
Algorithms in Number Theory

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA

15 April, 2022 (at 08:50)

Iterated Lightning-bolt (Euclidean algorithm)

Fix integers J0 and J1, and set D := GCD(J0, J1). A
pair (((S, T))) of integers is “a Bézout pair for J0, J1 ”
if

SJ0 + TJ1 = D .1a:

Bézout’s lemma says: There always exists a Bézout
pair. (Alternative term: S and T are Bézout multipliers.)

A Bézout pair (((S, T))) is not unique; it is (except in
the boring J0=0=J1 case) part of a one-parameter family

S〈k〉 := S +
[
k · J1

D

]
and

T〈k〉 := T −
[
k · J0

D

]
,

1b:

of Bézout pairs (((S〈k〉, T〈k〉))), for each k ∈ Z.

1c: Exercise. Prove that (1b) describes all the Bézout
pairs for J0,J1. �

GCD of several integers. Given a list of integers,
~J = (((J0, J1, . . . , JL))), use

GCD(J0, J1, . . . , JL) or GCD(~J)2a:

to denote the greatest common divisor, D, of the
list. Our goal is to simultaneously compute D and
a Bézout-tuple ~s := (((S0, . . . , SL))) such that∑L

`=0
[S` · J`] = D .2b:

We’ll accomplish this with L applications of LBolt:

D
note
=== GCD

(
. . .GCD

(
GCD(J0, J1), J2

)
. . . , JL

)
.

Algorithm: From integers ~J = (((J0, J1, . . . , JL−1, JL))),
set

C := GCD(J0, J1, . . . , JL−1) and

D := GCD(J0, J1, . . . , JL−1, JL)
note
=== GCD(C, JL) .

Apply LBolt L−1 times to produce integers
v0, . . . , vL−1 with

∑L−1
`=0 [v` · J`] = C, and an Lth time

to produce α,β ∈ Z with αC + βJL = D. Then
S0 := αv0, S1 := αv1, . . . , SL−1 := αvL−1,

SL := β,
2c:

gives a tuple ~s satisfying (2b).

Proof. From the above defns of ~v, and of α and β,

D = αC + βJ` =
[
α ·

∑L−1

`=0
[v` · J`]

]
+ βJL

=
[∑L−1

`=0
αv` · J`

]
+ βJL . �

Shorthand. Given two equal-length tuples of num-
bers, ~a = (((a0, a1, . . . , aN))) and ~c = (((c0, c1, . . . , cN))),
define their dot product to be

~a • ~c :=
∑N

n=0
an · cn .

Worked LBolt. Consider ~J := (((525, 150, 350, 210))).
Using 3 applications of LBolt, we will compute a Bé-
zout tuple ~s 3 such that ~s 3 • ~J = GCD(~J).

We LBolt to compute gcd and multipliers:

D1 := GCD(J0, J1) = GCD(525, 150) = 75 ;

(((α, β))) := (((1, 3))) .

Setting ~s 1 := (((1, 3))), then, ~s 1 • (((525, 150))) = 75.

Apply the algorithm again to produce

D2 := GCD(D1, J2) = GCD(75, 350) = 25 ;

(((α, β))) := (((5, 1))) .

Multiply α ·~s 1 note
=== (((5, 15))), then adjoin β, to produce

~s 2 := (((5, 15, 1))). So now ~s 2 • (((525, 150, 350))) = 25.

A third application of LBolt gives

D3 := GCD(D2, J3) = GCD(25, 210) = 5 ;

(((α, β))) := (((17, 2))) .

Multiply α · ~s 2 note
=== (((85, 255, 17))), then adjoin β, to

produce ~s 3 := (((85, 255, 17, 2))).

The upshot is that

~s 3 • ~J def
== ~s 3 • (((525, 150, 350, 210)))

= 5 = GCD(~J) ,

as desired.

Remark. Each of the three Bézout (((α, β))) pairs is ac-
tually part of a 1-parameter family specified by (1b).
It follows that the above ~s 3 is just one member of a

Webpage http://people.clas.ufl.edu/squash/ Page 1 of 3



Page 2 of 3 Solving a linear congruence Prof. JLF King

3-parameter family of (integer) 4-tuples ~s that satisfy
~s 3 • ~J = GCD(~J).

In other words, there is an injective (i.e, 1-to-1) func-
tion f :Z×Z×Z→Z×Z×Z×Z with the property that

f(a, b, c) • ~J = GCD(~J) ,

for each triple a,b,c of integers. �

Solving a linear congruence

Having fixed a modulus M ∈ Z+, as well as a co-
efficient and target B,T ∈ Z, our goal is to find all
solutions x to

B·x ≡M T, where x ∈ [0 ..M)..3:

Our algorithm has three Steps.
This congruence has a solution IFF there exists a

pair (((x, k))) solving eqn

B·x + M ·k = T, where x,k ∈ Z.3∗:

Evidently D := GCD(B,M) divides LhS(3∗). Hence
if Tr|� D, then (3∗) has no soln-pair. Whence'

&

$

%

StepA: If D := GCD(B,M) fails to divide T ,
then (3) has no soln. Else, define

β := B
D , µ := M

D and τ := T
D

and study this “reduced congruence”:

β·y ≡µ τ, where y ∈ [0 .. µ)..4:

We have gained that β ⊥ µ .'

&

$

%

StepB: Use LBolt to compute a mod-µ multiplica-
tive-inverse, I, of β; so I·β ≡µ 1. Thus

y ≡µ I·β·y ≡µ I·τ .

Let y0 be the unique value in [0 .. µ) st. y0 ≡µ I·τ .

This y0 is in the unique mod-µ residue class solv-
ing (4). But mod-M , this residue class splits into
D many residue classes. So here is the last step:�

�

�

�

StepC: The D many solutions to (3) are

x = y0, y1, y2, y3, . . . , yD−2, yD−1 ,

where yk := y0 + [kµ].

A worked example. I use an arrow over a letter
to abbreviate a sequence, e.g

~b := (((b0, b1, b2, . . .))) .

We consider

35x ≡21 55 .

Let’s apply StepA. Since GCD(35, 21)
note
=== 7 does not

divide 55, the above congruence has no soln. [The same
computation shows that congr. 21x ≡35 55 has no solution.]

A congruence with solns. Consider congruence

33·x ≡114 18 , where x ∈ [0 .. 114).3′:

For StepA, we compute just the ~r and ~q columns:

n rn qn

0 114
1 33 3
2 15 2
3 3 5
4 0 ∞

Since D := GCD(33, 114)
note
=== 3 divides the target, 18,

we divide each of the numbers in (3′) by D=3 to ob-
tain the reduced congruence

11·y ≡38 6, where y ∈ [0 .. 38).4′:

For StepB, we compute (using ~q) just♥1 the ~t col-
umn. (Note: We have ~q from the previous table.)

n rn qn sn tn

0 38 1 0
1 11 3 0 1
2 5 2 1 -3
3 1 5 -2 7
4 0 ∞ 11 -38

So the mod-38 reciprocal of 11 is 7. From StepB,
then,

y ≡38 7 · 6 = 42 ≡38 4 .

So we set
�� ��y0 := 4 .

♥1We do not need to compute ~s nor ~r. Of course, the new ~r is
just the old ~r divided by D. I have grayed-out the superfluous
columns.

Filename: Problems/NumberTheory/nt-algorithms.latex



Prof. JLF King Solving a linear congruence Page 3 of 3

Finally, StepC tells us that these three,

4, 4 + 38
note
=== 42, 42 + 38

note
=== 80

are the D=3 many solutions to (3′).

Checking. We calculate:

33 · 4 = 132 = 1·114 + 18 ;

33 · 42 = 1386 = 12·114 + 18 ;

33 · 80 = 2640 = 23·114 + 18 .

Copasetic!
Filename: Problems/NumberTheory/nt-algorithms.latex
As of: Thursday 24Sep2009. Typeset: 15Apr2022 at 08:50.

Filename: Problems/NumberTheory/nt-algorithms.latex


