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Abstract: Conditions under which the nullspace of a
composition B◦A is the span of the two nullspaces. This
is then applied to constant-coefficient linear differential
equations.

§A Entrance
The setting is a vectorspace V and two lin-
ear transformations A,B:V � . Use both Nul(A)
and A◦ for the nullspace of transformation A.�� ��Use C for the composition C := BA.

1: Fact. Suppose B,A:V→V. Then

Dim(B◦)+Dim(A◦)
1′:
≥ Dim

(
Nul(BA)

)
2:

≥ Dim(A◦) . ♦

Now suppose that A � B (the trns commute) so
that C = BA = AB. Then, automatically,

C◦ ⊃ Spn(B◦,A◦) .3:

We explore when we have equality in (1′), and
when in (3). For two subspaces W,W′ ⊂ V, let
W ⊥W′ mean that {W,W′} is a (linearly) inde-
pendent set, as in (∗), below. [In particular, W and
W′ only intersect in the singleton {0}.] More gener-
ally, ⊥K

j=1Wj indicates mutual independence of
the subspaces in that the only solution to

w1 + · · ·+wK = 0 with each wj ∈Wj,∗:

is to have every wj be 0.

4: Commuting Thm. Suppose that A � B. If
B◦ ⊥ A◦ and at least one of the nullspaces is finite-
dim’al, then

C◦ = Spn(B◦,A◦) .3′: ♦

5: Corollary. Consider C := B1
R1B2

R2 · · ·BK
RK

where Rj ∈ N, and the B1, . . . ,BK are commut-
ing trns with at most one Bj having an ∞-dim‘al
nullspace. If ⊥K

j=1Nul(Bj
Rj) then

C◦ = Spn
(
Nul(B1

R1), . . . ,Nul(BK
RK )

)
.4′:

Further suppose that each Bj has a 1-dim’al
nullspace. If each Nul(Bj

Rj) has dimension at
least Rj (and thus has dimension exactly Rj , by (1′))
then Dim(C◦) is precisely R1 + · · ·+RK . ♦

CEX: C1. We do not get equality in (1′) even if
the trns commute and V is finite-dim’al: Let B
be the idempotent matrix [ 1 0

0 0 ] and A := B.
Moreover, equality (1′) and commutativity and

Dim(V) <∞ are not enough for (3′): Let B be
the nilpotent matrix [ 0 1

0 0 ]. Then A := B and B
commute, yet Nul(B2) is 2-dim’al.

In both examples, the nullspaces of B and A are
not linearly independent. �

CEX: C2. Here is an example of A � B
with linearly-indep nullspaces, yet inclusion (3) is
strict. (Necessarily, this V is ∞-dim’al):

Let E := {w, a0, a1, a2 . . . ,b0,b1,b2, . . . } be a
basis for V. Define trn B to map

w 7→ a0 and each aj 7→ aj+1,†:
and each bj 7→ 0 .‡:

Restricted to W := Spn(w, a0, . . .), trn B has no
nullspace, courtesy (†). Since B maps W � , we
have equality

B◦ = Spn(b0,b1, . . . ) .

Define trn A on basis E using (†,‡) analogously,
reversing the roles of vectors a? and b? ; thus
A◦ is Spn(a0, a1, . . . ). So A◦ ⊥ B◦. And easily
BA and AB are each the zero operator. Yet w is
not in Spn(B◦,A◦). �
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Proof of Commuting Thm, (4). Since A � B, we
can WLOG shrink V to be C◦; so our goal is to
show that every vector is in Spn(B◦,A◦). WLOG
A◦ is finite dim’al. So fixing a vector w ∈ V,
ISTFind an a ∈ A◦ so that

Trn B sends w − a to 0.6:

Trn B maps all of V into A◦ (by commutativity).
Thus B�A◦ maps A◦ � . But Dim(A◦) is finite, so
B�A◦ maps A◦ onto A◦. (Otherwise B�A◦ would have
to fail to be 1-to-1, ie, it would have nullspace. But the
nullspaces of B and A are linearly indep, by hypothesis.)

The upshot is that B(w) is in A◦, and there is a
vector a ∈ A◦ which is also mapped to B(w) by B.
Hence (6). �

§B Application to Differential
Eqns

Let D and I be the differentiation and identity
operators. That the nullspace of D− I is Spn(ex)
follows easily from the Mean Value Thm; in par-
ticular, this nullspace is one-dimensional. (Here,
we are using expression ex to mean the fnc [x 7→ ex].)
More generally,

xjex
D−I7−→ j · xj−1ex , for j ∈ N.7:

Courtesy (1), the dimension of Nul
(
[D−I]7

)
is at

most 7. A small effort shows that the set of
fncs {ex, xex, x2ex, . . . , x6ex} is lin-indep, and so
its span is precisely Nul

(
[D−I]7

)
.

A linear substitution now shows that

Nul([D−9I]7) = Spn(e9x, xe9x, x2e9x, . . . , x6e9x) .8:

Here “9” represents an arbitrary complex number,
and “7” represents an arbitrary posint.

Consider an arbitrary complex monic polyno-
mial p(D) = DN + bN−1D

N−1+ · · ·+ b0I. Factor it
as

p(D) = [D− z1I]
R1 · . . . · [D− zKI]

RK

with distinct zeros z1, . . . , zK ∈ C. These K oper-
ators [D− zjI]

Rj commute and satisfy the remain-
ing hypotheses of (5). Hence Corollary 5 applies to
show that the set of fncs f satisfying this DE,

f (N) + bN−1f
(N−1) + · · ·+ b1f

′ + b0f = 0 ,9:

is the span of

ez1x, xez1x, x2ez1x, . . . , xR1−1ez1x,

ez2x, xez2x, x2ez2x, . . . , xR2−1ez2x,

...

ezKx, xezKx, x2ezKx, . . . , xRK−1ezKx .

9′:

And this is the standard result from a diffyq
course. In particular, the soln-set to (9) has di-
mension N .
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