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Abbreviations. For common numbers, use

ππ := 2π and 2 :=
√
2 .

(Mnemonically: Doubled Pi and �root 2.)
Use m©, d©, t© for abstract units of mass, dis-

tance, time.
Use i.p.t for “is proportional to”, with � as sym-

bol. Use SoG for “Source of Gravity”; the center
of an inverse-square rotationally symmetric grav-
ity field; a planet or a sun.

Language: A planet rotates about its axis, and
revolves about its sun.

Tools from physics. The kinetic energy of
an object of mass m traveling at speed s is 1

2
ms2;

the units are m© d©2/ t©2. We will do all our com-
putations in terms of energy-density , that is,
energy per unit mass. Restating,

The energy-density of a speed-s object is 1
2
s2.1:

Newton tells us, at distance ρ from a SoG, that

Accel. from gravity = K/ρ2 ,2:

where K is a “constant of proportionality” that
depends on the planet; it has units d©3/ t©2.♥1

♥1This K is called the Standard gravitational param-
eter of the SoG. (When the SoG is a planet, this is also
called the Geocentric gravitational constant.) It is the
product of the mass of the Planet/Sun times the Univer-
sal Gravitational Constant. One symbol for the Standard
gravitational parameter is µ, but I will use K in these notes.
Aside: I’ve arranged the computation so we’ll never need

to know the mass of a planet, nor the Univ-Grav-Const.

Calculus. Let u:R→R2 denote the “unit speed”
parametrization of a circle. Twice differentiating
w.r.t time yields that

u′′() = u() ,3:

either by directly applying the defn of derivative,
or else differentiating the coordinate formula

u(t) := cos(t)·ı̂ + sin(t)·̂ .3b:

For a constant-speed object traveling in a circle
[the period is the time to go once around], we use

` := period, ρ := radius, s := speed.
Hence s · ` = ρ · ππ .

4:

To see that a parametrization of a speed-s object
traveling in a radius-ρ circle is

F(t) := ρ · u
(
t · s
ρ

)
,3c:

note that F′(t) equals ρ · s
ρ
· u(t · s

ρ
) by the Chain

rule. I.e F′(t) = s ·u′(t · s
ρ
). So ‖F′‖ = s · ‖u′‖ = s.

Twice time-differentiating gives

F′′(t) := ρ · s
ρ
· s
ρ
· u′′

(
t · s
ρ

)
=

s2

ρ
· u′′

(
t · s
ρ

)
.3d:

Taking norms shows that the magnitude of the
acceleration of the object is

Accel. of motion = s2/ρ .2′:

Equations (2′) & (2), together, show that an
s, ρ, `-orbit satisfies

K = ρ · s2 by (4)
====

ρ3

`2
· ππ2 , i.e,

ρ3 = K`2/ππ2 .
5:

Planet/Sun notation. Planet Pal has

D := Day, R := Radius, A := Sur-Acc.

Pal is in orbit about sun Sol, with

Y := Year, U := OrbitalRadius .
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The constants of proportionality, for Pal and
for Sol, are thus

KPal = A · R2 ;

KSol =
U3

Y2
· ππ2 .

6:

These follow from (5a), that is, the top line of (5).

Special orbits

A geosynchronous orbit, courtesy (5b), has radius
and speed

ρSyn = 3

√
AR2 · D2/ππ2 Earth

≈ 26,369mi ,

sSyn =
3
√
AR2 · D 1 · ππ Earth

≈ 6903mph ,
7a:

respectively. This (7ab) follows from (7aa)
and (4).

The golden-snitch orbit♥2 is an orbit around
Pal at Pal’s surface. But s2 = K/ρ, so (6) gives

sGold =
√
AR Earth

≈ 17,725 mi
hr
. From (4),

`Gold =
R · ππ
sGold

=
√

R
A
· ππ Earth

≈ 1.414 hr

7b:

is the period of the golden-snitch. Playing
“chicken” with the snitch, I now stand somewhere
on Pal’s equator, with the snitch in orbit around
the equator. How many times a day must I duck?

Let N be the “duck number” if Pal didn’t ro-
tate. On a rotating Pal, then, I duck N ∓1 times,
depending on whether the snitch revolves in the
same/opposite direction that Pal rotates. Com-
puting,

N =
D

`Gold

= D ·
√

A
R

/
ππ

Earth
≈ 16.92 times.7c:

Escape speed

Use E for energy density (energy per unit mass);
here, I’ll just call this “energy”.

♥2In homage to the Harry Potter books.

At distance z from SoG, a test mass feels ac-
celeration K/z2. Dropping a test mass from ra-
dius ρ2, it reaches radius ρ1 with kinetic energy
(energy-density, actually)

E =
∫ ρ2

ρ1

K

z2
dz =

[ 1
ρ1
− 1

ρ2

]
· K .8.1:

Dropping from infinity therefore gives the escape
energy. Since EEsc = 1

2
· [sEsc]2, we conclude that

to escape to∞ from radius ρ :=ρ1 requires energy

EEsc(ρ) =
K

ρ
and sEsc(ρ)

2 = 2 · K
ρ
.

Courtesy (6), the escape-speeds are:

SPal =
√
2AR Earth

≈ 7mi/sec ; (from Pal
at surface.)

SSol = U
Y
· ππ · 2 Sun

≈ 26 mi
sec
; (from Sol at

Pal’s orbit.)

8.2:

From Pal’s surface, suppose we fire a cannon-
ball at a speed s ≥ sEsc. The cannonball goes to
infinity, slowing down asymptotically to speed

sAsymp =
√
s2 − S2

Pal ;

this, since kinetic energy varies as the square of
speed. Similarly, if our cannonball must escape
both Pal and Sol, then

sEscBoth =
√
S2
Sol + S2

Pal

is the necessary escape-speed.

Energy comparison. Comparing SPal

with (7b), we see that the escape-energy, from
Pal’s surface, is exactly twice its golden-snitch
energy. So

For a satellite in orbit about a SoG, its
escape-energy is precisely twice the or-
bital kinetic-energy of the satellite.

8.3:

In particular, to escape Sol when in Pal’s orbit,
one needs twice the orbital kinetic-energy.

With Pal’s surface the zero of potential energy,
what is the total energy needed to put an object
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in orbit at radius ρ ≥ R? Well EKin = 1
2
s2, which

equals 1
2
· K
ρ
, from (5a). And EPot = [ 1

R
− 1

ρ
]K,

by (8.1). Adding together gives

ETotal(ρ) :=
[
2

R
− 1

ρ

]
K

2
.8.4:

When ρ = ∞, there is no kinetic energy and so
ETotal(∞) should simply be esc-energy, EEsc(R).
And indeed ETotal(∞) is precisely twice ETotal(R).

Kinetic energy to help escape. In escaping
from Pal’s surface, or from Sol, we ignored both
Pal’s rotational energy, and its orbital energy. Are
they significant in helping escape?

From (8.3), we see that the orbital kinetic en-
ergy is significant in escaping Sol. How about es-
caping Pal’s surface —does the rotational energy
of Pal help?

At Pal’s equator the rotational speed is ππR/D,
so the rotational energy �R2

D2ππ
2.

Escape path. Fire a cannonball directly away
from the earth’s surface. The distance y = y(t)
satisfies DE

y′′ = −K/y2 .8.5:

(Natch’, this is an autonomous DE.♥3) Seeking a spe-
cific solution, we try the form y(t) := m · tα. Solv-
ing gives α = 2

3
. We then solve for the multi-

plier m to get

m = 3

√
9
2
K = 3

√
9
2
A · R2 . Thus

y(t) = t2/3 ·m = 3

√
9
2
A · t2 · R2 .

8.6:

The speed, dy
dt
, equals 2

3
m
/
t1/3. Hence it goes to

zero as t↗∞. Thus

This solution is the “escape speed” soln.
At each point on the escape path, the
object is travelling at escape speed.

♥3An alternative DE has form 1
2 [y
′]2+ −Ky = Const, since

its LhS is EKin + EPot.

Computing a time τ so that y(τ) = R gives
τ =

√
2
9
·R
A
. So the trajectory which departs Pal’s

surface at time-zero is

ySurf(t) =
[
tR · A1/2· 3√

2
+ R3/2

]2/3
.8.7:

Transit of Venus
When Venus passing directly between the Sun and
the Earth, then we see Venus “in transit” across
the Sun’s surface. Our goal is to use this transit
to estimate the distance from Earth to Sun. (This
is called the A.U, for “astronomical unit”).

Use subscripts 1 and 0 for Earth and Venus, we
have from (5) that

[ρ1
ρ0

]3
=
[`1
`0

]2
,

which is one of Kepler’s laws.
Unfinished: as of 8Aug2023
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