

Partial Theorem List (preliminary)

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 20 April, 2022 (at 22:43)

For N a posint, use $\Phi(N)$ or Φ_N for the set $\{r \in [1..N] \mid r \perp N\}$. The cardinality $\varphi(N) := |\Phi_N|$ is the **Euler phi function**. [So $\varphi(N)$ is the cardinality of the multiplicative group, Φ_N , in the \mathbb{Z}_N ring.] Easily, $\varphi(p^L) = [p-1] \cdot p^{L-1}$, for prime p and posint L . Less easily, when $K \perp N$, then $\varphi(KN) = \varphi(K) \cdot \varphi(N)$

Use **EFT** for the Euler-Fermat Thm, which says: Suppose that integers $\mathbf{b} \perp N$, with N positive. Then $\mathbf{b}^{\varphi(N)} \equiv_N 1$.

Divisibility. Use \equiv_N to mean “congruent mod N ”. Let $n \perp k$ mean that n and k are co-prime [no prime in common].

Use $k \mid n$ for “ k divides n ”. Its negation $k \nmid n$ means “ k does not divide n .” Use $n \mid k$ and $n \nmid k$ for “ n is/is-not a multiple of k .” Finally, for p a prime and E a natnum: Use double-verticals, $p^E \mid n$, to mean that E is the **highest** power of p which divides n . Or write $n \mid p^E$ to emphasize that this is an assertion about n . Use **PoT** for Power of Two and **PoP** for Power of (a) Prime.

1: Euclidean Algorithm Thm (EuclAlg). Given B and C , not both zero, let $G := \text{GCD}(B, C)$. Then there are integers s and t , called **Bézout multipliers**, with

$$1a: \quad Bs + Ct = G.$$

More generally, given integers B_1, \dots, B_L not all zero, there exists a **Bézout tuple** $(s_\ell)_{\ell=1}^K$ such that

$$1b: \quad \sum_{\ell=1}^K B_\ell \cdot s_\ell = \text{GCD}(B_1, \dots, B_K).$$

Returning to the $L = 2$ case, pick one pair (s_0, t_0) fulfilling (1a). Then the set of all such pairs is precisely $\{(s_k, t_k)\}_{k \in \mathbb{Z}}$, where

$$1c: \quad \begin{aligned} s_k &:= s_0 + k \cdot \frac{C}{G}, \\ t_k &:= t_0 - k \cdot \frac{B}{G}. \end{aligned}$$

Primes vs. Irreducibles. Consider a commutative ring $(\Gamma, +, 0, \cdot, 1)$. An elt $\alpha \in \Gamma$ is a **zero-divisor** [abbrev **ZD**] if there exists a *non-zero* $\beta \in \Gamma$ st. $\alpha\beta = 0$. In contrast, an element $u \in \Gamma$ is a **unit** if $\exists w \in \Gamma$ st. $u \cdot w = 1$. This w , written as u^{-1} , is called the **reciprocal** [or *multiplicative-inverse*] of u . [When an elt *has* a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, $\alpha \mid u$, then α is a unit.

Exer 1b: If $\gamma \mid z$ with $z \in \text{ZD}$, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ , the set $\text{ZD}(\Gamma)$ is *disjoint* from $\text{Units}(\Gamma)$.

An element $p \in \Gamma$ is:

i: Γ -irreducible if p is a non-unit, non-ZD, such that for each Γ -factorization $p = x \cdot y$, either x or y is a Γ -unit. [Restating, using the definition below: Either $x \approx 1, y \approx p$, or $x \approx p, y \approx 1$.]

ii: Γ -prime if p is a non-unit, non-ZD, such that for each pair $c, d \in \Gamma$: If $p \mid [c \cdot d]$ then either $p \mid c$ or $p \mid d$.

Associates. In a *commutative* ring, els α and β are **associates**, written $\alpha \approx \beta$, if *there exists* a unit u st. $\beta = u\alpha$. [For emphasis, we might say **strong associates**.] They are **weak-associates**, written $\alpha \sim \beta$, if $\alpha \mid \beta$ and $\alpha \mid \beta$ [i.e, $\alpha \in \beta\Gamma$ and $\beta \in \alpha\Gamma$].

Ex 3: Prove $\text{Assoc} \Rightarrow \text{weak-Assoc}$.

Ex 4: If $\alpha \sim \beta$ and $\alpha \notin \text{ZD}$, then α, β are (strong) associates.

Ex 5: In \mathbb{Z}_{10} , zero-divisors $2, 4$ are weak-associates. [This, since $2 \cdot 2 \equiv 4$ and $4 \cdot 3 = 12 \equiv 2$.] Are $2, 4$ (strong) associates?

Ex 6: With $d \mid \alpha$, prove: If α is a non-ZD, then d is a non-ZD. And: If α is a unit, then d is a unit.

2: Lemma. In a commRing Γ , each prime α is irreducible. ◊

Proof. Consider factorization $\alpha = xy$. Since $\alpha \mid xy$, WLOG $\alpha \mid x$, i.e $\exists c$ with $\alpha c = x$. Hence

$$*: \quad \alpha = xy = \alpha cy.$$

By defn, $\alpha \notin \text{ZD}$. We may thus cancel in (*), yielding $1 = cy$. So y is a unit. ♦

There are rings ¹ with irreducible elements p which are nonetheless not prime. However...

¹Consider the ring, Γ , of polys with coefficients in \mathbb{Z}_{12} . There, $x^2 - 1$ factors as $[x - 5][x + 5]$ and as $[x - 1][x + 1]$.

3: Lemma. Suppose $\text{commRing } \Gamma$ satisfies the Bézout condition, that each GCD is a linear-combination. Then each irreducible α is prime. \diamond

Pf. Suppose $\alpha \mid c \cdot d$. WLOG $\alpha \nmid c$. Let $g := \text{GCD}(\alpha, c)$. Were $g \approx \alpha$, then $\alpha \mid g \mid c$, a contradiction. Thus, since α is irreducible, our $g \approx 1$.

Bézout produces $S, T \in \Gamma$ with

$$\begin{aligned} 1 &= S\alpha + Tc. \quad \text{Hence} \\ *: \quad d &= S\alpha d + Tcd = Sd\alpha + Tcd. \end{aligned}$$

By hyp, $\alpha \mid cd$, hence α divides RhS(*). So $\alpha \mid d$. \diamond

4: Lemma. In $\text{commRing } \Gamma$, if prime p divides a project $\alpha_1 \cdots \alpha_K$ then $p \mid \alpha_j$ for some j . [Exer. 7] \diamond

5: Prime-uniqueness thm. In $\text{commRing } \Gamma$, suppose

$$p_1 \cdot p_2 \cdot p_3 \cdots p_K = q_1 \cdot q_2 \cdot q_3 \cdots q_L$$

are equal products-of-primes. Then $L = K$ and, after permuting the p primes, each $p_k \approx q_k$. \diamond

Pf. [From Ex.4, previously, for non-ZD, relations \sim and \approx are the same.] For notational simplicity, we do this in \mathbb{Z}_+ , in which case $p_k \approx q_k$ will be replaced by $p_k = q_k$.

FTSOC, consider a CEX which minimizes sum $K+L$; necessarily positive. WLOG $L \geq 1$. Thus $K \geq 1$. [Otherwise, q_L divides a unit, forcing q_L to be a unit; see Ex.1a.] By the preceding lemma, q_L divides some p_k ; WLOG $q_L \mid p_K$. Thus $q_L = p_K$ [since p_K is prime and q_L is not a unit]. Cancelling now gives $p_1 \cdot p_2 \cdots p_{K-1} = q_1 \cdot q_2 \cdots q_{L-1}$, giving a CEX with a smaller $[K-1] + [L-1]$ sum. \diamond

Thus none of the four linear terms is prime. Yet each is Γ -irreducible. (Why?) This ring Γ has zero-divisors (yuck!), but there are natural subrings of \mathbb{C} where $\text{Irred} \neq \text{Prime}$.

Example where $\sim \neq \approx$. Here a modification of an example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs on $[-2, 2]$. Define $\mathcal{E}, \mathcal{D} \in \Omega$ by: For $t \geq 0$:

$$\mathcal{E}(t) = \mathcal{D}(t) := \begin{cases} t-1 & \text{if } t \in [1, 2] \\ 0 & \text{if } t \in [0, 1] \end{cases}.$$

And for $t \leq 0$ define

$$\mathcal{E}(t) := \mathcal{E}(-t) \quad \text{and} \quad \mathcal{D}(t) := -\mathcal{D}(-t).$$

[So \mathcal{E} is an Even fnc; \mathcal{D} is odd.] Note $\mathcal{E} = f\mathcal{D}$ and $\mathcal{D} = f\mathcal{E}$, where

$$f(t) := \begin{cases} 1 & \text{if } t \in [1, 2] \\ t & \text{if } t \in [-1, 1] \\ -1 & \text{if } t \in [-2, -1] \end{cases}.$$

Hence $\mathcal{E} \sim \mathcal{D}$. [This f is not a unit, since $f(0) = 0$ has no reciprocal. However, f is a non-ZD: For if $fg = 0$, then g must be zero on $[-2, 2] \setminus \{0\}$. Cty of g then forces $g \equiv 0$.]

Could there be a unit $u \in \Omega$ with $u\mathcal{D} = \mathcal{E}$? Well

$$u(2) = \frac{\mathcal{E}(2)}{\mathcal{D}(2)} \stackrel{\text{note}}{=} 1, \quad \text{and} \quad u(-2) = \frac{\mathcal{E}(-2)}{\mathcal{D}(-2)} \stackrel{\text{note}}{=} -1.$$

Cty of $u()$ forces u to be zero somewhere on interval $(-2, 2)$, hence u is not a unit. \square

Addendum. By Ex.4, both \mathcal{E} and \mathcal{D} must be zero-divisors. [Exer.8: Exhibit a function $g \in \Omega$, not the zero-fnc, such that $\mathcal{E} \cdot g \equiv 0$.] \square

Convention. Because there are so few units in \mathbb{Z} , it is conventional to just call the appropriate *positive* numbers “irreducible” or “prime”. To an algebraist, -5 is prime; but it is an associate of 5 , so one can always express arguments in terms of 5 .

6: Lemma. *In \mathbb{Z} , each irreducible element p is necessarily prime.* \diamond

Pf. With $p \nmid c \cdot d$, suppose that p does *not* divide d . Thus $g := \text{GCD}(p, d)$ cannot be p . So g is a *proper* divisor of our irreducible p , so g must be 1.

By EuclAlg there are Bézout multipliers S, T such that $1 = pS + dT$. Multiplying by c , then, yields

$$c = cpS + cdT.$$

But each term on RhS is divisible by p . So $c \mid p$. \spadesuit

7a: Fermat's Little Thm (FLiT). *For p prime and each $\mathbf{b} \in \mathbb{Z}$:* $\mathbf{b}^p \equiv_p \mathbf{b}$. \diamond

7b: Euler-Fermat Thm (EFT). *For $N \in \mathbb{Z}_+$ and $\mathbf{b} \perp N$,*

$$\mathbf{b}^{\varphi(N)} \equiv_N 1. \quad \diamond$$

Proof. Define $f: \Phi_N \rightarrow \Phi_N$ by $f(x) := \langle x\mathbf{b} \rangle_N$. Since $\mathbf{b} \perp N$, our f is injective, hence (by PHP) f is a bijection. So we can write $V := \prod(\Phi_N)$ as

$$* : \prod_{x \in \Phi_N} f(x) \stackrel{\text{note}}{=} \mathbf{b}^{\varphi(N)} \cdot \prod_{x \in \Phi_N} x = \mathbf{b}^{\varphi(N)} \cdot V,$$

where equality means in the ring \mathbb{Z}_N . Since V is a product of elts coprime to N , our $V \perp N$. So we can cancel out the V in $(*)$ and obtain that $1 \equiv_N \mathbf{b}^{\varphi(N)}$. \spadesuit

ASIDE. Alternatively, EFT follows from Lagrange's thm that the order of a subgroup divides the order of the enclosing group. \square

[a] With $N := 19$, then $\varphi(N) = \lfloor \dots \rfloor$. Thus EFT (Euler-Fermat) says that $9^{3632} \equiv_N \lfloor \dots \rfloor \in [0..N]$.

Soln: Ok, but slow:

% (repeated-squaring 9 3632 19 :symmod t)

```
/----- Mod 19 ----\
n: 2^n | Accum | 9^[2^n]
---+---+---+---+
0: 1 | 1 | 9
1: 2 | 1 | 5
2: 4 | 1 | 6
3: 8 | 1 | -2
4: 16 | 1 | 4 <<
5: 32 | 4 | -3 <<
6: 64 | 7 | 9
7: 128 | 7 | 5
8: 256 | 7 | 6
9: 512 | 7 | -2 <<
10: 1024 | 5 | 4 <<
11: 2048 | 1 | -3 <<
All: done | -3 |
\----- Mod 19 ----/
```

So 9^{3632} is mod-19 congruent to the product of the << marked values, which is -3.

What do we learn from a repeated pattern in the $9^{[2^N]}$ column?

Since $\varphi(19) = 18$, faster is

& (mod 3632 18) -> 14
& (repeated-squaring 9 14 19)

```
/----- Mod 19 ----\
n: 2^n | Accum | 9^[2^n]
---+---+---+---+
0: 1 | 1 | 9
1: 2 | 1 | 5 <<
2: 4 | 5 | 6 <<
3: 8 | -8 | -2 <<
All: done | -3 |
\----- Mod 19 ----/
```

So 9^{14} is mod-19 congruent to the product of the << marked values, which is -3.

Alternatively. $3632 \equiv_{18} 14 \equiv_{18} -4$. And $\langle 1/9 \rangle_{19} = -2$.

Thus $\langle 9^{-4} \rangle_{19} = \langle [-2]^4 \rangle_{19}$. And indeed...

% (repeated-squaring -2 4 19)

```
/----- Mod 19 ----\
n: 2^n | Accum | [-2]^[2^n]
---+---+---+---+
0: 1 | 1 | -2
1: 2 | 1 | 4
2: 4 | 1 | -3 <<
All: done | -3 |
\----- Mod 19 ----/
```

So $[-2]^4$ is mod-19 congruent to the product of the << marked values, which is -3.

b) $N := \varphi(100) = \lfloor \frac{40}{\dots} \rfloor$. So $\varphi(N) = \lfloor \frac{16}{\dots} \rfloor$.
 EFT says that $3^{1621} \equiv_N \dots \in [0..N]$. Hence
 (by EFT) last two digits of $7^{[3^{1621}]} = \dots$

Soln: $1621 \equiv_{16} 5$. So $3^5 = 81 \cdot 3 \equiv_{40} 1 \cdot 3 = 3$. Since $3 \perp 40$, EFT applies to tell us $3^{1621} \equiv_{40} 3$. And as $7 \perp 100$, EFT gives $7^{[3^{1621}]} \equiv_{100} 7^3 = 343 \equiv_{100} 43$.

8: Wilson's Thm. Fix a prime p . Then $\prod(\Phi p) = -1$ in \mathbb{Z}_p . Alternatively $[p-1]! \equiv_p -1$. \diamond

General abbrevs. OTOH, On the other hand.

WLOG, Without loss of generality.

FTSOC, For The Sake Of Contradiction.

TFAE. The following are equivalent.

ISTShow. It suffices to show.

sqrt, sqroot, square-root.

RHS, RightHand Side (of an equation or inequality).

LHS, LeftHand Side.

More abbrevs. SOTS: Sum-Of-Two-Squares. So $13 = 2^2 + 3^2$ is SOTS. And $25 = 0^2 + 5^2 = 3^2 + 4^2$ is SOTS in two ways.

A integer N is **coprime-SOTS** if *there exist* integers $x \perp y$ st. $x^2 + y^2 = N$. Eg, 20 is SOTS, but is *not* coprime-SOTS. What about 125? Certainly $125 = 100 + 25 = 10^2 + 5^2$; but $10 \not\perp 5$, so we still don't know. Noting that $125 = 121 + 4 = 11^2 + 2^2$, and $11 \perp 2$, we conclude that 125 *is* coprime-SOTS.

3Pos: An integer n is 3Pos if $n \equiv_3 +1$, and is 3NEG if $n \equiv_3 -1$. Similarly, " $n \in 4\text{NEG}$ " means $n \equiv_4 -1$.

An odd integer n is 8NEAR if n is mod-8 congruent either to $+1$ or to -1 . Saying " $n \in 8\text{FAR}$ " means that $n \equiv_8 \pm 3$. (So $-11, 3, 5, 13, 21$ are some 8FAR numbers. And $-7, 9, 15, 23 \in 8\text{NEAR}$.)

Theorem abbrevs

QF, Quadratic Formula. UFT, Unique Factorization Thm (also called FTArithm). FLiT, Fermat's Little Thm. FLaT, Fermat's Last Thm (also FLT).

EFT, Euler-Fermat Thm. LST, Legendre-symbol Thm. SOTS Thm; Fermat's Thm characterising which posints are SOTS. PNT, Prime Number Thm. EuclAlg, Euclidean Algorithm.

Standing notation

Use MF to mean "(a) multiplicative function" or "multiplicative".

QR, Quadratic residue. NQR, Non-quadratic residue. For posint m , use $m\text{-QR}$ for a mod- m QR, and use $m\text{-NQR}$ for a mod- m NQR. E.g "Number $\text{-}2$ is an **11-QR** (since $3^2 \equiv_{11} -2$), and +2 is an **11-NQR** [since none of $1^2, 2^2, 3^2, 4^2, 5^2$ is $\equiv 2 \pmod{11}$]."

Another example: Number 13 is a **51-QR**, since $8^2 \equiv_{51} 13$ and $8 \perp 51$. OTOHand, $-1 \in \text{NQR}_{51}$; none of the \mathbb{Z}_{51} -units square to -1 . Value 6 is neither a **QR₅₁** nor a **NQR₅₁**, since 6 fails to be coprime to 51 .

Arith-prog means "arithmetic progression".

Given an odd prime p , let $H = H(p) := \frac{p-1}{2}$. Let $S = S(p)$ be the unique integer st. $S^2 < p < [S+1]^2$; so $S = \lfloor \sqrt{p} \rfloor$. When p is a 4Pos-prime, let $R(p)$ be the unique value $R \in [1..H]$ so that $R^2 \equiv_p -1$.

Defn. For a prime p and integer z , the **Legendre-symbol** is written as

$$\left(\begin{matrix} z \\ - \\ p \end{matrix} \right) \quad \text{or, in email, also as} \quad (z // p).$$

By defn, $\left(\begin{matrix} z \\ - \\ p \end{matrix} \right)$ is $+1$, if $z \in \text{QR}_p$; is -1 , if $z \in \text{NQR}_p$; and is 0 , if $z \not\perp p$, i.e $z \mid p$.

An odd integer k is "**4Pos**" if $k \equiv_4 +1$; is **4NEG** if $k \equiv_4 -1$; is **8NEAR** if $k \equiv_8 \pm 1$ (either); is **8FAR** if $k \equiv_8 \pm 3$. \square

9: Legendre-symbol Thm. Fix an odd prime p and $H := \frac{p-1}{2}$. Use $\langle \cdot \rangle_p$ for symmetric residue, selecting from $[-H..H]$. For each integer z :

a: The (symmetric) residue $\langle z^H \rangle_p$ equals $\left(\begin{matrix} z \\ - \\ p \end{matrix} \right)$. Euler criterion.

b: For x, z integers: $\left(\begin{matrix} x \\ - \\ p \end{matrix} \right) \cdot \left(\begin{matrix} z \\ - \\ p \end{matrix} \right) = \left(\begin{matrix} xz \\ - \\ p \end{matrix} \right)$. I.e, mapping $x \mapsto \left(\begin{matrix} x \\ - \\ p \end{matrix} \right)$ is totally-multiplicative. [I.e, $x \mapsto \left(\begin{matrix} x \\ - \\ p \end{matrix} \right)$ is a semigroup-hom $(\mathbb{Z}_p, \cdot, 1) \rightarrow (\{\pm 1, 0\}, \cdot, 1)$, hence is a group-hom $(\Phi_p, \cdot, 1) \rightarrow (\{\pm 1\}, \cdot, 1)$. This holds also for $p=2$.]

c: Value $-1 \in \text{QR}_p$ IFF p is 4Pos, i.e, $\left(\begin{matrix} -1 \\ - \\ p \end{matrix} \right) = [-1]^{\frac{p-1}{2}}$.

Courtesy Wilson's Thm, value $r := [H!]$ is a mod- p sqroot of -1 . i.e, is a p -RONO, \heartsuit^2 when $p \in 4\text{Pos}$.

d: The number 2 is a p -QR IFF p is 8NEAR, that is, $p \equiv_8 \pm 1$. I.e, $\left(\begin{matrix} 2 \\ - \\ p \end{matrix} \right) = [-1]^{\frac{p^2-1}{8}}$. \diamond

BTWay, the analog of (9a), for Jacobi symbols, does not hold with p replaced by a general odd posint D . E.g, set $D := 9$; so $H = \frac{9-1}{2} = 4$. Setting $z := 2$, then, we have that

$$\left(\begin{matrix} 2 \\ - \\ 9 \end{matrix} \right) = \left(\begin{matrix} 2 \\ - \\ 3 \end{matrix} \right) \cdot \left(\begin{matrix} 2 \\ - \\ 3 \end{matrix} \right) = 1.$$

But $z^H = 2^4 = 16$, whose mod-9 symm-residue isn't even in $\{\pm 1\}$, since $16 \equiv_9 -2$.

\heartsuit^2 RONO is "(square-)Root Of Negative-One".

§Index, with symbols and abbrevs at the End

4Pos, 4NEG, 8NEAR, 8FAR, **7**

associates, **1**

Euler criterion, **7**

Euler phi, **1**

irreducible element, **1**

Legendre-symbol, **7**

prime element, **1**

unit, **1**

zero-divisor, **1**

Filename: `Problems/Nota/nota.prime-irred.latex`
As of: `Friday 27Jul2018.` Typeset: `20Apr2022 at 22:43.`