that n 7→ n̂ can be interpreted as an injec-
tive field -homomorphism of Zp↪→Γ.

[For two fields F and G, is it possible to have a non-
injective field-hom F→G ?]

iii : Now suppose Char(Γ) = ∞. Argue that for
each q ∈ Q, value q̂ ∈ Γ is well-defined by choos-
ing integers d6=0 and n st. q = n

d , and then defin-
ing q̂ := n̂/d̂.

iv : Suppose Char(Γ) = ∞, Prove that q f7→ q̂ is an
injective field-homomorphism of Q↪→Γ. Further,
if (((Γ,≺ ))) is an ordered field, then f is order-pre-
serving as a map (((Q, < )))↪→(((Γ,≺ ))). �

Archimedean fields

An ordered-field Γ is Archimedean if for each τ ∈ Γ
there exists a natnum n with n1Γ ≥ τ . By setting
k := n+1, we see this is equivalent to: ∃k ∈ N with
k1Γ > τ . Equivalently, UBΓ(ZΓ) is empty.

6.1: Archy lemma. If ordered-field (((Γ,+,0Γ, ·,1Γ;<)))
is Archimedean, then for each β � 0Γ: The upper-
bound set of Mβ := {nβ | n ∈ N} is empty.

Moreover, if there exists a β ∈ Γ with UBΓ(Mβ)
empty, then Γ is Archimedean. ♦

Pf. Fix a posint K with K1Γ ≥ 1Γ/β
note
> 0. Multiply

by β to conclude that Kβ ≥ 1Γ, by (3). So for each
natnum n, element [nK] · β dominates n1Γ. Thus
UBΓ(Mβ) ⊂ UBΓ(ZΓ). And UBΓ(ZΓ) = ∅.

Exercise E2: The converse is left the Reader. �

6.2: Corollary. Suppose ordered-field
(((Γ,+,0Γ, ·,1Γ;<))) is Archimedean. Then UBΓ(ZΓ) =
∅ = LBΓ(ZΓ). Moreover, for each α ∈ Γ, there exists
a unique integer K with [K−1]1Γ ≤ α < K1Γ. ♦

Proof. The order-reversing map x 7→ x on Γ sends
lower-bnd-sets to upper-bnd-sets, etc., hence LB(ZΓ)
is empty.

Setting Uk := {x ∈ Γ | x ≥ k1Γ}, the foregoing tell
us that

⋃
k∈Z Uk is Γ, and

⋂
k∈Z Uk is empty. These

sets are nested, . . . , U 1 ⊃ U0 ⊃ U1 ⊃ U2 ⊃ . . . so
there is a unique integer K ∈ Z with the given α in
the difference-set UK−1 r UK . �

7: OC⇒Archimedean theorem. Suppose ordered-
field (((Γ,+,0Γ, ·,1Γ;<))) is order-complete. Then Γ is
Archimedean. ♦

Proof. FTSOContradiction, suppose UB(ZΓ) is not
empty; so ZΓ has a Γ–LUB; call it τ . Now τ−1Γ is less
than τ , hence cannot upper-bnd ZΓ. Consequently,
∃n ∈ Z+ with [n−1]1Γ > τ − 1Γ. Thus n1Γ > τ ,
which is a blatant contradiction. �

8.0: Order-dense lemma. Fix (((Γ,+, 0̂, ·, 1̂;<))), an
Archimedean field. For q ∈ Q, define q̂ ∈ Γ as in (5),
and let Q̂ denote the copy of Q inside Γ. Then Q̂ is
order-dense in Γ. ♦

Proof.Fix α<β in Γ. We will produce integersN ∈ Z+

and K such that

α < K̂/N < β .∗:

By (6.1) there is posint N with N [β − α] > 2̂.
Dropping the “̂” symbol for the rest of the proof,
we have β−α

2 > 1
N . Hence α+ 1

N < α+ β−α
2 , so

α+ 1
N < β .∗∗:

Courtesy (6.2), ∃K ∈ Z with [K−1] ≤ Nα < K,
i.e, Nα < K ≤ [Nα] + 1. Hence α < K

N ≤ α+ 1
N ,

since N is positive. This and (∗∗), yield (∗). �
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Complete ordered-field(s)

We now come to the main result.

9: Theorem. Suppose (((Γ,+, 0̂, ·, 1̂;<))) and
(((F,+, 0, ·, 1;<))) are ordered-fields. Then they are
ordered-field–isomorphic. Moreover, there is a unique
OF-isomorphism between them. ♦

Proof (sketch).For S ⊂ Q, let Ŝ := {q̂ | q ∈ S}
note
⊂ Γ.

Define similarly S ⊂ F. For α ∈ Γ and x ∈ F, define

Uα := {q ∈ Q | q̂ ≤ α} and Vx := {q ∈ Q | q ≤ x} .

There exist q, r ∈ Q with α − 1̂ < q < α < r <
α + 1̂; this, by (8.0), density. Hence Uα is non-void
and upper-bnded in Q, so Uα is non-void and upper-
bnded in F. I.e, supF(Uα) exists in F. Consequently,
we have a well-defined map Φ:Γ→F, by

Φ(α) := supF

(
Uα
)
.

Evidently Φ is weakly order-preserving in that for all
α,β ∈ Γ: [α≤β] ⇒ [Φ(α)≤Φ(β)].

Similarly, G(x) := supΓ

(
V̂x
)
is a weakly-OP map

G:F→Γ. �

Filename: Problems/Analysis/Calculus/ordered-field.latex
As of: Monday 31Aug2015. Typeset: 1Feb2022 at 20:33.

Filename: Problems/Analysis/Calculus/ordered-field.latex


