

Algorithms in Number Theory

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA
15 April, 2022 (at 08:50)

Iterated Lightning-bolt (Euclidean algorithm)

Fix integers J_0 and J_1 , and set $D := \text{GCD}(J_0, J_1)$. A pair (S, T) of integers is “a **Bézout pair** for J_0, J_1 ” if

$$1a: \quad SJ_0 + TJ_1 = D.$$

Bézout's lemma says: *There always exists a Bézout pair.* (Alternative term: S and T are **Bézout multipliers**.)

A Bézout pair (S, T) is not unique; it is (except in the boring $J_0=0=J_1$ case) part of a one-parameter family

$$1b: \quad S_{\langle k \rangle} := S + \left[k \cdot \frac{J_1}{D} \right] \quad \text{and}$$

$$T_{\langle k \rangle} := T - \left[k \cdot \frac{J_0}{D} \right],$$

of Bézout pairs $(S_{\langle k \rangle}, T_{\langle k \rangle})$, for each $k \in \mathbb{Z}$.

1c: *Exercise.* Prove that (1b) describes *all* the Bézout pairs for J_0, J_1 . □

GCD of several integers. Given a list of integers, $\vec{J} = (J_0, J_1, \dots, J_L)$, use

$$2a: \quad \text{GCD}(J_0, J_1, \dots, J_L) \text{ or } \text{GCD}(\vec{J})$$

to denote the greatest common divisor, D , of the list. Our goal is to simultaneously compute D and a Bézout-tuple $\vec{s} := (S_0, \dots, S_L)$ such that

$$2b: \quad \sum_{\ell=0}^L [S_{\ell} \cdot J_{\ell}] = D.$$

We'll accomplish this with L applications of LBolt:

$$D \stackrel{\text{note}}{=} \text{GCD}(\dots \text{GCD}(\text{GCD}(J_0, J_1), J_2) \dots, J_L).$$

Algorithm: From integers $\vec{J} = (J_0, J_1, \dots, J_{L-1}, J_L)$, set

$$C := \text{GCD}(J_0, J_1, \dots, J_{L-1}) \quad \text{and}$$

$$D := \text{GCD}(J_0, J_1, \dots, J_{L-1}, J_L) \stackrel{\text{note}}{=} \text{GCD}(C, J_L).$$

Apply LBolt $L-1$ times to produce integers v_0, \dots, v_{L-1} with $\sum_{\ell=0}^{L-1} [v_{\ell} \cdot J_{\ell}] = C$, and an L^{th} time to produce $\alpha, \beta \in \mathbb{Z}$ with $\alpha C + \beta J_L = D$. Then

$$2c: \quad S_0 := \alpha v_0, \quad S_1 := \alpha v_1, \quad \dots, \quad S_{L-1} := \alpha v_{L-1}, \\ S_L := \beta,$$

gives a tuple \vec{s} satisfying (2b).

Proof. From the above defns of \vec{v} , and of α and β ,

$$\begin{aligned} D &= \alpha C + \beta J_L = \left[\alpha \cdot \sum_{\ell=0}^{L-1} [v_{\ell} \cdot J_{\ell}] \right] + \beta J_L \\ &= \left[\sum_{\ell=0}^{L-1} \alpha v_{\ell} \cdot J_{\ell} \right] + \beta J_L. \end{aligned} \quad \spadesuit$$

Shorthand. Given two equal-length tuples of numbers, $\vec{a} = (a_0, a_1, \dots, a_N)$ and $\vec{c} = (c_0, c_1, \dots, c_N)$, define their **dot product** to be

$$\vec{a} \bullet \vec{c} := \sum_{n=0}^N a_n \cdot c_n.$$

Worked LBolt. Consider $\vec{J} := (525, 150, 350, 210)$. Using 3 applications of LBolt, we will compute a Bézout tuple \vec{s}^3 such that $\vec{s}^3 \bullet \vec{J} = \text{GCD}(\vec{J})$.

We LBolt to compute gcd and multipliers:

$$\begin{aligned} D_1 &:= \text{GCD}(J_0, J_1) = \text{GCD}(525, 150) = 75; \\ (\alpha, \beta) &:= (1, -3). \end{aligned}$$

Setting $\vec{s}^1 := (1, -3)$, then, $\vec{s}^1 \bullet (525, 150) = 75$.

Apply the algorithm again to produce

$$\begin{aligned} D_2 &:= \text{GCD}(D_1, J_2) = \text{GCD}(75, 350) = 25; \\ (\alpha, \beta) &:= (5, -1). \end{aligned}$$

Multiply $\alpha \cdot \vec{s}^1 \stackrel{\text{note}}{=} (5, -15)$, then adjoin β , to produce $\vec{s}^2 := (5, -15, -1)$. So now $\vec{s}^2 \bullet (525, 150, 350) = 25$.

A third application of LBolt gives

$$\begin{aligned} D_3 &:= \text{GCD}(D_2, J_3) = \text{GCD}(25, 210) = 5; \\ (\alpha, \beta) &:= (17, -2). \end{aligned}$$

Multiply $\alpha \cdot \vec{s}^2 \stackrel{\text{note}}{=} (85, -255, -17)$, then adjoin β , to produce $\vec{s}^3 := (85, -255, -17, -2)$.

The upshot is that

$$\begin{aligned} \vec{s}^3 \bullet \vec{J} &\stackrel{\text{def}}{=} \vec{s}^3 \bullet (525, 150, 350, 210) \\ &= 5 = \text{GCD}(\vec{J}), \end{aligned}$$

as desired.

Remark. Each of the three Bézout (α, β) pairs is actually part of a 1-parameter family specified by (1b). It follows that the above \vec{s}^3 is just one member of a

3-parameter family of (integer) 4-tuples \vec{s} that satisfy $\vec{s}^3 \bullet \vec{J} = \text{GCD}(\vec{J})$.

In other words, there is an injective (i.e, 1-to-1) function $f: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ with the property that

$$f(a, b, c) \bullet \vec{J} = \text{GCD}(\vec{J}),$$

for each triple a, b, c of integers. □

Solving a linear congruence

Having fixed a *modulus* $M \in \mathbb{Z}_+$, as well as a *coefficient* and *target* $B, T \in \mathbb{Z}$, our goal is to find all solutions x to

$$3: \quad B \cdot x \equiv_M T, \quad \text{where } x \in [0..M].$$

Our algorithm has three **STEPS**.

This congruence has a solution IFF there exists a *pair* (x, k) solving eqn

$$3*: \quad B \cdot x + M \cdot k = T, \quad \text{where } x, k \in \mathbb{Z}.$$

Evidently $D := \text{GCD}(B, M)$ divides LhS(3*). Hence if $T \nmid D$, then (3*) has no soln-pair. Whence

STEP A: If $D := \text{GCD}(B, M)$ fails to divide T , then (3) has no soln. Else, define

$$\beta := \frac{B}{D}, \quad \mu := \frac{M}{D} \quad \text{and} \quad \tau := \frac{T}{D}$$

and study this “reduced congruence”:

$$4: \quad \beta \cdot y \equiv_\mu \tau, \quad \text{where } y \in [0.. \mu].$$

We have gained that $\beta \perp \mu$.

STEP B: Use LBolt to compute a mod- μ multiplicative-inverse, I , of β ; so $I \cdot \beta \equiv_\mu 1$. Thus

$$y \equiv_\mu I \cdot \beta \cdot y \equiv_\mu I \cdot \tau.$$

Let y_0 be the unique value in $[0.. \mu)$ st. $y_0 \equiv_\mu I \cdot \tau$.

This y_0 is in the *unique* mod- μ residue class solving (4). But mod- M , this residue class splits into D many residue classes. So here is the last step:

STEP C: The D many solutions to (3) are

$$x = y_0, y_1, y_2, y_3, \dots, y_{D-2}, y_{D-1},$$

where $y_k := y_0 + [k\mu]$.

A worked example. I use an arrow over a letter to abbreviate a sequence, e.g

$$\vec{b} := (b_0, b_1, b_2, \dots).$$

We consider

$$35x \equiv_{21} 55.$$

Let’s apply **STEP A**. Since $\text{GCD}(35, 21) \stackrel{\text{note}}{=} 7$ does not divide 55, the above congruence has no soln. [The same computation shows that congr. $21x \equiv_{35} 55$ has no solution.]

A congruence with solns. Consider congruence

$$3': \quad 33 \cdot x \equiv_{114} 18, \quad \text{where } x \in [0..114].$$

For **STEP A**, we compute just the \vec{r} and \vec{q} columns:

n	r_n	q_n
0	114	—
1	33	3
2	15	2
3	3	5
4	0	∞

Since $D := \text{GCD}(33, 114) \stackrel{\text{note}}{=} 3$ divides the target, 18, we divide each of the numbers in (3') by $D=3$ to obtain the reduced congruence

$$4': \quad 11 \cdot y \equiv_{38} 6, \quad \text{where } y \in [0..38].$$

For **STEP B**, we compute (using \vec{q}) just¹ the \vec{t} column. (Note: We have \vec{q} from the previous table.)

n	r_n	q_n	s_n	t_n
0	38	—	1	0
1	11	3	0	1
2	5	2	1	-3
3	1	5	-2	7
4	0	∞	11	-38

So the mod-38 reciprocal of 11 is 7. From **STEP B**, then,

$$y \equiv_{38} 7 \cdot 6 = 42 \equiv_{38} 4.$$

So we set $y_0 := 4$.

¹We do not need to compute \vec{s} nor \vec{r} . Of course, the new \vec{r} is just the old \vec{r} divided by D . I have grayed-out the superfluous columns.

Finally, **STEP C** tells us that these three,

$$4, \quad 4 + 38 \stackrel{\text{note}}{=} 42, \quad 42 + 38 \stackrel{\text{note}}{=} 80$$

are the $D=3$ many solutions to $(3')$.

Checking. We calculate:

$$\begin{aligned} 33 \cdot 4 &= 132 &= 1 \cdot 114 + 18; \\ 33 \cdot 42 &= 1386 &= 12 \cdot 114 + 18; \\ 33 \cdot 80 &= 2640 &= 23 \cdot 114 + 18. \end{aligned}$$

Copasetic!

Filename: Problems/NumberTheory/nt-algorithms.latex
As of: Thursday 24Sep2009. Typeset: 15Apr2022 at 08:50.