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For N a posint, use Φ(N) or ΦN for the set
{r ∈ [1 .. N ] | r⊥N}. The cardinality ϕ(N) := |ΦN |
is the Euler phi function. [So ϕ(N) is the cardinal-
ity of the multiplicative group, ΦN , in the ZN ring.] Easily,
ϕ(pL) = [p−1]·pL−1, for prime p and posint L. Less
easily, when K⊥N , then ϕ(KN) = ϕ(K)·ϕ(N)

Use EFT for the Euler-Fermat Thm, which says:
Suppose that integers b ⊥ N , with N positive. Then
bϕ(N) ≡N 1.

Divisibility. Use ≡N to mean “congruent modN ”.
Let n ⊥ k mean that n and k are co-prime [no prime in
common].

Use k •| n for “k divides n”. Its negation k �r| n
means “k does not divide n.” Use n |• k and nr|� k
for “n is/is-not a multiple of k.” Finally, for p a prime
and E a natnum: Use double-verticals, pE •|| n, to
mean that E is the highest power of p which di-
vides n. Or write n ||• pE to emphasize that this is
an assertion about n. Use PoT for Power of Two and
PoP for Power of (a) Prime.

1: Euclidean Algorithm Thm (EuclAlg). Given B and C,
not both zero, let G := GCD(B,C). Then there are
integers s and t, called Bézout multipliers, with

Bs+ Ct = G .1a:

More generally, given integers B1, . . . , BL not all zero,
there exists a Bézout tuple (((s`)))

K
`=1 such that∑K

`=1
B` · s` = GCD(B1, . . . , BK) .1b:

Returning to the L = 2 case, pick one pair (((s0, t0)))
fulfilling (1a). Then the set of all such pairs is pre-
cisely

{
(((sk, tk)))

}
k∈Z, where

sk := s0 + k · CG ,
tk := t0 − k · BG .

1c: ♦

Primes vs. Irreducibles. Consider a commuta-
tive ring (((Γ,+, 0, ·, 1))). An elt α ∈ Γ is a zero-divisor
[abbrev ZD] if there exists a non-zero β ∈ Γ st. αβ = 0.
In contrast, an element u ∈ Γ is a unit if ∃w ∈ Γ st.
u·w = 1. This w, written as u 1, is called the recip-
rocal [or multiplicative-inverse] of u. [When an elt has a
mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, α •| u, then α is a unit.
Exer 1b: If γ |• z with z ∈ ZD, then γ is a zero-divisor.
Exer 2: In an arbitrary ring Γ, the set ZD(Γ) is disjoint from

Units(Γ).
An element p ∈ Γ is:
i : Γ-irreducible if p is a non-unit, non-ZD, such

that for each Γ-factorization p = x·y, either x or
y is a Γ-unit. [Restating, using the definition below:
Either x≈1, y≈p, or x≈p, y≈1.]

ii : Γ-prime if p is a non-unit, non-ZD, such that for
each pair c,d ∈ Γ: If p •| [c · d] then either p •| c
or p •| d.

Associates. In a commutative ring, els α and β
are associates, written α ≈ β , if there exists a
unit u st. β = uα. [For emphasis, we might say strong
associates.] They are weak-associates, written
α ∼ β, if α •| β and α |• β [i.e, α ∈ βΓ and β ∈ αΓ].

Ex 3: Prove Assoc ⇒ weak-Assoc.
Ex 4: If α ∼ β and α /∈ ZD, then α, β are (strong) associates.
Ex 5: In Z10, zero-divisors 2, 4 are weak-associates. [This,

since 2·2 ≡ 4 and 4·3 = 12 ≡ 2.] Are 2, 4 (strong) associates?
Ex 6: With d •| α, prove: If α is a non-ZD, then d is a non-ZD.

And: If α is a unit, then d is a unit.

2: Lemma. In a commRing Γ, each prime α is irre-
ducible. ♦

Proof. Consider factorization α = xy. Since α •| xy,
WLOG α •| x, i.e ∃c with αc = x. Hence

α = xy = αcy .∗:

By defn, α /∈ ZD. We may thus cancel in (∗), yielding
1 = cy. So y is a unit. �

There are rings♥1 with irreducible elements p which
are nonetheless not prime. However. . .
♥1Consider the ring, Γ, of polys with coefficients in Z12.

There, x2 − 1 factors as [x− 5][x+ 5] and as [x− 1][x+ 1].
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3: Lemma. Suppose commRing Γ satisfies the Bé-
zout condition, that each GCD is a linear-combination.
Then each irreducible α is prime. ♦

Pf. Suppose α •| c·d. WLOG α �r| c. Let
g := GCD(α, c). Were g ≈ α, then α •| g •| c, a con-
tradiction. Thus, since α is irreducible, our g ≈ 1.

Bézout produces S,T ∈ Γ with

1 = Sα+ Tc . Hence

d = Sαd+ Tcd = Sdα+ Tcd .∗:

By hyp, α •| cd, hence α divides RhS(∗). So α •| d.�

4: Lemma. In commRing Γ, if prime p divides a
project α1 · · ·αK then p •| αj for some j. [Exer. 7] ♦

5: Prime-uniqueness thm. In commRing Γ, suppose

p1·p2·p3 · · · pK = q1·q2·q3 · · · qL

are equal products-of-primes. Then L = K and, after
permuting the p primes, each pk ≈ qk. ♦

Pf. [From Ex.4, previously, for non-ZD, relations ∼ and ≈ are
the same.] For notational simplicity, we do this in Z+,
in which case pk ≈ qk will be replaced by pk = qk.

FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L≥1. Thus
K≥1. [Otherwise, qL divides a unit, forcing qL to be a
unit; see Ex.1a.] By the preceding lemma, qL divides
some pk; WLOG qL •| pK . Thus qL = pK [since pK

is prime and qL is not a unit]. Cancelling now gives
p1·p2 · · · pK−1 = q1·q2 · · · qL−1, giving a CEX with a
smaller [K−1] + [L−1] sum. �

Thus none of the four linear terms is prime. Yet each is Γ-
irreducible. (Why?) This ring Γ has zero-divisors (yuck!),
but there are natural subrings of C where Irred 6⇒Prime.

Example where ∼ 6= ≈. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs
on [ 2, 2]. Define E,D ∈ Ω by: For t ≥ 0 :

E(t) = D(t) :=

{
t− 1 if t ∈ [1, 2]

0 if t ∈ [0, 1]

}
.

And for t ≤ 0 define

E(t) := E( t) and D(t) := −D( t) .

[So E is an Even fnc; D is odD.] Note E = fD and D = fE,
where

f(t) :=


1 if t ∈ [ 1, 2]

t if t ∈ [ 1, 1]

1 if t ∈ [ 2, 1]

 .

Hence E ∼ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [ 2, 2]r {0}. Cty of g then forces g ≡ 0.]

Could there be a unit u ∈ Ω with uD = E? Well

u(2) = E(2)
D(2)

note
=== 1 , and u( 2) = E( 2)

D( 2)
note
=== 1 .

Cty of u() forces u to be zero somewhere on inter-
val ( 2, 2), hence u is not a unit. �

Addendum. By Ex.4, both E and D must be zero-
divisors. [Exer.8: Exhibit a function g∈Ω, not the zero-fnc,
such that E·g ≡ 0.] �
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Convention. Because there are so few units in Z,
it is conventional to just call the appropriate positive
numbers “irreducible” or “prime”. To an algebraist, 5
is prime; but it is an associate of 5, so one can always
express arguments in terms of 5.

6: Lemma. In Z, each irreducible element p is neces-
sarily prime. ♦

Pf. With p •| c · d, suppose that p does not divide d.
Thus g := GCD(p, d) cannot be p. So g is a proper
divisor of our irreducible p, so g must be 1.

By EuclAlg there are Bézout multipliers S,T such
that 1 = pS + dT . Multiplying by c, then, yields

c = cpS + cdT .

But each term on RhS is divisible by p. So c |• p. �

7a: Fermat’s Little Thm (FLiT). For p prime and
each b ∈ Z:

bp ≡p b . ♦

7b: Euler-Fermat Thm (EFT). For N ∈ Z+ and b⊥N ,

bϕ(N) ≡N 1 . ♦

Proof. Define f :ΦN→ΦN by f(x) := 〈xb〉N . Since
b ⊥ N , our f is injective, hence (by PHP) f is a bijec-
tion. So we can write V :=

∏
(ΦN ) as∏

x∈ΦN

f(x)
note
=== bϕ(N) ·

∏
x∈ΦN

x = bϕ(N) · V ,∗:

where equality means in the ring ZN . Since V is a
product of elts coprime to N , our V ⊥ N . So we can
cancel out the V in (∗) and obtain that 1 ≡N bϕ(N).�

Aside. Alternatively, EFT follows from Lagrange’s thm that the
order of a subgroup divides the order of the enclosing group.�
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a
With N := 19, then ϕ(N)= . . . . . . Thus EFT

(Euler-Fermat) says that 93632 ≡N
. . . . . . . .

∈ [0 .. N).

Soln: Ok, but slow:
% (repeated-squaring 9 3632 19 :symmod t)

/--------------------- Mod 19 ----\
n: 2^n | Accum | 9^[2^n]

---+----------+-----------+-------------
0: 1 | 1 | 9
1: 2 | 1 | 5
2: 4 | 1 | 6
3: 8 | 1 | -2
4: 16 | 1 | 4 <<
5: 32 | 4 | -3 <<
6: 64 | 7 | 9
7: 128 | 7 | 5
8: 256 | 7 | 6
9: 512 | 7 | -2 <<

10: 1024 | 5 | 4 <<
11: 2048 | 1 | -3 <<

All: done | -3 |
\--------------------- Mod 19 ----/

So 9^{3632} is mod-19 congruent to the
product of the << marked values, which is -3.

What do we learn from a repeated pattern in the
9[2N ] column?

Since ϕ(19) = 18, faster is

& (mod 3632 18) -> 14
& (repeated-squaring 9 14 19)

/--------------------- Mod 19 ----\
n: 2^n | Accum | 9^[2^n]

---+----------+-----------+-------------
0: 1 | 1 | 9
1: 2 | 1 | 5 <<
2: 4 | 5 | 6 <<
3: 8 | -8 | -2 <<

All: done | -3 |
\--------------------- Mod 19 ----/

So 9^{14} is mod-19 congruent to the
product of the << marked values, which is -3.

Alternatively. 3632 ≡18 14 ≡18 4. And 〈1/9〉19 = 2.
Thus

〈
9 4
〉

19
=
〈
[ 2]4

〉
19
. And indeed. . .

% (repeated-squaring -2 4 19)

/---------------------- Mod 19 ----\
n: 2^n | Accum | [-2]^[2^n]

---+----------+----------+-----------
0: 1 | 1 | -2
1: 2 | 1 | 4
2: 4 | 1 | -3 <<

All: done | -3 |
\--------------------- Mod 19 ----/

So [-2]^4 is mod-19 congruent to the
product of the << marked values, which is -3.
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b
N := ϕ(100)= 40

. . . . . . . .
. So ϕ(N)= 16

. . . . . . . .
.

EFT says that 31621 ≡N . . . . . . . . .
∈ [0 .. N). Hence

(by EFT) last two digits of 7[31621] are
. . . .

.

Soln: 1621 ≡16 5. So 35 = 81·3 ≡40 1·3 = 3. Since
3⊥40, EFT applies to tell us 31621 ≡40 3. And as
7⊥100, EFT gives 7[31621] ≡100 73 = 343 ≡100 43.
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8: Wilson’s Thm. Fix a prime p. Then
∏

(Φp) = 1
in Zp. Alternatively [p−1]! ≡p 1. ♦
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General abbrevs. OTOH, On the other hand.
WLOG, Without loss of generality.
FTSOC, For The Sake Of Contradiction.
TFAE. The following are equivalent.
ISTShow. It suffices to show.
sqrt, sqroot, square-root.
RHS, RightHand Side (of an equation or inequality).
LHS, LeftHand Side.

More abbrevs. SOTS: Sum-Of-Two-Squares. So
13 = 22 + 32 is SOTS. And 25 = 02 + 52 = 32 + 42 is
SOTS in two ways.

A integer N is coprime-SOTS if there exist in-
tegers x⊥y st. x2 + y2 = N . Eg, 20 is SOTS, but
is not coprime-SOTS. What about 125? Certainly
125 = 100 + 25 = 102 + 52; but 10 6⊥ 5, so we still
don’t know. Noting that 125 = 121 + 4 = 112 + 22,
and 11 ⊥ 2, we conclude that 125 is coprime-SOTS.

3Pos: An integer n is 3Pos if n ≡3 1, and is 3Neg
if n ≡3 1. Similarly, “n ∈ 4Neg” means n ≡4 1.

An odd integer n is 8Near if n is mod-8 congruent
either to 1 or to 1. Saying “n ∈ 8Far” means that
n ≡8 ±3. (So 11, 3, 5, 13, 21 are some 8Far numbers. And
7, 9, 15, 23 ∈ 8Near.)

Theorem abbrevs

QF, Quadratic Formula. UFT, Unique Factorization
Thm (also called FTArithm). FLiT, Fermat’s Little Thm.
FLaT, Fermat’s Last Thm (also FLT).

EFT, Euler-Fermat Thm. LST, Legendre-symbol
Thm. SOTS Thm; Fermat’s Thm characterising which
posints are SOTS. PNT, Prime Number Thm. Eu-
clAlg, Euclidean Algorithm.

Standing notation

Use MF to mean “(a) multiplicative function” or
“multiplicative”.

QR, Quadratic residue. NQR, Non-quadratic
residue. For posint m, use m-QR for a mod-m QR,
and usem-NQR for a mod-m NQR. E.g “Number 2 is
an 11-QR (since 32 ≡11 2), and 2 is an 11-NQR [since
none of 12, 22, 32, 42, 52 is ≡2 (mod 11)].”

Another example: Number 13 is a 51-QR, since
82 ≡51 13 and 8 ⊥ 51. OTOHand, 1 ∈ NQR51; none
of the Z51-units square to 1. Value 6 is neither a
QR51 nor a NQR51 , since 6 fails to be coprime to 51.

Arith-prog means “arithmetic progression”.
Given an odd prime p, let H = H(p) := p−1

2 . Let
S = S(p) be the unique integer st. S2 < p < [S + 1]2;
so S = b√p c. When p is a 4Pos-prime, let R(p) be
the unique value R ∈ [1 .. H] so that R2 ≡p 1.
Defn. For a prime p and integer z, the Legendre-
symbol is written as(

z

p

)
or, in email, also as (z //p) .

By defn,
( z

p

)
is 1, if z ∈ QRp; is 1, if z ∈ NQRp;

and is 0, if z 6⊥ p, i.e z |• p.
An odd integer k is “4Pos” if k ≡4 1; is 4Neg

if k ≡4 1; is 8Near if k ≡8 ±1 (either); is 8Far
if k ≡8 ±3. �

9: Legendre-symbol Thm. Fix an odd prime p and
H := p−1

2 . Use 〈·〉p for symmetric residue, selecting
from [ H ..H]. For each integer z:
a: The (symmetric) residue 〈zH〉p equals

(
z

p

)
. Euler

criterion.

b: For x, z integers:

(
x

p

)
·
(
z

p

)
=

(
xz

p

)
. I.e, mapping

x 7→
(x
p

)
is totally-multiplicative. [I.e, x 7→

(x
p

)
is a

semigroup-hom
(((
Zp, · , 1

)))
→
(((
{±1, 0}, · , 1

)))
, hence is a group-

hom
(((
Φp, · , 1

)))
→
(((
{±1}, · , 1

)))
. This holds also for p=2.]

c: Value 1∈QRp IFF p is 4Pos, i.e,
( 1

p

)
= [ 1]

p−1
2 .

Courtesy Wilson’s Thm, value r :=
[
H!
]
is a mod-p

sqroot of 1. i.e, is a p-RONO,♥2 when p ∈ 4Pos.

d: The number 2 is a p-QR IFF p is 8Near, that is,

p ≡8 ±1. I.e,
(2
p

)
= [ 1]

p2−1
8 . ♦

BTWay, the analog of (9a), for Jacobi symbols, does
not hold with p replaced by a general odd posint D.
E.g, set D := 9; so H = 9−1

2 = 4. Setting z := 2,
then, we have that(

2

9

)
=

(
2

3

)
·
(

2

3

)
= 1 .

But zH = 24 = 16, whose mod-9 symm-residue isn’t
even in {±1}, since 16 ≡9 2.
♥2RONO is “(square-)Root Of Negative-One”.
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