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Spaces. Various spaces will be used/defined in this
pamphlet. Abbrevs: VS, vectorspace. NVS, normed vector-

space. IPVS, inner-product (vector)space. TOS, totally-ordered

space. MS, metric space. CMS, complete MS. TS, topological

space. HS, Hausdorff (topological) space.
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Prelim: VSes. To indicate that u is a vector in a
VS W, I’ll normally write “u ∈ W”, both in notes and
on the blackboard; but I can’t write boldface on the black-
board, so it will be “u ∈ W”. In notes, I’ll use boldface

0 or
== ~0, ı̂, ̂, k̂

for the zero-vector and for the three coordinate-vectors
in R3. On the blackboard, I’ll write these as 0̂, î, ĵ, k̂.
In contrast, I’ll use an overarrow –see (3a), below– to in-
dicate sequences. (And indeed, these seqs will often be vectors

in R∞.)
Over a field F , consider F -VSes V and E. A map

L:V→E is F -linear (or just linear) if:

∀α, β ∈ F and ∀v,w ∈ V, necessarily
L(αv + βw) = αL(v) + βL(w).

1:

A map L:V→F is called a functional (abbrev.: fnc’al). In the
typical case, L() is linear (viewing F as a 1-dim’al VS over F )
and we call L() a linear functional.
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Prelim: Sets. For arbitrary sets D and C, I’ll some-
times use

the symbol CD to denote the set of functions
D→C.

2:

(This is a std notation.) The “exponent” D is the domain of
these fncs, and C is their codomain. As an example, the
vectorspace R3 can be viewed as the set of fncs R[1 .. 3], or
as R[0 .. 3), if convenient.

BTWay: When D and C are finite sets,

The cardinality
∣∣∣CD

∣∣∣ equals |C||D|.2′:

Elementary MS/TOS theorems
In this section, we have a general totally-ordered
space (((Υ, <))). We also have a general metric space (((Ω, d))).

Notation for sequences. A symbol ~x means the (by default,

infinite) ordered tuple

~x = (((x1, x2, x3, . . . ))) ;3a:

however, the index-set might be a different “ray” of in-
tegers, e.g, ~x might be denoting (((x3, x4, x5, . . . ))). Since ~x
is a fnc, Dom(~x) denotes its index-set, and Range(~x) =

{xn}n∈Dom(~x) is its set of ~x-values. Most of the notation be-
low assumes the index-set is Z+.

For a set S , expression “~x ⊂ S ” means

∀ n ∈ Dom(~x): xn ∈ S .

A “list of indices” shall mean posints

N1 < N2 < N3 < . . .3b:

A sequence ~c is a subsequence of ~x IFF there exists a
list (3b) st. ∀k: ck = xNk . Write “~c ⊂ ~x” to indicate this
relation. Each N ∈ Dom(~x) yields a subsequence called
“the Nth tail of ~x”,

TailN(~x) := (((xN , xN+1, xN+2, . . . ))) .

Fix MS (((Ω, d))). For ~x ⊂ Ω 3 q, let “d-lim(~x) = q” or
“Ω-lim(~x) = q” or just “lim(~x) = q” mean

For each ball B := Bal(q), there exists an
index N = N(B) for which TailN(~x) ⊂ B.3c:

Implicit in our notation is “Limits, when they exist, are
unique”. Were this not the case, then we’d view lim(~x)

as a set, and write “q ∈ lim(~x)” rather than q = lim(~x).
Uniqueness is proved after (20), P.6.

We will interpret a sequence ~e as the set Range(~e) in
these two common contexts: “Diam(~e)” and “~e ⊂ S ”. For
example, a sequence ~x is d-Cauchy if:

∀ε>0,∃N such that d-Diam
(
TailN(~x)

)
< ε .3d: �

4: MS-sequence Thm. Facts about seqs in MS (((Ω, d))):

A: If ~x is convergent, then ~x is a Cauchy sequence.

B: If ~x is Cauchy, then Diam(~x) < ∞.

C: Suppose Cauchy-seq ~x has a convergent subseq ~y ⊂ ~x.
Then ~x converges, and lim(~x) = lim(~y). ♦

Proof of (C). The first two parts were proved in class.
For the third, let p := lim(~y). Fix ε>0, then take N large
enough that Diam

(
TailN(~x)

)
< ε.

Write ~y as (((xK j)))
∞

j=1. Let J be the first posint large

enough that
�� ��K := KJ ≥ N and d(xK , p) < 7ε.

For each ` ∈ [K ..∞), observe that

d(x`, p) ≤ d(x`, xK) + d(xK , p)

< ε + 7ε = 8ε .

Thus TailK(~x) ⊂ Bal8ε(p). �

5: Monotone-subsequence Thm. Each seq ~x ⊂ Υ has a
monotone subsequence. (“Sequence” means∞-seq.)

Indeed, either ~x has a strictly decreasing subseq, or has
an increasing subsequence. (Dually, ~x has a strictly incr-subseq

or a decr-subseq.) ♦

Proof. Let T ⊂ Z+ comprise the “tall” indices N for
which:

[
∀k ∈ (N ..∞): xN > xk

]
.

If T is infinite, then (((xτ)))τ∈T is a strictly-decreasing sub-
sequence of ~x.

Now suppose T finite. Let N1 be the smallest index
exceeding all the tall indices (phrased this way, to cover the case

where T is empty). Arguing inductively, suppose we have
indices N1 < N2 < · · · < NK−1 for which

xN1 ≤ xN2 ≤ · · · ≤ xNK−1 .

Since NK−1 is not tall, there exists a smallest integer
NK > NK−1 for which xNK dominates xNK−1 .

Continuing the induction yields (((xNk)))
∞
k=1, an increasing

subsequence of ~x. �

Filename: Problems/Analysis/Calculus/notes-AdvCalc.latex



Prof. JLF King Elementary MS/TOS theorems Page 3 of 32

6: Induced-topology Lemma. Fix a MS Ω and subset X.
Then a further subset U ⊂ X is X-open IFF there exists
an Ω-open set Û st. Û ∩ X = U. Proof. Exercise. ♦

Least upper-bound property [LUBP]. In TOS (((Υ,≺ ))),
consider sets A,B ⊂ Υ and a point u ∈ Υ. Let

A 4 u mean
[
∀α ∈ A, necessarily α 4 u

]
;

A 4 B mean
[
∀α ∈ A and ∀ β ∈ B: α 4 β

]
.

7:

An upper-bound for a set A ⊂ Υ is an element u ∈ Υ

such that A 4 u. Use UBΥ(A) for the set of upper-bnds,
and LBΥ(A) for the lower-bnd–set. (Dispense with the subscript

if clear from context.) Our (((Υ,≺ ))) has the LUBP if:

Each non-void A ⊂ Υ which is upper-bnded [i.e

UBΥ(A) , ∅] has a least upper-bound. That is,
UBΥ(A) has a minimum element.

7a:

Reversing the inequalities yields the greatest lower-bound
property, abbreviated GLBP.

The LUB of a set A (when it has a LUB!) is called the
supremum of the set, and is written sup(A) or supΥ(A).
Similarly, the infimum is the GLB, written inf(A).

7b: LUBP theorem. TOS (((Υ,≺ ))) has the LUBP IFF it
has the GLBP. ♦

Proof of [LUBP ⇒ GLBP]. Fix a non-void lower-bnded
subset B ⊂ Υ; so A := LBΥ(B) is non-empty. My goal is
to produce a (hence the) greatest lower-bound for B, using
that

A def
=== LBΥ(B) , and†:

UBΥ(A) ⊃ B .‡:

Since UBΥ(A) ⊃ B , ∅, and A is non-void, the LUBP
applies, and tells us that λ := supΥ(A) exists. In particular

λ < A .†′:

Since λ is the least upper-bnd, λ 4 UBΥ(A) ⊃ B and so
λ 4 B. Restating, λ is a lower-bound of B . (Note: λ might

or might not be in B.)
And, by (†) and (†′), this λ dominates each lower-

bound of B. So λ is a greatest lower-bound of B. �

Important announcement. A TOS (((Υ,≺ ))) satisfing
LUBP [equivalently, GLBP] is said to be order-complete.
We take as an axiom [or derive via Dedekind cuts or Cauchy se-

quences] that

(((R, <))) is order-complete.7c:

This means that the extended reals, R, satisfies a slightly
stronger property: Each♥1 subset A ⊂ R has a sup(A) and
an inf(A) in R. In consequence, sup() and inf() are maps
from the full P(R)→R.

(See (14), P.5, for the definition of R, the extended reals.)

8: Monotone-sequence Thm. Each bounded monotone
sequence ~x ⊂ R is R-convergent. ♦

Proof. WLOG, ~x is increasing, and upper-bnded. Thus
X := Range(~x) has a supremum in R; call it L. I claim that
lim(~x) ?

= L.
Fix ε>0. Now L is the least UB of X, so L − ε can not

be an upper-bnd. Hence there exists N with xN > L − ε.
For each ` ≥ N, since ~x is increasing, we have that

L − ε < xN ≤ x` ≤ L .

Thus TailN(~x) ⊂ Balε(L). �

9: Bounded-sequence Lemma. Each bounded se-
quence ~x ⊂ R has an R-convergent subsequence. ♦

Proof. Use (5), then (8). �

10: R Thm. The set of reals is (metrically) complete. ♦

Proof. Fix a Cauchy sequence ~x ⊂ R. Courtesy (4B),
Diam(~x) < ∞. So (9) applies, yielding a convergent sub-
sequence. Now use (4C). �

Bernard Bolzano (1781–1848) proved the following form
of the Intermediate-value Theorem.

11: IVT. Suppose f :[a, b]→R is continuous, with f (a)
and f (b) non-zero and having different signs. Then there
exists a point c ∈ (a, b) which is a zero of f , i.e, f (c) = 0.♦

♥1E.g, sup(∅) = ∞ and inf(∅) = ∞. Indeed, for A ⊂ R:[
A , ∅

]
⇐⇒

[
inf(A) 4 sup(A)

]
.
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Proof. WLOGenerality, f (a) < 0 and f (b) > 0; otherwise,
simply replace f by f (which preserves continuity) and note
that a zero of f is a zero of f .

Let L0 := a and R0 := b. For stage n = 1, 2, . . . , either
up to some integer K, or out to ∞, I will produce num-
bers Ln and Rn such that:

i[n]: a ≤ Ln−1 ≤ Ln < Rn ≤ Rn−1 ≤ b ;
ii[n]: Rn − Ln = 1

2 [Rn−1 − Ln−1] ;
iii[n]: f (Ln) < 0 < f (Rn).

Stage-n construction. Let M be the midpoint of interval
[Ln−1,Rn−1], i.e, M := 1

2 [Ln−1 + Rn−1].�� ��Case: If f (M) is zero, then STOP Set K := n−1.
By (i[K]), note that M is strictly between a and b. So
c := M fulfills the conclusion of the theorem.�� ��Case: Otherwise, f (M) , 0. If f (M) negative then
let Ln := M & Rn := Rn−1. If f (M) positive then
let Ln := Ln−1 & Rn := M. In either case, condi-

tions (i,ii,iii[n]), automatically hold.

Last step. WLOGenerality, we may assume that our
construction never STOPped. So we have two sequences,
~L := (((Ln)))∞n=0 and ~R := (((Rn)))∞n=0.

By (i), ~L is increasing and is bounded above by b. Since
a bounded monotone seq must converge, L∞ := limn→∞ Ln

exists; it is in interval [a, b], courtesy (i).
Thus f is defined –hence continuous– at L∞, so f (L∞)

equals limn f (Ln). And f (L∞)
must
≤ 0 since each f (Ln) ≤ 0.

Analogously, f (R∞) := limn→∞ f (Rn) exists, and is
non-negative. Furthermore

R∞ − L∞ = lim
n→∞

[Rn − Ln] , by what thm?,

= lim
n→∞

[ 1
2 ]n · [b − a] , by (iii) and induction,

= 0 .

Thus R∞ and L∞ equal a common value, call it c, in inter-
val [a, b]. The preceding paragraphs tell us that f (c) ≤ 0
and f (c) ≥ 0; so f (c) must be zero. Hence c < {a, b}. �

12: Addition-Cts thm. The addition operation C×C→C is
continuous. Restated: Suppose ~x, ~y ⊂ C with lim(~x) = α

and lim(~y) = β. With pn := xn + yn, then, lim(~p) = α + β.♦

Proof. Fix a posreal ε. Take N large enough that

TailN(~x) ⊂ Bal ε
2
(α) and TailN(~y) ⊂ Bal ε

2
(β) .

Each index k has pk − [α + β] = [xk − α] + [yk − β]. For
each k ≥ N, then,∣∣∣pk − [α + β]

∣∣∣ ≤ |xk − α| + |yk − β| ≤
ε
2 + ε

2 = ε. �

Remark. The same thm and proof hold for addition on a
normed vectorspace; simply replace |·| by the norm ‖·‖. �

13: Mult-Cts thm.The multiplication operationC×C→C is
continuous. Restated: Suppose ~x, ~y ⊂ C with lim(~x) = α

and lim(~y) = β. With pn := xn · yn, then, lim(~p) = α · β. ♦

Proof. WELOG |β| ≤ 7. Since ~x converges, necessarily
the Diam(~x) is finite; WELOG

∀ posints n: |xn| ≤ 50 .†:

For each posint n, adding and subtracting a term gives
xnyn − αβ = xnyn − xnβ + xnβ − αβ

= xn[yn − β] + [xn − α]β .

Taking absolute-values, then upper-bounding, yields

|xnyn − αβ| ≤ |xn| · |yn − β| + |xn − α| · |β|‡:
≤ 50 · |yn − β| + |xn − α| · 7 ,

by (†) and the first sentence.
Fix a posreal ε. Since lim(~y) = β and lim(~x) = α, we

can take K large enough that each n ∈ [K ..∞) satisfies

|yn − β| ≤
ε/2
50

and |xn − α| ≤
ε/2
7
.

Plugging these estimates in to (‡) gives that

|xnyn − αβ| ≤ 50 · ε/250 +
ε/2
7 · 7

note
==== ε ,

for each n ≥ K.
As this holds for every ε positive, lim(~x · ~y) indeed

equals αβ. �

Normed VSes and MSes
A norm ‖·‖ , on a real or complex vectorspace W, is a map
W→[0,∞) such that ∀u, v ∈W:

N1: ‖u‖ = 0 IFF u = 0.
N2: ∀ scalars α: ‖αu‖ = |α| · ‖u‖.
N3: ‖u + v‖ ≤ ‖u‖ + ‖v‖.
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Metric Spaces. On a set X, a metric m is a map
X×X→[0,∞) such that ∀x, y, z ∈ X:

MS1: m(x, y) = 0 IFF x = y.

MS2: m(x, y) = m(y, x).

MS3: m(x, z) ≤ m(x, y) + m(y, z).

Evidently, a norm ‖·‖ defines a metric m, by

∀u, v ∈W: m(u, v) := ‖u − v‖ .

Equivalent metrics. Use Opn(m) for the collection of
open sets that metric m determines; so Opn(m) ⊂ P(X).
Say that two metrics m and d, on the same space, are topo-
logically equivalent (topo-equiv) if Opn(m) = Opn(d). We

write m
Topo
� d.

If m
Topo
� d and m and d have exactly the same Cauchy

seqs, then they are Cauchy equivalent, written m
Cau
� d.

Examples of metrics. Let’s first look at one-dimen-
sional examples.

E1. Let S be the unit circle
{
(((x, y)))

∣∣∣ x2 + y2 = 12}. It has
an arclength-metric dArc, and a chordal metric dCh. E.g,

dArc-Diam(S) = π , and

dCh-Diam(S) = 2 .

Evidently, dArc
Cau
� dCh. �

E2. I define the arctan metric, α, on R and on

R
synon
====== R̈ := { ∞} t R t { ∞} = [ ∞, ∞] .14:

For points x, y ∈ R, define (using dArc)

α(x, y) :=
∣∣∣arctan(x) − arctan(y)

∣∣∣ .
Note that arctan( ∞) = π

2 and arctan( ∞) = π
2 . And α

is topo-equiv to the usual metric on R, but they are not
Cauchy-equivalent.

The set (14) is variously called the extended reals or the
2-point compactification of R. �

E3. The stereographic metric, σ, on R and on

Ṙ := R t {∞} ,15:

comes from a projection, as did the arctan-metric. Recall

the circle S from (E1). Let
◦

S be the “punctured circle”,
where we removed the “north pole” NP := (((0, 1))). We

have two homeomorphisms, f :
◦

S→R and its inverse-fnc

g:R→
◦

S. They are defined by a diagram. (See blackboard.)
A bit of algebra shows that

f
(
(((x, y)))

)
= x

1−y ;

g(t) = 1
t2+1 · (((2t, t2 − 1))) .

16:

We extend these maps to f :S→Ṙ and g:Ṙ→S, by

f (NP) := ∞ and g(∞) := NP .16′:

Finally, our stereographic metric is: ∀ p, q ∈ Ṙ,

σ(p, q) := dCh
(
g(p), g(q)

)
.16′′:

The set (15) is called the projectively extended reals or
the 1-point compactification of R. �

Examples of normed-VSes. For a posint N, let’s define
a family of norms on N-dimensional space R × N. . . × R. It
will be convenient to use (2), P.2, and write this VS as RJ ,
where J is the index-set J := [0 ..N).

For exponent p ∈ [1,∞), define the `p-norm (“little-Lp

norm”) by

‖u‖p :=
[∑

k∈J
|uk|

p
]1/p

. Also define

‖u‖∞ := supk∈J |uk| .
17A:

One often uses `p = `p(J) as the name of the VS; here,
since J is finite, the VS is RJ . A bit of argument shows

∀u ∈ RJ: lim
p↗∞
‖u‖p = ‖u‖∞ .17B:

Infinite index-sets. Now let J := N, the set of real-valued
sequences. What should our vectorspace `p(J) be?

Take the case p := 1. As an example, the constant-7
sequence ~7 has infinite♥2 `1-“norm”; so we don’t want ~7
in `1. So for each p ∈ [1,∞] we define, using (17A),

`p(J) :=
{
v ∈ RJ

∣∣∣∣ ‖v‖p is finite
}
.17C:

One can check that this set is sealed under vector-addition,
so it is a vector subspace of RJ . �

♥2For each p ∈ [1,∞), indeed, ‖~7‖p = ∞. OTOHand, ‖~7‖∞ = 7.

Filename: Problems/Analysis/Calculus/notes-AdvCalc.latex



Prof. JLF King Topological Spaces Page 6 of 32

Supremum-norm. On a MS X, let C(X) or C0(X) denote
the set –indeed, the vectorspace– of continuous functions
X→R. For f ∈ C(X), define∥∥∥ f

∥∥∥
sup

:= sup
x∈X
| f (x)| .

Since this can take on the value ∞, we drop to the vector-
subspace of bounded continuous fncs,

CBnd(X) :=
{
f ∈ C(X)

∣∣∣ ‖ f ‖sup < ∞
}
.17D:

This pair
(((
CBnd(X) , ‖·‖sup

)))
is a normed-VS. If X is com-

pact then –we’ll later discover– every cts fnc is bounded.�

The following thm is easy, when J is finite, but takes
some work when the index-set is infinite. (A Banach space
[don’t panic] is a complete normed-vectorspace.)

18: `p spaces are Banach spaces.Fix an indexing-set J.
Then for each p ∈ [1,∞], the space `p(J) is complete in
the metric induced by ‖·‖p. ♦

All the foregoing holds mutatis mutandis for R replaced
by C, the complex numbers. Equation (17B), when stated
appropriately, holds even when J is infinite.

Topological Spaces
A TS Ω has a collection U ⊂ P(Ω) of sets that we call the
open sets. Family U is required to satisfy:

TS1: U owns ∅ and owns Ω.

TS2: ∀A, B ∈ U, the intersection A ∩ B ∈ U.

TS3: For each collection A ⊂ U: The union
⋃

(A) is
in U. (Note that

⋃
(A) is the set of points ω ∈ Ω for which

there exists a set V ∈ A with V 3 ω.)

Let’s use Opn(Ω) for this collection U, and use Cld(Ω) for
the family of closed subsets. Topologists tend to be biased
toward opens sets, and call Opn(Ω) “the topology of Ω”.
This TS is metrizable if there exists a metric m on Ω for
which Opn(m) = Opn(Ω).

Classification of properties. A concept/property on/of
a space Ω is (purely) topological if it can be determined
solely by knowing Opn(Ω). On a MS, a property is metric
if it can be determined from the metric. E.g Diam(Ω) is
a metric property, but whether Ω is connected is purely a
topological property.

Perhaps surprisingly, convergence of a sequence
“lim(~x) = q” is just a topological property. For it can
be stated as

For each open U 3 q, there exists an index
N = N(U) for which TailN(~x) ⊂ U.19:

The notation suggests that a sequence can have at most one
limit, and this is true for TSes with the Hausdorff separa-
tion property (which trivially holds in MSes):

For each pair of distinct points α, β ∈ Ω, there exist
disjoint open sets A 3 α and B 3 β.20:

For if seq ~x converges to both α and β, then ∃J,K with
TailJ(~x) ⊂ A and TailK(~x) ⊂ B. Setting N := Max(J,K)
gives the ### that nv-set Range

(
TailN(~x)

)
lies in both A

and B.
A TS with property (20) is called a Hausdorff space;

agree to use HS to abbreviate this.

Closure/Interior/Bdry etc. Fix a TS Ω and a set S ⊂ Ω.
A point q ∈ Ω is a “closure point of S ” if:

∀Vopen 3 q, the intersection V ∩ S , ∅ .21:
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Use ClΩ(S ) for the set of Ω–closure-points of S . Easily

ClΩ(S ) is Ω-closed, and equals the intersection of all Ω-closed

supersets of S ; hence, it is the smallest such.
21′:

A point q ∈ Ω is an “interior point of S ” if:

∃Vopen 3 q such that V ⊂ S .22:

Use ItrΩ(S ) for the set of Ω–interior-points of S . And

ItrΩ(S ) is Ω-open, and equals the union of all Ω-open subsets

of S ; hence, it is the largest such.
22′:

A set S is “a Ω-neighborhood of a point q” if ItrΩ(S ) 3 q.
Equivalently, ∃Uopen with S ⊃ U 3 q. Write this as

q
nbhd
∈ S or S

nbhd
3 q .

Replacing q by a set, A, we say that “S is a neighborhood
of set A” if Itr(S ) ⊃ A. Analogously, write this relation as

A
nbhd
⊂ S or S

nbhd
⊃ A .

The “Ω-boundary of S ”, written ∂Ω(S ) or BdryΩ(S ), is
Cl(S ) ∩ Cl(Ω r S ).

A point q ∈ Ω is a “cluster point of S ” iff

∀Vopen 3 q : Intersection V ∩ S is infinite.21′′:

Use ClustΩ(S ) for the S ’s set of cluster♥3 points.
Switching from sets to sequences, a point q is

“ a limit-point♥3 of sequence ~x ”

if ~x has some subsequence which converges to q.

Isomorphisms. A map ϕ:Ω↪�X between two TSes is a
homeomorphism♥4 if ϕ is a bijection st.:

For each open set Λ ⊂ Ω, the forward-image
ϕ(Λ) is X-open. And for each open set S ⊂ X,
the inverse-image ϕ 1(S ) is Ω-open. (Looking

ahead, each of ϕ and ϕ 1 is continuous.)

23:

A homeomorphism is a “topological isomorphism”.
Between two MSes (((Ω, µ))) and (((X, d))), an isometry♥5

is a bijection f :Ω↪�X which preserves distance: For all
α1, α2 ∈ Ω, we have d

(
f (α1), f (α2)

)
= µ(α1, α2).

♥3Terms cluster point, accumulation point and limit point are related.
Alas, textbooks vary as to which term they assign to which concept.
♥4From Greek oµoιoς (homoios) “similar”, and µoρφη (morph)

“form”, “shape”.
♥5From Greek ισoς (isos), “equal”, and µoρφη (morph).

Defn: Relative topology. In a TS Ω with subset X, how
should we define the X-open subsets? Motivated by the
Induced-topology Lemma, (6), we specify that

A subset U ⊂ X is X-open IFF there exists an
Ω-open set Û such that Û ∩ X = U.

24:

The collection of such sets U is indeed a topology on X
(fulfilling axioms (TS1,2,3)). It is called the relative topology
or induced topology on X.

25: Lemma. For a subset S of a Hausdorff TS: A point q
is a cluster-point of S IFF each Vopen 3 q owns a point
of S different from q. Proof. Exercise. ♦

Locally Countably Generated spaces. Consider a MS
Ω and point q ∈ Ω. Evidently, by letting Un := Bal1/n(q),

There exists ~U, a countable family U1 ⊃ U2 ⊃ . . .

of Ω-open sets, each owning q. Moreover for each
open V 3 q, there is some n with V ⊃ Un.

26:

Such a ~U is called a “countable local-base for q”. A
TS Ω is LCG (locally countably-generated) if each q ∈ Ω has a
countable local-base. (The std phrase is “Ω is first-countable”.)

27: Sequence-Closure Lemma. In TS Ω, consider a
subset S ⊂ Ω and point q ∈ Ω.

a: If there exists a sequence ~σ ⊂ S with lim(~σ) = q, then
q ∈ Cl(S ).

b: Now suppose that Ω is LCG. If q ∈ Cl(S ) then ∃~σ ⊂ S
such that lim(~σ) = q, ♦

Proof. Leaving (a) as an exercise, let’s show (b).
Fix ~U as in (26). Each Un intersects S , since q ∈ Cl(S ),

so we may pick a point σn ∈ Un ∩ S .
Given an open V 3 q, there exists N with UN ⊂ V . For

each k ≥ N, then, σk ∈ Uk ⊂ UN ⊂ V . I.e, TailN(~σ) ⊂ V .�

� Every TS satisfies (27a). But conclusion (27b) can fail in a non-
LCG space. It fails in the cartesian-power space {0, 1}R.

Lemma 27 implies, in an LCG space, that a set is closed IFF it is
(sequentially-)inescapable. �
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Compactness
A TS X is sequentially compact (seq-cpt) if each X-
sequence has a X-convergent subsequence.

28: Lemma. In a MS Ω (Hausdorff & LCG, suffices), suppose
subset X is sequentially compact. Then X is Ω-closed. ♦

Proof. Fix an arbitrary Ω-convergent seq ~x ⊂ X. Let
ω := lim(~x) ∈ Ω. Since X is sequentially-cpt, there exists
an X-convergent subseq ~y ⊂ ~x; so z := lim(~y) is in X. But
~x is Ω-convergent, so ω must

===== z. Thus ω ∈ X.
This holds for each sequence ~x ⊂ X, so X is Ω-

inescapable. But Ω is a MS, so (27) applies and tells us
that X is Ω-closed. �

A TS X is cluster-point compact (cluster-pt cpt) if each
infinite subset S ⊂ X has a cluster-point in X.

29: Lemma. For a general TS Ω:

a: Sequentially compact =⇒ Cluster-point compact.

b: If Ω is LCG, then Cluster-point compactness implies
Sequential-compactness. ♦

Pf of (a).Consider an∞-subset S ⊂ X. For n = 1, 2, 3, . . . ,
pick a point

bn ∈ S r {b1, b2, . . . , bn−1} ;∗:

this is possible, since S is infinite. Since X is seq-cpt, there
is a subseq ~a ⊂ ~b which is X-convergent; let q := lim(~a).
Now ~a ⊂ ~b ⊂ S , so q is a closure-point of S . But ~a has
distinct terms, since ~b does, courtesy (∗). Thus q is, in
fact, a cluster-point of S . �

Pf of (b). Fix a seq ~b ⊂ X. A constant subseq is certainly
convergent, so WLOG no value in ~b occurs ∞ly-often.
Hence we can let ~c ⊂ ~b be the subsequence obtained by
keeping just the first occurrence of each value in ~b. Au-
tomatically, ~c has distinct terms, so {c`}∞`=1 is infinite, and
thus has a cluster-point; pick one such, and call it q.

For q, fix countable local-base ~U as in (26). Set N0 := 0.
For k = 1, 2, . . . , let Nk be the smallest index n > Nk−1 st.
cn ∈ Uk. Such an n exists, since Uk owns∞ly many points
from {c`}∞1 , and the ` 7→ c` map is injective.

Let ek := cNk . To show that seq ~e converges to q, fix an
open set V 3 q, then take K (smallest, say) so that UK ⊂ V .
But each index k ≥ K has

ek ∈ Uk ⊂ UK ⊂ V .

I.e, TailK(~e) ⊂ V . �

Covers. For X ⊂ Ω, an “Ω-cover of X ” is a collection
C ⊂ P(Ω) for which X ⊂

⋃(
C
)
. A subset S ⊂ C is a

subcover (of X) if
⋃(

S
)
⊃ X. The elements of a cover are

sometimes called patches.
An open cover has each patch open. Inconsistently, a

cover C is a finite cover if |C| < ∞.
A TS X is compact IFF each X-open-cover C, of X,

has (some folks say, “admits”) a finite subcover. In practice, X
is a subset of some TS Ω. Courtesy (24) (and (6), indirectly):

X is compact IFF each Ω-open-cover of X has
a finite subcover.

30:

31: Diameter/compactness Prop’n. Suppose Diam(XMS)
is infinite. Then X is not compact. ♦

Pf. Since X non-void (Diam>0), we can pick a point z ∈ X.
Let Bn be the center=z ball of radius-n. Thus C := {Bn}

∞
n=1

is an open-cover of X. It has no finite subcover, since such
would force Diam(X) < ∞. �

32: Compact-intervals theorem. For all reals a ≤ b, the
closed interval J := [a, b] is compact. ♦

Pf. WELOG, J = [3, 7]. Given an arbitrary cover C of J
by R-open sets, ISTProduce a finite subcover.

So our job is to show that 7 is good, where an x∈J is
“good” IFF there exists a finite subcollection F⊂C cov-
ering [3, x]. We’ll first show that this number,

z := sup{x ∈ J | x is good} ,†:

exceeds 3. We’ll then show that z is good, and equals 7.
Some patch P ∈ C owns 3, so ∃δ>0 with

P ⊃ [3 − δ, 3 + δ] .

So singleton {P} covers [3, 3 + δ]. WLOG 3+δ ≤ 7; thus
z ≥ 3 + δ. Hence

�� ��z > 3 .
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Also, some C-patch Q owns z. So ∃ε>0 with

Q ⊃ [z − ε, z + ε] ⊃ [z − ε, z] ,‡:

and we can shrink ε so that z − ε ≥ 3. (Here is where we

use that z exceeds 3.) Automatically (why?), the number z − ε
is good; let F⊂C be a finite family which covers [3, z−ε].
Then F ∪ {Q} covers [3, z]. I.e,

�� ��z is good .

Lastly, FTSOContradiction suppose z
?
< 7. Then we

could have taken ε so small that z+ε ≤ 7. But F ∪ {Q}
covers interval [3, z + ε], thus showing that z + ε is good;
And that rudely contradicts (†). �

Metric ideas related to compactness
A MS Ω is totally-bounded (abbrev.: TB) if: For each ε>0,
there exists a cover of Ω by finitely many ε-balls.

33: TB-iff-CauchySubseq Thm. MS X is totally-bounded
IFF each seq ~a ⊂ X has a Cauchy subsequence ~c ⊂ ~a.

Corollary. A MS is complete and totally-bounded IFF
it is sequentially compact. ♦

Proof: TotBnded ⇒Every-seq-has-a-CauchySubseq.

For each K = 1, 2, . . . we can, by hypothesis,

let BK
1 , B

K
2 , . . . , B

K
LK

be a finite list of radius- 1
K

balls, whose union is X.
33a:

Fixing a sequence ~a ⊂ X, our goal is to produce a subse-
quence which is Cauchy.

Define index sets I1 := Z+ ⊃ I2 ⊃ I3 ⊃ . . . , as follows.
At stage K, with IK−1 defined, let B be the first ball in
list (33a) that owns∞ly many indices from IK−1. I.e,

IK :=
{
i ∈ IK−1

∣∣∣ B 3 ai
}

is infinite.33b:

Automatically

Diam
(
{ai | i ∈ IK}

)
≤ Diam(B) ≤

2
K
.33c:

Let N1 := 1 and let each NK be the smallest element
of IK that exceeds NK−1; possible, courtesy (33b).

To see that sequence (((aNK)))∞K=1 is Cauchy, fix ε>0, then a
K with 2

K < ε. For each pair of indices j, ` dominating K,
note that N j ∈ I j ⊂ IK ; ditto N` ∈ IK . By (33c), then,

Dist(aN j , aN`
) < ε . �

Pf: Every-seq-has-a-CauchySubseq ⇒TB. FTSOC,
suppose X is not TB. So there exists a “bad” posreal ε st.

there is no finite cover of X by ε-balls.33d:

Use Bp to denote the radius-ε ball centered at a point p.
In X, pick points p1, p2, . . . , pK , . . . st. each

pK is in none of Bp1 , Bp2 , . . . , BpK−1 .

This process never gets stuck, courtesy (33d). Hence
(((pK)))∞K=1 is an (infinite) sequence, which certainly has no
Cauchy-subseq, since each two entries are at least ε apart.
Contradiction.♥6 �

Lebesgue number. In a MS Ω, a posreal r is a Lebesgue
number of an Ω-cover C if:

For each q ∈ Ω, there exists a patch P ∈ C for
which Balr(q) ⊂ P.

For want of a better term, say that Ω is a “cover-positive
space” if each open-cover has a Lebesgue number.

Note that Ω := Z is cover-positive; indeed r := 1 is a
Lebesgue number for every cover! That Z fails to be com-
pact does not contradict the below Compactness notions
Thm because. . . Z is not totally-bounded. �

� The equivalence in t.bel Compactness notions Thm does not hold
in a general TS; neither Compactness nor Sequential Compactness

implies the other. The uncountable product Y := {0, 1}R is compact, but
not seq-cpt. Conversely, equipping the first uncountable ordinal, ω1,
with the order-topology, gives a seq-cpt space that is not cpt. �

34: Compactness notions Theorem. In (((X, d))), a metric
space, TFAEquivalent:

a: X is sequentially-compact.
b′: X is totally-bounded and (metrically) complete.
b: X is totally-bounded and cover-positive. (Leb. number.)
c: X is compact.
d: X is cluster-point compact. ♦

Pf (a) ⇒ (b′). Seq-cptness gives totally-boundedness,
using (33). To get completeness, fix a Cauchy-seq ~a. By
seq-cptness, ~a has a convergent subseq; so (4C) implies
that ~a converges. �

♥6Note: In a space where this process Bp1 , Bp2 , Bp3 , . . . never gets
stuck, there is no reason for this collection of balls to cover X. Indeed,
there are MSes where for each r>0, no countable collection of r-balls
can cover the space.
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Pf (a)⇐(b′). Fix a seq ~a. Hypothesis (b′) and (33) show
that ~a has a Cauchy-subseq. And completeness forces this
subseq to converge. Hence X is sequentially-compact. �

Pf (a) ⇒ (b). We get totally-boundedness from (33).
FTSOC, suppose there exists an open-cover C with no

Lebesgue number. So, fixing posreals εn ↘ 0, there is a
point yn ∈ X st. ball Balεn(yn) lies in no C-patch.

By seq-cptness, ~y has a convergent subseq. Pick one
such, rename it ~y and let q := lim(~y). Since C covers X,
there exists a patch P ∈ C with P 3 q.

Since P is open, there exists δ>0 st. Bal2δ(q) ⊂ P. Pick
N big enough that εN < δ and Dist(yN , q) < δ. Now

BalεN (yN) ⊂ Bal2δ(q) ⊂ P .

Alas, this contradicts the “FTSOC” paragraph. �

Pf (b) ⇒ (c). Given an open-cover C, take a Lebesgue
number r>0. Since X is TB, there is a finite collection F

of radius-r balls that cover X. But r is a Leb-number for
C, so for each ball B ∈ F there is a patch P ∈ C that
includes B. Pick one such and call it B̃.

Hence C̃ := {B̃ | B ∈ F} is a finite family of C-patches.
But does it cover X? Yes, since

⋃(
C̃
)
⊃

⋃
(F) = X. �

Pf (c) ⇒ (d). (This implication holds in all Topological Spaces.)
Fix a subset S ⊂ X with no cluster-pts. To show S

finite, note that each point z ∈ X must have an open nbhd
Vz 3 z having finite intersection with S .

Family {Vz | z ∈ X} is an open cover of X. So there
exists a finite set F ≤ X st. {Vz}z∈F covers X. Thus

S = S ∩ X = S ∩
[⋃
z∈F

Vz
]

=
⋃
z∈F

[
S ∩ Vz

]
.

Being a finite union of finite sets, then, S must be finite. �

Pf (d) ⇒ (a). Follows from (29). �

For us, Euclidean space RD = R× D. . .×R, is finite di-
mensional and equipped with ‖·‖2, the Euclidean norm.

35: Product-space Convergence Lemma. In Ω := RD,
write the nth term in sequence ~x as

xn = (((b1
n, b

2
n, b

3
n, . . . , b

D
n ))) , with each bk

n ∈ R.

Then ~x converges in Ω IFF for each k = 1, . . . ,D, the seq
n 7→ bk

n converges in R. With βk := limn→∞ bk
n, moreover,

lim(~x) equals (((β1, . . . , βD))) ∈ Ω. Proof. Exercise. ♦

36: Heine-Borel theorem. In Euclidean space Ω := RD, a
subset K is compact IFF K is Ω-closed and bounded. ♦

Pf. WELOG, Ω = R×R. Let’s show that a closed rectangle

S := I × J , where I := [a, b] ⊂ R
and J := [c, d] ⊂ R,

is sequentially-compact. Consider a seq ~x ⊂ S , with

xn = (((αn, βn))) ∈ I × J .

Courtesy (32), Compact-intervals thm, and (34), our I is
seq-cpt. So we can drop to a subseq (and rename) so that,
now, n 7→ αn converges. Use cptness of J to subsequence
again. The new ~x converges, using (35), and this ~x is a
subseq of the original.

A closed subset, K, of a compact space is necessarily
[Exer: ] cpt. Now consider an Ω-closed and bounded set K.
Being bnded, there exist closed intervals I and J so that
I×J ⊃ K. Since K is Ω-closed, this K is automatically
I×J-closed; hence K is compact.

The converse. Fix an Ω-compact set K; necessarily
bounded, by (31). Were K not Ω-closed, there there’d be
a sequence ~x ⊂ K which converges to a point q ∈ Ω r K.
So no subseq could K-converge. �

Precompactness. In a topological space Ω, a subset X ⊂ Ω

is Ω-precompact if ClΩ(X) is compact.♥7

The Heine-Borel thm is tantamount to saying that the
precompact subsets of Euclidean space are precisely the
bounded subsets.

Trying to characterize the precompact subsets of a gen-
eral MS (((Ω, d))), leads naturally to the following nice prob-
lem. �

Exer 1. In MS (((Ω, d))), suppose a subset X ⊂ Ω is totally-
bounded. Must its closure Y := ClΩ(X) automatically be
totally-bounded too? �

(Yes, as shown by Andy, Michael R., Lindsay, Taylor, and . . . )

♥7Recall that compactness is an absolute notion. However, pre-
compactness depends on the closure operator, and is a relative no-
tion. As an example, the interval (0, 1) is R-precompact, but is not
Ω-precompact for Ω := [0, 1).
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Proof. (All balls here are Ω-balls.) Fix ε>0. The TBness of X
hands us a finite set F ⊂ X such that

The ε-balls
{
Balε(c)

}
c∈F cover X.†:

ISTProve that the [2ε]-balls with centers in F ⊂ X
note
⊂ Y

indeed cover Y . To this end, fix a point P ∈ Y . Being in
the Ω-closure of X, there exists an x ∈ X with d(x, P) < ε.
By (†), there exists a point c ∈ F with d(c, x) < ε. So

d(c, P) ≤ d(c, x) + d(x, P) < ε + ε ,

and the cavalry (i.e,
a

nequality) rides up and saves the day.�

Bufferable pairs of sets. (The following terminology is provi-

sional, and may get changed. But the Mathematics will remain. . . )
In a TS Ω, a disjoint pair of sets E1 and E2 is bufferable

if there exists disjoint open sets U j ⊃ E j. Usually just say
that “E1, E2 is a bufferable pair”.

Suppose that foo and fum are two properties that a
subset of Ω might or might-not have. We’ll say that
Ω is “foo:fum-buffered” if for each disjoint pair of sets,
a foo E1 and a fum E2, the pair (((E1, E2))) is bufferable.
Examples are: Ω might be compact:compact-buffered or
compact:closed-buffered.

We’ll call Ω point:compact-buffered if each point p
(technically, each singleton E1 := {p}) can be buffered from each
compact set E2 that does not own p. In this language,
“Ω is Hausdorff” means that Ω is point:point-buffered.

As an abbreviation, let “fum-buffered” mean fum:fum-
buffered. �

37: Compactness lemma. Consider a TS Ω.

a: If Ω is compact, then each Ω-closed subset is compact.

b: Suppose Ω Hausdorff. Then Ω is point:compact-buffered,
and each compact subset Y ⊂ Ω is Ω-closed. Further,
Ω is compact-buffered.

c: Suppose Ω is metrizable. If d is a metric consistent
with the topology, then (((Ω, d))) is

::::::::
complete. ♦

Proof of (a). (Let “open” mean “Ω-open”.) Take an Ω-closed
Y ⊂ Ω and Ω-open cover, C, of Y . Thus {Ω r Y} ∪ C is
an Ω-open cover of Ω. So it has a finite subcover (of Ω),
which we can write as {Ω r Y} ∪ F, where F ⊂ C is finite.
And therefore F covers Y . �

Proof of (b). Fix a point p ∈ ΩrY . For each point z ∈ Y ,
Hausdoffness gives disjoint open sets

Uz 3 p and Vz 3 z .

Compactness of Y asserts a finite set Z ⊂ Y such that{
Vz

}
z∈Z covers Y . It follows that these disjoint sets,

Û :=
⋂

z∈Z
Uz and V̂ :=

⋃
z∈Z

Vz ,

are open. Since Û 3 p and V̂ ⊃ Y , we have buffered the
p,Y pair.

Renaming Û to Up, we have that⋃
p ∈ΩrY

Up
note
==== Ω r Y

is Ω-open. Thus Y is Ω-closed.
Lastly, fix disjoint compact sets C,Y ⊂ Ω. For each

point p ∈ Ω r Y , there exist open sets Up 3 p and Vp ⊃ Y ,
with Up ∩ Vp = ∅. Since

{
Up

}
p∈C is an open-cover of C,

there exists a finite set F ⊂ C so that
{
Up

}
p∈F already

covers C. Automatically, these open sets,

Û :=
⋃

p∈F
Up and V̂ :=

⋂
p∈F

Vp ,

are disjoint from each other. Finally, Û ⊃ C and V̂ ⊃ Y . �

Pf of (c). Fix a Cauchy sequence ~x. Sequential-compact-
ness says there exists a convergent subseq ~y ⊂ ~x. So (4C)
of the MS-sequence Thm tells us that ~x converges. �
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Continuity
A map f :(((X, d)))→(((Ω, µ))) is “continuous at q ∈ X ” if:

∀ε>0,∃δ = δ(q, ε)>0 such that:
∀x ∈ X, if d(x, q) < δ then µ

(
f (x), f (q)

)
< ε.

I.e, setting ω := f (q): Balδ(q) ⊂ f 1(Balε(ω)
)
.

38:

And “ f is continuous” if it is cts at each point q of its
domain. Notice that the δ = δ(ε, q) depends on both ε

and q. In contrast, f is uniformly continuous if we can
quantify q

:::::
after δ:

∀ε>0, ∃ δ = δ(ε) > 0 st. for each q ∈ X:
Balδ(q) ⊂ f 1

(
Balε( f (q))

)
.39:

Equivalently: ∀ε>0,∃δ>0 st. ∀x,q ∈ X, if d(x, q) < δ then
µ
(
f (x), f (q)

)
< ε. Exer: Prove this equivalence!

Metricless continuity. Our defn (39) of uniform continuity
seems to really use a metric. But just “continuity at a
point”, (38), can be stated purely in terms of open sets:

For each Ω-open Λ 3 f (q), its inverse-image
f 1(Λ) is a neighborhood♥8 of q.38′:

(Again equivalently: Each Ω-nbhd Λ of f (q) has its inverse-image be-

ing a nbhd of q.) Indeed, for a map f :X→Ω between gen-
eral TSes, we take (38′) as our definition of

“ f is continuous at q”.

We use Cty( f ) for the continuity set of f ; those q ∈ X at
which f is continuous. Use

DisCty( f ) := X r Cty( f )

for f ’s . discontinuity set See examples (45) and (47). �

In the case where f is continuous everywhere we can,
in (38′), simplify “neighborhood” to “open set”.

40: Baby continuity Lemma. A map f :X→Ω between
topological spaces is continuous IFF f 1(Λ) is X-open,
for each Ω-open set Λ. Proof. Exercise. ♦

41: Uniform-continuity Theorem. Consider a continuous
map f :(((X, d)))→(((Ω, µ))) between MSes. If X is compact, then
f is uniformly continuous. ♦

♥8Even with f continuous at q, discontinuities at other points can
ruin f 1(Λ) being open; whence the weaker requirement that f 1(Λ)
have q in its interior.

Proof. FTSOC, suppose we have an ε>0 for which no δ
is small enough. I.e, there are seqs ~a,~b ⊂ X such that

lim
n→∞

d(an, bn) = 0 . And ∀n: µ
(

f (an), f (bn)
)
≥ ε .†:

Since X is seq-cpt, are indices N1 < N2 < . . . so that
α := lim j→∞ aN j exists in X. Rename ~a to this (((aN j)))

∞

1 , by
re-indexing ~a and ~b. Now lim(~a) = α, and (†) still holds.

Use seq-cptness again to drop to a convergent subseq
of ~b; then re-index. So now, β := lim(~b) exists.

Continuity of f at α and β, and (†), implies (Exer: do this!)
that

µ
(
f (α), f (β)

)
≥ ε

recall
> 0 .‡:

OTOHand, the
a

nequality and (†) imply (Exer: show this!)
that d(α, β) = 0. Hence α = β. But this contradicts (‡). �

2nd proof. Fix ε>0. Let D be the set of ε-balls in Ω. So

C :=
{
f 1(Λ)

∣∣∣ Λ ∈ D
}

is an open-cover of X, courtesy (40). By the Compact-
ness notions theorem, C has a Lebesgue number r>0.

Consider two points x, y ∈ X less than r apart. Since
x, y ∈ Balr(x), there exists a C-patch P = f 1(Λ) owning
both. Hence f (x) and f (y) lie in a common Ω-ε-ball, Λ. �

Defn. Examine map f :(((X, d)))→(((Ω, µ))) between MSes. The
posreal 7 is a Lipschitz bound for f if:

∀x,y ∈ X: Distance µ
(

f (x), f (y)
)
≤ 7 · d(x, y) .

A fnc f is Lipschitz continuous IFF ∃U ∈ [0,∞) so that:

∀x,y ∈ X: Distance µ
(
f (x), f (y)

)
≤ U · d(x, y)42:

Such a U is called “a Lipschitz bound for f ”. The in-
fimum of such is “the Lipschitz constant of f ”, and is
written

�� ��Lip( f ) . Easily,

Lipschitz continuity =⇒ uniform continuity .

The converse does not hold: The function R→R by
x 7→ x1/3 is uniformly –but not Lipschitz– continuous.
This also is an example of an invertible uniformly-cts
function whose fnc-inverse is not uniformly continuous.�
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43: Lip-Diff Lemma. On an interval J, suppose f : J→R is
differentiable. Then f is Lipschitz continuous IFF

U := supx∈J | f
′(x)|

is finite; and then U is Lip( f ), the Lipschitz constant
of f . ♦

Proof of (⇐). Fix x ≤ y in J. The Mean-Value Theorem
asserts a point c ∈ [x, y] such that

f (x) − f (y) = f ′(c) · [x − y] .

Consequently, | f (x) − f (y)| ≤ U · |x − y|. �

Proof of (⇒). Exercise. �

Definition. A map h:(((X, d)))→(((Ω, µ))) is biLipschitz if h is
invertible, and both h 1 and h are Lipschitz maps.

Two metrics m and d, on the same space X, are Lip-
schitz equivalent (Lip-equiv) if the identity map

x 7→ x from (((X, d)))→(((X, µ)))

is biLipschitz. We write m
Lip
� d. �

44: Lemma. If m
Lip
� d then m

Cau
� d. Proof. Exercise.♦

45: Indicator functions. Fix a set Ω. Each subset S ⊂ Ω

yields a fnc 1S :Ω→{0, 1}, the indicator function

1S (x) :=
1 when x ∈ S

0 when x ∈ ΩrS

 .
Since the notation doesn’t show the space (i.e, we don’t write

1S ,Ω), we sometimes write “1S :Ω→R” to emphasize the
domain. For example: What is the discontinuity-set of fnc
1Q:R→R? Answer: All of R. But the discontinuity-set of
1Q:Q→R is empty; this fnc is constant-1, hence cts.

As another example, let J be the set of positive rationals
whose square lies between 4 and 7. Let g mean 1J:Q→R,
and f mean 1J:R→R. Use h for 1[2,

√
7]:R→R. Then

DisCty(g) = {2} ⊂ Q , and

DisCty( f ) = [2,
√

7] ⊂ R .

But DisCty(h) = {2} ∪ {
√

7}, just a doubleton.

46: Prop’n. For a subset E ⊂ Ω of a topological space,
DisCty(1E) = ∂Ω(E). Proof. Exercise. ♦

Ruler function.We are born grokking the dyadic rationals,

D :=
{ n
2e

∣∣∣∣ n ∈ Z and e ∈ N
}
.

Say that a fraction “n/d” is in standard form (LCTerms?)
if n ∈ Z and d ∈ Z+, with n ⊥ d. (Std.form is unique. As a

fraction, the std. form of 0 is 0/1.)
From a subset S ⊂ Q, define the “S -ruler function”

RS :R→R by

RS
(n
d

)
:=

1
d
, for n

d ∈ S in std.form;

RS (x) := 0 , for x ∈ R r S .
47:

In the special case where S := D, we call this just the ruler
function R := RD. �

Exer. 47.1: Ruler function RS is idempotent IFF the sub-
set S ⊂ Q satisfies . . . What?

The ruler fnc is interesting in that both its cty and its
discty sets are dense in R, as the next Observation shows.

48: Obs. For S ⊂ Q arbitrary, DisCty(RS ) = S . ♦

Proof of DisCty(RS ) ⊃ S . Exercise. �

Proof of DisCty(RS ) ⊂ S . FTSOC, suppose a λ ∈ R r S
is a discty-point of RS . Then there exists a posint D and
sequence rn → λ with each RS (rn) ≥ 1

D . So each rn is in
the set QD from (49), below. But (49) implies that QD has
no cluster-points. Thus ~r is eventually-constant, WLOG
constant. So each rn equals λ. Since RS (λ) = 0, this is an
outrageous contradiction. �

49: Lem HW1. For N a posint, let QN be the set of
ratios k

` with k ∈ Z and ` ∈ [1 ..N]. Produce a posint PN

so that: For all distinct x,y ∈ QN , nec. |x − y| ≥ 1/PN . ♦
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Proof. Note that Q1 is Z, so P1 = 1. It turns out that
the value PN := N! works, but we can get a better formula
when

�� ��N ≥ 2 , which we henceforth consider.
Firstly, 1

N−1 −
1
N = 1

[N−1]N . So PN ≥ [N−1]N. Let’s
establish the reverse inequality, thus proving

PN = [N−1]N , for each N ∈ [2 ..∞).49.1:

Write x = α
k and y =

β
` as ratios of integers, with k and `

in [1 ..N]. Setting L := LCM(k, `), observe that

x − y =
m
L
, for some integer m. This

m , 0, since x , y.

Hence |x − y| ≥ 1
L , so PN is less-equal the max-value that

L can assume. Thus

PN ≤ Max
{
LCM(k, `)

∣∣∣∣ k,` ∈ [1 ..N]
}
.49.2:

If k = `, then LCM(k, `) ≤ N. Thus LCM(k, `) ≤
[N−1]N, since N−1 ≥ 1. Conversely, if k < `, then
LCM(k, `) ≤ k · ` ≤ [N−1]N. In either case, we get the
“reverse inequality”, courtesy (49.2). Hence (49.1). �

50: Lem HW2. Consider λ ∈ R and integers bn>0 and
an (not-nec coprime) such that rn → λ, where rn := an

bn
, yet

each rn , λ. Then bn → ∞, as n↗∞. ♦

Piecewise-linear functions. Consider a closed interval
J := [a, b] ⊂ R and a tuple ~p of cutpoints of J,

a = p0 < p1 < p2 . . . < pN−1 < pN = b .

Call the subinterval Bk := [pk−1, pk] the “kth block of ~p”.
A function g: J→R is “piecewise linear on J ”

i: if g is continuous and

ii: each restriction g�Bk has a straight-line graph.

Using the heights hk := g(pk), here is the formula for g(x)
when x ∈ B4:

g(x) :=
[ x−p4

p3−p4
· h3

]
+

[ x−p3
p4−p3

· h4
]
.

Turning this around, a cutpoint-tuple ~p and a “height-
tuple” ~h = (((h0, h1, . . . , hN))) of reals, engenders a P.L
(piecewise linear) fnc. For x ∈ Bk,

PL~p,~h(x) :=
[ x − pk

pk−1 − pk
· hk−1

]
+

[ x − pk−1

pk − pk−1
· hk

]
.51:

More generally, we can have PL~p,~h map interval J into a
real vectorspace W. Each hk is a vector in W, and each
ratio, e.g x−p3

p4−p3
, is a scalar in R. �

Continuity and VSes. Given TSes X and Ω, let C(X→Ω)
be the set of continuous functions X→Ω.

Usually Ω is a MS; suppose µ is its metric. We can
define an extended-metric µsup on C(X→Ω) by:

µsup
(
f , g

)
:= sup

x∈X
µ
(
f (x), g(x)

)
.52:

An f ∈ C(X→Ω) is bounded if Diam
(
Range( f )

)
< ∞.

Use CBnd(X→Ω) for these; note that on this set, µsup is an
actual metric.

When Ω is a real-VS W, the set
�� ��V := C(X→W) be-

comes a R-VS under pointwise operations

[ f +g](x) := f (x) + g(x), and [5 f ](x) := 5 f (x) .

Putting a norm ‖·‖ on W engenders the supremum-norm∥∥∥ f
∥∥∥

sup
:= sup

x∈X
‖ f (x)‖ , on V,

which is necessarily finite when X is compact, thus mak-
ing (((V, ‖·‖sup))) a normed-VS. (When X non-compact, we can use

CBnd(X→W) as a normed-VS.) �

53: P.L-approximation thm. Fix J := [a, b] ⊂ R, normed-
VS (((W, ‖·‖))), and continuous f : J→W. Then, given ε>0,
there exists a P.L function g: J→W with ‖ f − g‖sup ≤ ε. ♦

Proof. For free, f is unif-cts since J is cpt. Pick posint N
large enough that, with δ := b−a

N : For all pairs x, y ∈ J,

|x − y| ≤ δ =⇒ ‖ f (x) − f (z)‖ ≤ ε/2 .

Define cutpoints pk := a + kδ and heights hk := f (pk), for
k = 0, 1, . . . ,N. Is the g := PL~p,~h function ε-close to f ?

WELOG, fix an x ∈ B4. Since g�B4 is linear,

‖g(p4) − g(x)‖ ≤ ‖g(p4) − g(p3)‖

= ‖h4 − h3‖
Why?
≤ ε/2 .

Now ‖x − p4‖ ≤ δ, so ‖ f (x) − f (p4)‖ ≤ ε/2. By thea
nequality, difference ‖ f (x) − g(x)‖ is less-equal the sum

‖ f (x) − f (p4)‖ + ‖ f (p4) − g(p4)‖ + ‖g(p4) − g(x)‖

≤ ε/2 + ‖h4 − h4‖ + ε/2 = ε . �
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Defn. A fnc h := PL~p,~h is a rational-P.L function if every
cutpoint and height is rational. More generally, given an
(open, closed, half-open) interval I ⊂ [p0, pN], its restriction
f := h�I is also called “Q–piecewise-linear”. This allows
us to define “rational-P.L” on intervals whose endpoints
are not rational. �

54: Theorem. On a bounded interval J ⊂ R, have Q

denote the set of Q-piecewise-linear functions. Then Q is
countable. Moreover, Q is ‖·‖sup-dense in the set of all P.L
fncs on J.

When J is compact, then Q is ‖·‖sup-dense in C(J→R).
Thus C(J→R) becomes a CSD normed-VS. ♦

Proof. Exercise. Use the P.L-approximation thm. �

Uniform Convergence
Consider a TSes X and Ω, as well as functions g, fn:X→Ω.
Let ~f denote this sequence ((( f1, f2, . . . ))). Say that
“Sequence ~f converges pointwise to g” if

∀x ∈ X: fn(x)
n→∞
−→ g(x) .

Now suppose (((Ω, µ))) is a MS, and use µsup from (52) as
a metric on fncs. If we have that

µsup( fn, g)→ 0, as n↗∞,∗:

then say that “sequence ~f converges uniformly to g”.
When Ω is a normed-VS (((Ω, ‖·‖))) then we can restate (∗)

as ‖ fn − g‖sup → 0.

55: Uniform-convergence theorem. With notation from

above: If each fn is continuous, and fn
uniformly
−−−−−−−→

n→∞
g, then g is

continuous.
Now suppose that (((Ω, µ))) is a complete metric-space

(a CMS). Then Λ := CBnd(X→Ω) is complete with respect
to the µsup metric. ♦

Proof. Let m denote the metric µsup from (52).
Fix a point P ∈ X and an ε>0. Pick N large enough that

m( fN , g) ≤ ε; WELOG, suppose N = 7.
Since f7 is continuous at P, there exists an X-open set

U 3 P for which: If x ∈ U then

µ
(

f7(x), f7(P)
)
< 3ε .

For such an x, note that µ
(
g(x), g(P)

)
is dominated by

µ
(
g(x), f7(x)

)
+ µ

(
f7(x), f7(P)

)
+ µ

(
f7(P), g(P)

)
≤ ε + 3ε + ε = 5ε .

Completeness of Λ. Consider an m-Cauchy sequence
~f ⊂ Λ. Fix a z ∈ X. For each pair of indices j and k,

µ
(

f j(z), fk(z)
)
≤ m

(
f j, fk

)
;

so n 7→ fn(z) is µ-Cauchy. Call its limit g(z).
This defines a (not-nec cts) fnc g:X→Ω, which is the

pointwise limit of ~f. Exer: Show fn → g uniformly.
To demonstrate that~f is Λ-convergent, we need to prove

that the above g is in Λ, i.e, that g is continuous and
bounded. The continuity follows from the uniform con-
vergence. As for boundedness, pick N large enough that
m( fN , g) < 17. The

a
nequality then shows (Exer: exercise)

that

Diam
(
Range(g)

)
≤ Diam

(
Range( fN)

)
+ 34 . �

56: Weird Appl. of Unif-Conv. Suppose fn
unif.
→ g, for

maps g, fn:XTS→(((ΩMS, µ))). Consider points y, zk ∈ X with
zk → y. If y ∈ Cty(g) then

lim
n→∞
k→∞

fn(zk) = g(y) .†: ♦

Proof. Fix ε>0. Choose an index N large enough that

µsup( fn, g) ≤ 2ε , for each n ≥ N.

Since g is continuous at y, we can take K so that

µ
(
g(zk), g(y)

)
≤ ε , for each k ≥ K.

For all n ≥ N and k ≥ K, then,

µ
(

fn(zk), g(y)
)
≤ µ

(
fn(zk), g(zk)

)
+ µ

(
g(zk), g(y)

)
≤ 2ε + ε = 3ε .

‡: �

Exer 2. Modify the proof of Uniform-convergence thm

to show: Suppose fn
unif.
→ g, for maps g, fn:(((X, d)))→(((Ω, µ))). If

each fn is
:::::::::
uniformly continuous, then so is g. �

57: Unif-conv Composition Lemma. Consider sets Z,Y
and MSes X and Ω. For maps fn, g:Y→X, suppose

fn
unif.
−−−→ g, as n→ ∞. Then the following hold.

i: For an arbitrary fnc β:Z→Y: [ fn ◦ β]
unif.
−−−−→
n→∞

[g ◦ β].

ii: Suppose map α:X→Ω is uniformly continuous. Then

[α ◦ fn]
unif.
−−−→ [α ◦ g], as n→ ∞. ♦

Proof. Exercise 3. �
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What does nesting give? Use “ fn↘ g” to mean, for
each x, that n 7→ fn(x) is decreasing, and decreases to g(x).

58: Nested uniform-convergence thm (Nested UC). On a
metric space X, suppose functions g, fn:X→R are continu-

ous, and fn↘ g pointwise. Then fn
uni f ormly
−−−−−−−→

n→∞
g, if either:

i: Space X is compact, or

ii: ∀ε>0, ∃ an index K such that the set{
x ∈ X

∣∣∣ [ fK − g](x) ≥ ε
}

is compact. ♦

Preliminary reduction. Use ‖·‖ for ‖·‖sup. Replace “ fn”
by fn−g (which is continuous, since fn and g are) and replace “g”
by 0, the zero-function. By hypothesis,

f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0, pointwise.

So n 7→ ‖ fn‖ is decreasing (non-increasing) and thus ~f con-
verges uniformly IFF ∀ε,∃N with ‖ fN‖ ≤ ε.

In particular, ISTShow that some subseq of~f converges
uniformly. �

Proof of (i). FTSOC, suppose infn ‖ fn‖ dominates, say, 7.
So there are points yn ∈ X with

fn(yn) ≥ 6 .†:

Since MS X is cpt, it is seq-cpt, so we can subsequence
and renumber so that

z := lim
n→∞

yn exists in X.‡:

But fn(z)
n→∞
−→0. WLOG f1(z) < 5. Since f1 is continuous

at z, there is an open set U 3 z on which f1�U < 5.
But each fn ≤ f1, so f1(yn) ≥ fn(yn) ≥ 6, by (†). Thus

no yn point is in U. This is a grave insult to (‡). �

Pf of (ii). Fix ε>0. Pick K st. C := {x ∈ X | fK(x) ≥ ε}
is compact. Part (i) tells us the restriction fn�C , as n→∞,
converges uniformly to 0�C . So we can pick an N large
enough that ‖ fN�C‖ ≤ ε. We can also have taken N ≥ K.
Thus ∥∥∥ fN�[XrC]

∥∥∥ ≤ ∥∥∥ fK�[XrC]
∥∥∥ ≤ ε .

Hence ‖ fN‖ ≤ ε. �

2nd proof of (i). Fix ε>0. I’ll produce an N with ‖ fN‖ ≤ ε.

Fix a z ∈ X. Since fn(z) → 0, there exists an index L

with fL(z) < ε; let Lz be the smallest such. Thus

Uz :=
{
x ∈ X

∣∣∣ fLz(x) < ε
}
,

is an open set owning z.
Since {Uz | z ∈ X} is an open cover of X, there exists a

finite set E ⊂ X with {Uz | z ∈ E} covering X. I claim that

N := Max{Lz | z ∈ E}

satsifies ‖ fN‖ ≤ ε. To see this, fix an arbitrary y ∈ X.
There exists a z ∈ E with Uz 3 y. Thus

0 ≤ fN(y) ≤ fLz(y) ≤ ε ,

since ~f is nested and N ≥ Lz. �

CEXes to Nested UC.On X := R, let fn be zero on ( ∞, n],
growing linearly from zero to three on [n, n+1], and three
on [n+1, ∞). So ~f decreases pointwise to 0, but each
‖ fn‖ = 3. Ah!, but our X is not compact.

On compact X := [5, 6], let fn be piecewise-linear with
cutpoints (((5, 6−1

n , 6))) and heights (((0, 0, 3))). Although ~f de-
creases pointwise to g := 3·1{6}, this ~f does not converge
uniformly. Oh!, but g is not continuous.

Keep X := [5, 6]. On [5, 6), define hn to be the above
P.L fn, but define hn(6) := 0. Now ~h decreases pointwise
to 0. Alas!, each hn is not continuous. �

Miscellaneous continuity/limit results
There are several elementary properties that we will use
without proof, e.g, that a composition of cts fncs is con-
tinuous.

Composition notation. Consider fncs A
f
→B and B

g
→C.

The std notation for their composition is g ◦ f , where
[g ◦ f ](a) means g

(
f (a)

)
. It is sometimes convenient to

have chiral versions of the composition operator. Define

[ f .g](a) := g
(
f (a)

)
and [g/ f ](a) := g

(
f (a)

)
.59:

So g / f is a synonym of g ◦ f .

When a fnc maps a space to itself , X
f
→X, use f ◦n for

the composition of n copies of f , the fnc f ◦ n. . . ◦ f . �
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60: Prop’n. Suppose f :XTS→ΩTS is cts. Let g denote the
map f but with CoDom(g) = f (X). Then g is cts.♥9 ♦

Proof. Fixing an f (X)-open set U, there is an Ω-open
set Û st. Û ∩ f (X) = U. Now f 1(Û) is X-open, since f is
cts. Thus g 1(U) = f 1(Û) is X-open. �

61: Forward-inheritance Lemma. Consider a continuous
map f :X→Ω between TSes. Suppose X is

::::::::
compact or

:::::::::
connected or

:::::::::::::
path-connected. Then f (X) has the same

property. Reduction. WLOG, f is surjective. ♦

Pf of compactness. Let Υ be an open-cover of Ω. Its
pull-back C := { f 1(P) | P ∈ Υ} covers X. This is an X–
open-cover, since f is cts. Compactness of X implies there
exists a finite subset Φ ⊂ Υ for which { f 1(P) | P ∈ Φ}
covers X. Thus Φ covers Ω; this, since f maps onto Ω. �

Pf of connectedness. Consider an Ω-open partition
Ω = P t Q of Ω. The pull-backs f 1(P) and f 1(Q) form
an X-open partition of X. Since X is connected, WLOG
f 1(Q) is empty. Hence Q is empty, since f is surjective.�

Pf of path-connectedness. Fix points β0,β1 ∈ Ω. Since
f is onto, there exist points bi ∈ f 1(βi). And X is path-
connected, so there is a cts map (a “path”) p:[0, 1]→X with
p(0) = b0 and p(1) = b1. Hence p . f is a path from β0
to β1. �

62: General limits. In MS (((X, d))), centered at q ∈ X, the
punctured ball of radius ε is

PBalε(q) :=
{
x ∈ X

∣∣∣∣ 0 < d(x, q) < ε
}
.

Consider a map f :(((X, d)))→(((Ω, µ))), points q ∈ X and ω ∈ Ω.
Analogous to (38) on P.12, we define

lim
x→q

f (x) = ω .62.1:

to mean:
For each ε>0 there exists δ>0 such that

PBalδ(q) ⊂ f 1(Balε(ω)
)62.2:

Extending this to general TSes X and Ω is routine. In
the general case, (62.1) means the following.

For each Ω-open set Λ 3 ω there exists an
X-open set U 3 q with

U r {q} ⊂ f 1(Λ)
.

62.3: �

♥9This Prop’n is for convenience. It allows us to start some proofs
with: “Our continuous function, WLOG, is surjective”.

Miscellaneous connectedness results
In a TS Ω, the relation of two points being in the same
connected-component is an equivalence relation. Also,
path-connected is an equivalence relation.

63: Connected-interval Thm. Each interval J in R is
connected. (The interval can be infinite, or half-open, or . . . .) ♦

Proof. WELOG (exercise), J = [3, 7], and let “open” mean
J-open. Suppose we have an open-ptn J = A t B; so we
have colored each point either Amber or Blue. WLOG, 3
is amber. To show there is no blue, we let

α := J- inf(B)
note
∈ J .†:

Since 3 is in the interior of amber, there exists ε>0 so
that interval [3, 3+ε) is amber. Thus

�� ��α > 3 .
Could α be blue? If yes, then since B is open there

exists a posreal ε < α − 3 so that interval (α−ε, α] is blue.
But this contradicts (†), so

�� ��α is amber .
FTSOC, suppose α < 7. Since A is open, there would

exist an ε>0 with [α, α+ε) all amber. But [α, α+ε) is am-
ber, so this would force J- inf(B) ≥ α+ε, annoying (†).

The upshot:
�� ��α = 7 and consequently B is empty. �
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§A Differentiability

Differentiability of a fnc h:R→E, where
(((
E, ‖·‖

)))
is a

normed-VS, is our goal. The Reader is to modify the
discussion accordingly when the domain is just some
(punctured) interval in R, or when we are taking 1-sided
derivatives; or when the domain is some subset of C, with
E a complex normed-VS.

Suppose that h is defined in a nbhd of a point P
in Dom(h). Suppose (using (62)) the following limit exists:

h′(P) := lim
x→P

h(x) − h(P)
x − P

note
∈ E.64:

Then we say that h is differentiable at P, and its derivative
is the vector h′(P). So h′ is a vector-valued fnc just like h
is, but with a possibly smaller domain.

How discontinuous can a derivative be? Extending,
by continuity, the function

h(x) := x2 · exp( 1/x57) ,

is a simple example of an everywhere-differentiable fnc
whose derivative is not cts, h′ is not cts at the origin.

But certain kinds of discontinuities are ruled out.

65: Deriv-cty Lemma. Suppose h:(a, c]→R is continuous,
with h differentiable on (a, c), and L := limx↗c h′(x) exists.
Then h(), at c, has a lefthand derivative, which equals L.♦

Proof. Fixing an ε>0, ISTEstablish (65′), below. Pick
b ∈ (a, c) close enough to c that, letting J := [b, c), the
values of h′�J lie within ε of L.

For each x ∈ J, the MVT asserts a point
•
x ∈ (x, c) with

h(c) − h(x)
c − x

MVT
===== h′

(•
x
) ε
≈ L.

Consequently,

limsup
x↗c

∣∣∣∣ h(c)−h(x)
c−x − L

∣∣∣∣ ≤ ε .65′: �

67: Appl. Fnc h:[0,∞)→R is diff’able on J := (0,∞).

i: Our h is continuous, with h(0) = 0. And. . .

ii: ∃M≥0 such that ∀x ∈ J: |h′(x)| ≤ M · |h(x)|.

Then h is constant-zero. ♦

Pf. Fnc g(x) := h( x
M ) fulfills (ii) for M=1. So WLOG

∀x ∈ J: |h′(x)| ≤ |h(x)| .67:

And limx↘0 h(x) = h(0) = 0, so (67) forces h′(x) → 0.
Thus by (65), h′ is diff’able at the origin, and

�� ��h′(x) = 0 .

FTSOC, suppose
{
x ∈ J

∣∣∣ h(x) , 0
}

is non-void; let B
be its infimum. By cty from the left, necessarily h(B) = 0.
Therefore, replacing h by its translate x 7→ h(x − B), now

There are numbers y>0, as small as one
pleases, with h(y) , 0.67:

The Bound. I’ll henceforth assume that 0 ≤ h′ ≤ h
on [0,∞); the hard-working Reader can put in the abs-
value signs so as to make a complete proof.

Since h′(0) = 0 < 1, there exists a number C>0 so,
for each x ∈ [0,C], that 0 ≤ h(x) ≤ x. So we’ve shown
exponent 1 to be good. . . where: A posint N is good if

for each x ∈ [0,C], we have 0 ≤ h(x) ≤ xN .67:

Let’s show that
[
N good

]
=⇒

[
[N+1] good

]
. Fix an

x ∈ [0,C]. Then by the Fund. Thm of Calculus,

h(x) = h(x) − h(0) FTC
====

∫ x

0
h′(t) dt

≤

∫ x

0
tN dt

= 1
N+1 ·

[
xN+1 − 0N+1] ,

which is less-equal xN+1.
Each posint is good, so (67) tells us that h(x) = 0 when-

ever 0 ≤ x < Min(C, 1). But this offends (67). �

End: Potential H-problem.

Weighted averages. Consider a point L in E, a normed
vectorspace. Given two vectors close to L, we seek a con-
dition implying that all appropriate weighted-averages of
these vectors are also close to L. For generality, we’ll al-
low our weights, ν j, to be complex numbers. When apply-
ing (68′), below, we will typically send ε ↘ 0; hence the
particular constant 2[1 +U] is usually irrelevant.

68: Weighted-average lemma. Fix a boundU ∈ R+ and
L ∈ E. Given ε>0, suppose we have vectors R1,R2 ∈ E
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with each ‖R j−L‖ ≤ ε. Suppose we have (possibly complex)
weights ν1 + ν2 = 1. Then∥∥∥∥[ν1R1 + ν2R2

]
− L

∥∥∥∥ ≤ 2[1+U] · ε ,68′:

if, for at least one value of j, we have |ν j| ≤ U. ♦

Proof. WLOG |ν1| ≤ U. So |ν2| ≤ 1+U, since ν1 +ν2 = 1.
Thus each |ν j| ≤ C := 1+U.

Note that L = ν1L + ν2L. Thus LhS(68′) is less-equal

|ν1| · ‖R1 − L‖ + |ν2| · ‖R2 − L‖
note
≤ Cε + Cε . �

69: Deriv-sample lemma. Fix a normed-VS E, an upper-
bound U ∈ R+ and a point P ∈ R. Suppose h:R→E is
differentiable at P.

Then, given ε there exists δ so that for each pair of dis-
tinct “sample points” y and z that are δ-close to P:

h(y)−h(z)
y−z is ε-close to h′(P),†:

as long as Min
(
|y−P| , |z−P|

)
|y−z| ≤ U. ♦

Pf. Let L := h′(P). WLOG, neither y nor z equals P. In
light of (68′), let α := ε

2[1+U] and take δ small enough that:

If x ∈ PBalδ(P) then
∥∥∥ h(x)−h(P)

x−P − L
∥∥∥ < α.

Setting ν1 := y−P
y−z and ν2 := P−z

y−z , POFA♥10 informs us that

h(y)−h(z)
y−z = ν1·

h(y)−h(P)
y−P + ν2·

h(z)−h(P)
z−P .‡:

Since ν1 + ν2 = 1 and Min(|ν1|, |ν2|) ≤ U, the Weighted-
average lemma applies. It insists that∥∥∥RhS(‡) − L

∥∥∥ ≤ 2[1+U] · α = ε .

Hence
∥∥∥LhS(‡) − L

∥∥∥ ≤ ε, which is (†). �

♥10Plain Old-Fashioned Algebra.

vdW’s no-where differentiable fnc. Let J := [0, 1]. We
will define van der Waerden’s fnc W:R→J and prove that
it does not even have a one-sided derivative, anywhere.

Let ϕ(·) be the distance-to-nearest-integer func-
tion,♥11

ϕ(x) := Min
(
x − bxc , dxe − x

)
.

Its graph looks like · · ·/\/\/\/\/\/\/\/\/\/· · · .

For n ∈ N, let fn(x) := 1
2n ϕ(2nx). Thus

SetOfZeros( fn) = 1
2n · Z.

Each fn is continuous, since ϕ is. Hence each partial sum

gK :=
∑

n∈[0 ..K)
fn

is cts. Since ‖ fn‖sup = 1/2n+1, and seq n 7→ 1/2n+1 is
summable, sequence (((gk)))∞k=1 is ‖·‖sup-Cauchy. By the Uni-
form-convergence thm, then, ~g converges uniformly to a
continuous fnc

W :=
∑∞

n=0
fn .

To show its nondifferentiability, we will evaluate W at
dyadic rationals, elements of the set

D :=
{ `

2n

∣∣∣ ` ∈ Z and n ∈ N
}
.

70: vdW-function thm. At each point P ∈ R,
van der Waerden’s fnc W has no onesided-derivative. ♦

Proof (Due to Patrick Billingsley). FTSOC, suppose W() has
a righthand derivative at P∈R. Fix posint K. Take the
unique integer ` st.

`−1
2K ≤ P <

y︷︸︸︷
`

2K <

z︷︸︸︷
`+1
2K .∗:

For each n ≥ K, note that fn(y) = 0 = fn(z). Thus

W(z) −W(y)
z − y

=

K−1∑
n=0

fn(z) − fn(y)
z − y︸         ︷︷         ︸

sn

.∗∗:

But y and z are consecutive order-K dyadic rationals, and
n < K, so each slope sn, above, must be ±1.
♥11There doesn’t seem to be a std name for this beast. It is related

to the fractional part fnc, x − bxc; and that name isn’t great, since the
“fractional part” need not be rational.
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In (∗), rename the y, z points to yK , zK . Equality (∗∗)
tells us that ratio

rK :=
W(zK) −W(yK)

zK − yK

is a sum of K many instances of ±1. It follows that the
difference rK+1 − rK is odd. Therefore sequence ~r is not
convergent.

This contradicts the Deriv-sample lemma, (69), which
insists that ~r converge to W′(P). And the lemma indeed
applies, with boundU := 1, since (∗) forces |y−P|

|y−z| ≤ 1. �

Product rule. Here are several examples of bilinear maps:

Multiplication, R×R→R. Scalar-vector-mult, R×V→V.

Inner-product, V×V→R. Cross-product, R3 × R3→R3.

Matrix-multiplication, Mat(3, 5) ×Mat(5, 2)→Mat(3, 2).

71: Product-rule thm. On normed VSes we have a bilin-
ear map 〈〈〉〉:A × B→W which is (jointly) continuous. Sup-
pose maps F:R→A and G:R→B are differentiable at a
point p ∈ R. Then, for t ∈ R, the map

t 7→
〈〈

F(t),G(t)
〉〉

: R→W†:

is differentiable at t=p. And its derivative, there, is〈〈
F′(p),G(p)

〉〉
+

〈〈
F(p),G′(p)

〉〉
.‡: ♦

Pf.For brevity, use pF for F(p), etc. So 〈〈tF , tG〉〉−〈〈pF , pG〉〉

equals

〈〈tF , tG〉〉 − 〈〈pF , tG〉〉 + 〈〈pF , tG〉〉 − 〈〈pF , pG〉〉

= 〈〈tF − pF , tG〉〉 + 〈〈pF , tG − pG〉〉 .

Dividing both sides by t − p gives

〈〈 tF − pF

t − p
, tG

〉〉
+

〈〈
pF ,

tG − pG

t − p

〉〉
.

Sending t → p gives (‡), using cty of F, G and 〈〈·, ·〉〉. �

Total derivative
Consider a map f :(((V, ~·�)))→(((E, ‖·‖))) between normed
VSes, Near a point p ∈ V we can try to approximate f
with a linear map L:V→E, by examining the error term,

ErrL(x) :=
[
f (x + p) − f (p)

]
− L(x)

note
∈ E .72:

Unsurprisingly, say that f is “differentiable at p” if there
exists such a linear map (evidently unique) for which

ErrL(x)
~x�

−→ 0E , as x→ 0V .72′:

Equivalently, in terms of the two norms,

∀ε>0,∃δ>0 st.∀x ∈ V,
if ~x� ≤ δ then:

∥∥∥ErrL
(
x
)∥∥∥

~x�
≤ ε .72′′:

73: Lemma. (Notation from above.) There is at most one
linear map with zero-going error term. ♦

Pf. Contemplate two such linear approximators, L and M.
Fixing a (WLOG non-zero) vector v ∈ V, our goal is to show
that the difference vector, d := L(v) − M(v), equals 0E.

With x := αv, for a positive scalar α, linearity implies
L(x) − M(x) = α · d. Dividing by ‖x‖ note

==== α·~v� yields

L(αv) − M(αv)
~αv�

=
d
~v�

.∗:

Note L(x) − M(x) = ErrM(x) − ErrL(x). Hence (72′) im-
plies, as α↘ 0, that LhS(∗) → 0E. But RhS(∗) doesn’t
change with α. Thus d has secretly been 0E all along. �

Defn. Courtesy uniqueness, we call the linear L from (72′),
“the total derivative of f at a point p”. We write this L
either as Dp, f or Dp[ f ] or D f (p), depending on what we
wish to emphasize. To evaluate this linear map at vector v,
we write Dp, f (v) or Dp[ f ](v) or D f (p)(v).

Henceforth, we use ‖·‖ for the norm on all of our
normed VSes.

Equality (74‡), stated further below, is written to resem-
ble this “Calc 1” version of the Chain rule:

[g ◦ f ]′(p) = g′( f (p)) · f ′(p) .74†: �

74: Basic derivative thm. Consider maps f , f̃ :V→E and
g:E→W between normed vectorspaces, a scalar α and a
point p ∈ V. Then
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a: Differentiation is linear: Dp[ f + f̃ ] = Dp[ f ] + Dp[ f̃ ]
and Dp[α f ] = αDp[ f ].

b: Chain rule:

Dg◦ f (p) = Dg( f (p)) ◦ D f (p) .74‡: ♦

In alternate notation: Dp[g ◦ f ] = D f (p)[g] ◦ Dp[ f ].

Proof. Exer: Exercise. �

In finite dim’al spaces. In applications, often V and E
have finite dimension; say K and N, respectively. Fixing
ordered bases, each linear map V→E is represented by an
N×K matrix. So formula (74‡) becomes

Dg◦ f (p) = Dg( f (p)) • D f (p) .

where the “•” is denoting matrix-multiplication. �

§B Riemann Integration

We employ the word “partition” (abbrev. “ptn”) in the spe-
cialized way♥12 it is used in RI.

Initially, we’ll discuss the 1-dimensional case, integrat-
ing over an interval J := [a, b]. A “partition P of J ” will
be determined by a tuple of cutpoints

a = p0 < p1 < p2 . . . < pk < . . . < pN = b .

Call the closed subinterval Bk := [pk−1, pk], the “kth block
of P”. We’ll use P to also denote the set of P-blocks, e.g
we might write

∑
B∈P Diam(B) < 5.

The mesh(size) of P is

Mesh(P) := Max
{
Diam(Bk)

∣∣∣∣ k ∈ [1 ..N]
}
.

Use #P := #{Set of P-blocks}
note
==== N and

CutPts(P) := (((p0, p1, . . . , pN))) .

75a:

We say that ptn Q refines P, written Q < P, if each P-
block is a union of Q-blocks. Equivalently, in our 1-dim
case, CutPts(Q) ⊃ CutPts(P) [interpreted as sets, not tuples].

A pair of ptns {P,Q} has a smallest common refinement

R := P ∨ Q ,75b:

called “the join of P and Q”, whose cutpoint set is
CutPts(P) ∪ CutPts(Q).

Sample points. A pointed partition P (also called a “tagged

ptn”) is a partition together with tags (((x1, . . . , xN))), also
called sample points, such that each xk ∈ Bk. Use no-
tation

Tags(P) := (((x1, . . . , xN))) .75c:

Given a function f : J→R, our pptn (“pointed partition”) gives
a Riemann sum

RS f (P) :=
∑N

k=1

[
f (xk) · Size(Bk)

]
.75d:

But wait?! Why a vague word like “size”? Well, in the
1-dim case, “size” will mean length, whereas for 2-dim
integrals, “size” will mean area.

Treating the 1-dimensional integral, below, Size(Bk)
will mean the unsigned♥13 length |pk − pk−1|. From now
♥12In set theory, a partition of a set Ω is a pairwise-disjoint collection,

P, of Ω-subsets whose union,
⊔

(P), is all of Ω. The elements of P are
called “the atoms of P”. Usually one assumes that the atoms of P are
non-empty, and that there are only finitely many atoms in a partition.
♥13Later, we will extend to integrating over an oriented interval, and

then Size(Bk) will mean the “signed length” pk − pk−1.
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on,

�



�
	I’ll use

︷︷
B to abbreviate Size(B) . In the 1-dim’al

case,
︷︷
B equals Diam(B). The general case simply needs

∀ε>0,∃δ>0 st. for each set B that can be the

block of a ptn: If Diam(B) < δ, then
︷︷
B <ε.

75e:

Analogous to Mesh(P), define

MaxSiz(P) := Max
{︷︷

B
∣∣∣ B ∈ P

}
�

Standing convention: Henceforth, J=[a, b] is a closed
bounded positive-length interval. And f : J→R is a func-
tion, not necessarily integrable.

Oscillation/Variation. The f -variation of a block B, is

sup
x,y ∈ B

[
f (x) − f (y)

]
.

(Irrelevant whether we use
brackets or absolute-values.)75f:

Write this as Var f (B) or Var(B). The quantity that we are
really interested in is the f -oscillation♥14 of a block B:

Osc(B) = Osc f (B) :=
︷︷
B ·Var f (B) .75g:

Define the “ f -oscillation of a partition P” to be

Osc(P) = Osc f (P) :=
∑

B∈P
Osc f (B) .75h:

Analogously, Var f (P) :=
∑

B∈Blks(P) Var f (B). �

76: Osc lemma. Consider partitions P,Q,R:

¬ If Osc f (P) < ∞ then | f | is bnded.

­ For P4Q pptns: Osc f (P) ≥ |RS f (P) − RS f (Q)|.

® If Q 4 R then Osc f (Q) ≥ Osc f (R). Exer: Exercise.

¯ Suppose U := supx∈J | f (x)| is finite. Suppose we split
one Q-block C to get a partition R, i.e #R = 1 + #Q
and Q 4 R. Then

Osc f (Q) ≤ Osc f (R) + 2U·MaxSiz(Q) .

When 1-dim’al, Osc f (Q) ≤ Osc f (R) + 2U·Mesh(Q).♦

♥14So variation is average oscillation; it is oscillation-per-length.

Pf of ¬. Were f unbnded, then there is a P-block B on
which f�B is unbnded; so Osc f (B) is already infinite. �

Pf of ­. Focus on some P-block B and its tag xB, and let

S = S B := supx,y∈B| f (x) − f (y)| .

This B equals a union of (consecutive) Q-blocks, say

B = C5 ∪C6 ∪C7 ∪C8 ∪C9 ,

which overlap only at their endpoints. Adding sizes,︷︷
B =

∑9
k=5

︷︷
Ck .†:

Use yk for the Q-tag of Ck; so | f (xB) − f (yk)| ≤ S , since
B 3 xB,yk. Thus

S ·
︷︷
Ck ≤ f (xB)

︷︷
Ck − f (yk)

︷︷
Ck ≤ S ·

︷︷
Ck .

Summing over k,

SB ·
︷︷
B ≤ f (xB)

︷︷
B −

∑9
5 f (yk)

︷︷
Ck ≤ SB ·

︷︷
B .‡:

Summing this over all P-blocks B yields the desired in-
equality that −Osc(P) ≤ RS(P) − RS(Q) ≤ Osc(P). �

Pf of ¯. The largest value that Osc f (C) can assume is

[U − U] ·
︷︷
C , which is upper-bnded by 2U·MaxSiz(Q). �

Riemann integral. We define the “proper” Riemann in-
tegral, which is only useful for bounded fncs. Later, we’ll
extend to “improper” integrals.

A partition P is “δ-small” if Mesh(P) ≤ δ. A function
f : J→R is (Riemann) integrable♥15, with integral V ∈ R, if:

∀ε>0,∃δ>0 st. for each pointed-partition P
which is δ-small:

∣∣∣RS f (P) − V
∣∣∣ ≤ ε.77a:

Trivially, if such a number V exists then it is unique. We
may write this V as∫

J
f or

∫
[a,b]

f or
∫

J
f (t) dt .

We do not yet use symbol “
∫ b

a ”, since it presupposes an

orientation of J, allowing us to distinguish
∫ a

b from
∫ b

a . �
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77: Integrability-equivalence Lemma. Integrability of f
is equivalent to each of the following. The first is a kind
of “Cauchy condition”.

b: For each ε>0,∃δ>0 so that for each two δ-small pptns
P and Q:

∣∣∣RS f (P) − RS f (Q)
∣∣∣ ≤ ε.

c: ∀ε>0,∃δ>0 so for each two pptns P 4 Q with the P
partition δ-small:

∣∣∣RS f (P) − RS f (Q)
∣∣∣ ≤ ε.

d: ∀ε,∃δ st. ∀ δ-small partitions P: Osc f (P) ≤ ε .

e: ∀ε, ∃ a partition P such that Osc f (P) ≤ ε . ♦

Pf
[
∃V ∈ R st. (77a)

]
⇔ (b). Implication (⇒) is imme-

diate, so we establish (⇐). To this end, take a sequence
(((Qm)))∞m=1 of pointed-ptns with limm Mesh(Qm) = 0.

Condition (b) implies that m 7→ RS f (Qm) is a Cauchy
sequence of reals. Hence this limit exists:

V := lim
m→∞

RS f (Qm) ∈ R .

Using (b) again shows that V fulfills (77a). �

Pf (b)⇔ (c). Exer. 3:Prove (⇐), the non-trivial direction.
[Hint: Fix ε>0. Take δ=δ(ε/2) from (c). Given unrelated δ-small

ptns P and Q, consider their join, R := P ∨ Q. Now. . . ] �

Pf (c)⇔ (d). Dir (⇐) follows from (76­), Osc lemma.
For (⇒), let P and Q be the same partition, but let the

tags of each vary over all possibilities. The supremum
of

∣∣∣RS f (P) − RS f (Q)
∣∣∣ over all tags is precisely Osc f (P). �

Pf (d)⇔ (e). Since some partition has finite oscillation,
(76¬) says that our f is bounded; WELOG 3 ≥ | f |.

To establish the non-trivial (⇐), fix some ptn P with

Osc f (P) ≤ ε
2 .

With N := #P, let δ be♥16 ε
2
/

6N. Given a δ-small Q, the
refinement R := P ∨ Q is obtained by splitting fewer than
N blocks of Q. Applying (76¯) at most N times yields

Osc(Q) ≤ Osc(R) + N ·
[
2·3·δ

]
≤ Osc(R) + ε

2 .

And (76®) courteously gives Osc(R) ≤ Osc(P) ≤ ε
2 .

Hence Osc(Q) ≤ ε
2 + ε

2 = ε, as requested. �

♥16When J is not 1-dim’al, there is an extra step. We pick δ small
enough that every δ-small partition Q has MaxSiz(Q) ≤ ε

2

/
6N.

78: Basic RI Thm. (For improper integrals, this needs to be al-

tered.) Consider interval J := [a, b] and fnc f : J→R. Then

i: If f continuous, then f is integrable.
ii: If f monotonic, then f is integrable. (For discontinuous

R-Stieltjes integrators, this is false.) ♦

Proof of (i). Fix an ε>0. Since f is uniformly-cts (being

continuous on a compact set) there is a δ>0 such that

∀x,y ∈ J: |x − y| ≤ δ =⇒ | f (x) − f (y)| ≤ ε
/︷︷

J .

This implies that Osc f (P) ≤ ε, whenever P is a δ-small
partition. Hence (77d). �

Proof of (ii). We use (77e). WLOG J = [0, 1]. WLOG, f
is increasing (i.e, non-decr). For each subinterval B := [x, y],
then, Var f (B) = f (y) − f (x).

Given posint N, let partition PN cut J into N equal-
length blocks, with jth-block B j := [ j−1

N ,
j

N ]. So

Osc f (PN) =
∑N

j=1
1
N · Var f (B j

)
= 1

N ·
∑N

j=1

[
f ( j

N ) − f ( j−1
N )

]
= 1

N ·
[
f (1) − f (0)

]
.

And this latter goes to zero, as N↗∞. �

Closure properties of RI

Let RI(J→R) denote the set of Riemann-integrable func-
tions J→R.

As an example of non-integrability, let h be 1Q, but re-

stricted to J. For each partition P, then, Osch(P) = 1·
︷︷
J .

So h is a non-RI fnc with the peculiar property that h ◦ h is
integrable, since h ◦ h ≡ 1.

79: Integration-is-Linear lemma. W := RI(J→R) is
an R-vectorspace. The map

[
h 7→

∫
J h

]
, from W→R, is a

positive (non-negative) R-linear-functional. Consequently,
for integrable f and g:

[
f ≥ g

]
=⇒

[∫
J f ≥

∫
J g

]
. ♦

Proof. That W is a VS follows from observing that

RS5 f (Q) = 5 · RS f (Q) and

RS f +g(Q) = RS f (Q) + RSg(Q) ,
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for arbitrary fncs f , g: J→R, scalar 5∈R and pptn Q. This
also shows (exercise) that

[
h 7→

∫
J h

]
is a linear functional.

When h ∈ RI is non-negative, then RSh(Q) ≥ 0 for each
pptn Q; so

∫
J h ≥ 0. Now apply this to h := f − g. �

Pos/Neg parts. We define the positive/negative parts of a
function. The “positive part of f ” is

f + := Max( f , 0) , ie. f +(x) = Max( f (x), 0). And

f − := −Min( f , 0) is the negative part of f .
80.1:

Easily, each of f + and f − is non-negative, and

f + + f − = | f | and

f + − f − = f .
80.2:

For a pair of functions, one verifies that

Max( f , g) =
[

f +g + | f−g|
]
/2 and

Min( f , g) =
[

f +g − | f−g|
]
/2 .

80.3: �

80: AbsValue RI Thm. Suppose f ,g: J→R are integrable.
Then each of f +, f −, | f |,Max( f , g) and Min( f , g) is inte-
grable. Finally ∣∣∣∫

J f
∣∣∣ ≤ ∫

J | f | .80∗: ♦

Proof. The f +-oscillation of each partition P is upper-
bnded by its f -oscillation; so f + is RI, by (77d). Ditto
f − is RI; hence so is | f |, their sum. Consequently, func-
tions (80.3) are integrable.

For (80∗), note
∫

f =
∫

f + −
∫

f −. By the
a

nequality,∣∣∣∫ f
∣∣∣ ≤ ∣∣∣∫ f +

∣∣∣ +
∣∣∣∫ f −

∣∣∣
=

∫
f + +

∫
f − =

∫
| f | . �

81: Product-RI Thm. If f ,g ∈ RI(J→R). then f · g ∈ RI.♦

Pf. WLOG
�� ��| f | ≤ 2 and |g| ≤ 3 . Let h := f ·g. ISTEstab-

lish

Osch(P)
?
≤ 3·Osc f (P) + 6·Oscg(P)

for each partition P. Fixing P and a P-block B, our goal is

Osch(B)
?
≤ 3·Osc f (B) + 6·Oscg(B)81a:

Fix pts x,y ∈ B. Define numbers Φ, v,Γ,w by Φ := f (x),
Φ + v := f (y), Γ := g(x) and Γ + w := g(y). Subtracting,

h(y) − h(x) = [Φ + v][Γ + w] − ΦΓ

= vΓ + Φw + vw

≤ |v|·3 + 2|w| + [2 − 2]·|w|

= 3|v| + 6|w|

≤ 3·Var f (B) + 6·Varg(B) .

Multiply by
︷︷
B , then take supx y∈B to obtain (81a). �

Exer. 7: Prove: Suppose f ∈ RI(J→R) and L > 0, where
L :=

[
infx∈J | f (x)|

]
. Prove that 1/ f is integrable.

Exer. 4: Dis/Prove: Suppose f ,g:[0, 1]→[0, 1] are (Rie-

mann) integrable fncs. Then h := g ◦ f is integrable.

False. Let f be the ruler-function RQ. So f ( p
q ) := 1

q , when
p ⊥ q are integers with q > 0. And f (irrational) is 0.

Let g := 1(0,1]. Then g ◦ f is the indicator-fnc of the
rationals; this is not Riemann-integrable.

In contrast, the reverse composition f ◦ g is RI, indeed
continuous. Indeed, f ◦ g is the constant-1 function. �

Exer. 5: (Does t.fol hold for R-Stieltjes integration?)
Dis/Prove: On compact sets K,J ⊂ R, with J an inter-

val, we have an integrable f : J→K function and continu-
ous g:K→R. Then h := g ◦ f is integrable.

True.WLOG |g()| ≤ 3. WLOG
︷︷
J ≤ 2. I’ll use “partition”

to mean a partition of J.
Fix η>0. I will produce δ>0 st. for each δ-small ptn P:

Oscg◦ f (P)
?
≤ 8η .‡a:

Bad blocks. The uniform-continuity of g produces an�� ��ε ≤ η such that

∀a,b ∈ K: |a − b| ≤ ε =⇒ |g(a) − g(b)| ≤ η .‡b:

Since f ∈ RI, we can take δ so small that each δ-small
partition P has

Osc f (P) ≤ ε2 .‡c:

Define the set of “good” blocks

G :=
{
B ∈ Blks(P)

∣∣∣ Var f (B) < ε
}
.‡d:
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Define the “bad” blocks B := Blks(P) r G. From (‡c)
and (‡d),

ε2 ≥
∑

B∈B
Osc f (B)

≥
∑

B∈B
ε ·

︷︷
B = ε ·

︷︷
B .

Dividing by ε yields

�
�

�
�ε ≥

︷︷
B . For each block B,

Oscg◦ f (B) ≤ [3 − 3] ·
︷︷
B = 6 ·

︷︷
B ,

by our bound on |g|. Summing over the bad blocks,

Oscg◦ f (B) ≤ 6 ·
︷︷
B ≤ 6ε ≤ 6η .‡e:

Good blocks. Fix B ∈ G and x,y ∈ B. By (‡d),

then (‡b), the oscillation Oscg◦ f (B) ≤ η ·
︷︷
B . Summing

over good blocks,

Oscg◦ f (G) ≤ η ·
︷︷
G ≤ η ·

︷︷
J = 2η .

Adding this to the (‡e) inequality, yields (‡a). �

Exer. 6: Dis/Prove: On compact intervals K,J ⊂ R,
we have a continuous f : J→K and an integrable g:K→R.
Then h := g ◦ f is integrable.

82: Closure-RI Thm. Fix an integrable f : J→R. Then
for each closed subinterval I ⊂ J, the restriction f�I is
integrable.

Conversely, consider a fnc g: J→R and a point y ∈ J. If
g is integrable on [a, y] and on [y, b], then g is integrable.♦

Proof. Fix ε>0 and take δ from (77d) applied to f on J.
Given a δ-small ptn P of I, extend this P to create a δ-small
ptn P′ of J. Thus Osc f (P) ≤ Osc f (P′) ≤ ε.

Conversely, fixing ε there exist ptns Q of [a, y] and R
of [y, b] each with oscillation less than ε

2 . Glue them to-
gether to get a ptn of J with oscillation less than ε. �

Oriented integral. We may write an integral on J = [a, b]
as ∫

J
f or

∫
[a,b]

f or
∫ b

a
f or

∫ b

a
f (t) dt .

Reversing the “limits of integration”, define∫ a

b
f := −

∫
[a,b]

f .

So our 1-dim’al integral is an oriented integral. �

83: Lemma. For a,b,c ∈ R, and function f :∫ c
a f =

[∫ b
a f

]
+

[∫ c
b f

]
,

as soon as f is integrable on the interval from Min(a, b, c)
to Max(a, b, c). Proof. Exer: ♦

The Fundamental Theorem of Calculus
For an integrable (not-necessarily cts) function f : J→R, recall
thatU := supt∈J | f (t)| is finite. And

ϕ(x) :=
∫

[a,x] f , as a map ϕ: J→R,

is well-defined, thanks to (82). This ϕ is sometimes called
an antiderivative of f .

84: FTC. With f (),U, ϕ() from above: This ϕ is Lipschitz
continuous, withU a Lipschitz bound. Moreover, at each
f -continuity point z ∈ J, our ϕ is differentiable and

ϕ′(z) = f (z) .84a:

Conversely, each fnc ψ ∈ C1(J→R) has ψ′ ∈ RI and∫
[a,b]
ψ′ = ψ(b) − ψ(a) .84b: ♦

Pf of (84a). For x<y in J, note, ϕ(y) − ϕ(x) =
∫

[x,y] f . So

|ϕ(y) − ϕ(x)| =
∣∣∣∫

[x,y] f
∣∣∣ ≤ ∫

[x,y] | f | ≤ [y − x] · U ,

by (80∗) and (79). Hence ϕ isU-Lipschitz.

At an f -continuity-point z. WELOG, z is not an end-
point of J. WLOG f (z) = 4. Fixing an ε>0, the continuity
of f at z asserts an open interval I 3 z st.

4 − ε ≤ f�I ≤ 4 + ε .†:

Consider a small non-zero “bump” β ∈ R with z + β ∈ I.
WELOG β > 0; let B := [z , z + β]. Courtesy (79), inte-

grating (†) over B yields, since
︷︷
B equals β, that

[4 − ε] · β ≤
∫

B
f ≤ [4 + ε] · β .‡:

But the integral equals ϕ(z + β) − ϕ(z). Thus the
difference-quotient satisfies

4 − ε ≤ ϕ(z+β)−ϕ(z)
β ≤ 4 + ε .

This holds for every small-enough non-zero β. Thus ϕ is
differentiable at z, and ϕ′(z) = 4 = f (z). �
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Pf of (84b). Firstly, since ψ′ is cts, it is RI. Define ϕ by

ϕ(x) :=
∫

[a,x]
ψ′ , as a map ϕ: J→R,

Thus
∫

J ψ
′ def

=== ϕ(b) = ϕ(b) − ϕ(a), since ϕ(a) = 0.

By (84a), ϕ′ = ψ′. This means (Exer: By what thm?)
that ψ−ϕ is a constant-fnc. Thus ψ(b)−ψ(a) equals ϕ(b)−
ϕ(a), which equals

∫
J ψ
′. �

Measuring the size of sets
Fix a metric space X and a way of measuring the size of
open balls; we’ll use “ball” to mean “non-empty open
ball”. At a “center” c ∈ X, we use Balr(c) for the (open)
ball of radius r.

Fix µ, a “measure on open balls”: For each center c ∈ X
and radius r ∈ R+, this µ assigns a “mass”

µ
(
Balr(c)

)
∈ [0,∞) .85a:

Henceforth, in this section, let cover mean a cover by open
balls. For a set K⊂X, let “C is a K-cover” mean that each
B∈C is an open ball, and

⋃
(C) ⊃ K. Agree to use µ(C) to

mean
µ(C) :=

∑
B∈C

µ(B) .

Defining two measures. To measure a set E ⊂ X, we let C
vary over all covers of E; finite covers for Jordan mass,
J(), and countable covers for Lebesgue mass, λ():

J(E) := inf
C finite

µ(C). λ(E) := inf
C countable

µ(C).85b:

We impose the following requirements on µ.

M1: Each ball B isJ-measurable and λ-measurable, and

J(B) = λ(B) = µ(B) .

M2: For each c ∈ X: limr↘0 µ
(
Balr(c)

)
= 0.

Occasionally we will want some of these conditions.

M3: The function r 7→ µ
(
Balr(c)

)
is continuous.

M4: The function r 7→ µ
(
Balr(c)

)
is strictly increasing. �

86: Basic measure lemma. For all sets A,B,E ∈ P(X):

i: λ(E) ≤J(E).

ii: If A ⊂ B, thenJ(A) ≤J(B) and λ(A) ≤ λ(B).
iii: J(∅) = 0 = λ(∅).
iv: If A1∪A2 ⊃ B then J(A1) +J(A2) ≥J(B). Ditto

for λ().
v: If

[⋃∞
1 An

]
⊃ B then

[∑∞
1 λ(An)

]
≥ λ(B). ♦

Remark. In contrast to λ, Jordan-measure is not countably-
subadditive: Enumerate Q := Q ∩ [0, 1], and let An com-
prise the first n rationals in Q. Then

∑∞
n=1J(An) = 0,

butJ(Q) = 1. �

87: Prop’n. Consider E,K ∈ P(X), with K compact. Then

a: J(K) < ∞. (Exer: .)
b: J(K) = λ(K).
c: Suppose (M3). Then J

(
Cl(E)

)
= J(E). (This fails

for Jordan-measure replaced by λ(): Let X := R and E := Q.) ♦

Pf of (b). Fix ε>0. Since λ(K) < ∞, we can find a count-
able K-cover C with µ(C) ≤ ε + λ(K). The compactness
of K asserts a finite subcover F⊂C. Thus

J(K) ≤ µ(F) ≤ µ(C) ≤ ε + λ(K) .

For each ε this holds, soJ(K) ≤ λ(K). �

Pf of (c). Fix ε>0. WLOGJ(E) < ∞, so there is a finite
E-cover

{
Balr j(c j)

}N
j=1, with∑N

j=1 µ
(
Balr j(c j)

)
≤ 2ε +J(E) .†:

Take a posreal δ sufficiently small that for each j ∈ [1 ..N],

µ
(
Balδ+r j(c j)

)
− µ

(
Balr j(c j)

)
≤ ε/N ;‡:

possibly, since there are only finitely many balls under
consideration, and each map r 7→ µ

(
Balr(c)

)
is cts.

Automatically, collection
{
Balδ+r j(c j)

}N
j=1 covers

Balδ
(⋃N

j=1 Balr j(c j)
) note
⊃ Balδ

(
E
) note
⊃ Cl(E) .∗:

Inequalities (‡) and (†) justify∑N

1
µ
(
Balδ+r j(c j)

)
≤ ε +

∑N

1
µ
(
Balr j(c j)

)
≤ 3ε +J(E) .

From (∗), then,J(Cl(E)) ≤ 3ε+J(E). Now send ε↘0.�
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A condition for Integrability
Let’s examine the discontinuity set of an f : J→R.

Fixing ε>0, define two sets C,K ⊂ J to comprise those
x ∈ J such that for each posreal δ:

For C: ∃y ∈ Balδ(x) with | f (y) − f (x)| ≥ ε.88a:
For K: ∃y1,y2 ∈ Balδ(x) with | f (y1) − f (y2)| ≥ ε.88b:

Both C and K are ε-approximations to DisCty( f ). While
C is simpler to describe, it need not be closed.♥17 In con-
trast, K is closed (Exer: ), hence compact.

Rematerializing the ε, easily Cε ⊂ Kε and, by thea
nequality, K2ε ⊂ Cε. Redefining, let Cn denote (88a)

where ε := 1
n . Make the analogous defn for Kn. Thus

C1 ⊂ C2 ⊂ . . . and K1 ⊂ K2 ⊂ . . .

and Cn ⊂ Kn ⊂ C2n .

Thus
⋃
↗∞

n=1 Kn =
⋃
↗∞

n=1 Cn
def
=== DisCty( f ) .

88c:

Complexity of sets. We need names for two types of
sets. A subset E of X is said to be a “Gδ-set” if it can be
written as a countable intersection of open sets. A subset
is an “Fσ-set” if it equals some countable union of closed
sets.♥18 On a topological space X,

A decomposition A t B = X has: A ∈ Fσ ⇔ B ∈ Gδ.

The last line of (88c) shows the following.

For a function f :X→Y between two metric
spaces, its discontinuity set is always an Fσ,
and Cty( f ) is always a Gδ.

88d:

Staying in metric spaces, here is a nice exercise:

Exer. 8: Suppose K ⊂ XMS is closed. Then K is X-Gδ.
More generally, Gδ ∩ Fσ ⊃ Cld(X) ∪ Opn(X).

Alas, this can fail in general topological spaces. �

♥17To make an example, let S := [3, 5] ∩ Q. Define f :R→R so that
f is the indicator-fnc 1S except that f (5) := 1/2. Then for ε := 1, the
corresponding Cε set is the half-open [3, 5), which is neither open nor
closed. Yet Kε = [3, 5], which is closed.

This f has closed discty set, since DisCty( f ) = Kε, for ε=1. As a
contrasting example, DisCty(RulerQ) is Q, which is neither open nor
closed. But Q is indeed an Fσ-set.
♥18The “F” is from the French word fermé, “closed”, and the “σ” is

from the German word Summe, sum, here meaning “union”.
The “G” is from Gebiet (German, “area”), here meaning “open set”.

And the “δ” is from the German Durchschnitt, meaning intersection.

89: Integrability Theorem. On interval J = [a, b], con-
sider a subset S ⊂ J.

a: The map 1S : J→R is Riemann-integrable IFF
J

(
∂J(S )

)
= 0.

[Recall exercise (46P.13) that ∂(S ) = DisCty(1S ).]

b: A function f : J→R is RI IFF f is bounded and
λ
(
DisCty( f )

)
= 0. ♦

Pf of (a). The discontinuity set of an indicator-fnc is
closed; hence is compact, since J is. Thus its Jordan-mass
equals its Lebesgue-mass. So (a) is implied by (b). �

Direct proof of (a(⇒)). Fix ε>0. Take a ptn P
with Osc1S (P) ≤ ε. Let G comprise those “good” P-blks
B on which 1S is constant. Use B be the remaining “bad”
blocks. By defn,

ε ≥ Osc1S (P) = 0·
︷︷
G + 1·

︷︷
B .

I.e,
︷︷
B ≤ ε. But

⋃
(B) ⊃ DisCty(1S ); so ε ≥J

(
∂(S )

)
. �

Pf of (b(⇒)). Earlier work shows that f is bounded.
Write ∆ := DisCty( f ) as

⋃∞
n=1 Cn, from (88c): A point x

is in Cn IFF there is a seq ~y converging to x, so that each
point y ∈ ~y has | f (y) − f (x)| ≥ 1

n .
ISTShow, for each n, that λ(Cn) = 0, since then the

countable subadditivity of (86v) shows that ∆ is a nullset.
Fix n, let C := Cn and ε := 1

n . Fix an arbitrary δ>0 and
take a ptn P with Osc(P) < εδ. A P-block B is “bad” if

Var(B) ≥ ε. So Osc(B) ≥ ε
︷︷
B . Summing over the bads,

εδ ≥ Osc(P) ≥
∑

B bad
ε ·

︷︷
B .

Thus δ ≥ λ(L), where
�� ��L :=

⋃
B bad B .

Consider a point z ∈ C. If z is in the interior of a
block B, then automatically B is bad, so z ∈ L. Thus

C ⊂ CutPts(P) ∪ L .

Hence λ(C) ≤ 0 + δ = δ. This holds for all δ>0, so C is a
Lebesgue nullset. �
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Brillo’s proof of (b(⇐)). WLOG | f | ≤ 3
2 . WLOG

︷︷
J = 1.

Write J = ∆
⊔

Γ, where ∆ := DisCty( f ) and Γ := Cty( f ).
Fix ε>0; we’ll produce a partition P with

Osc f (P) ≤ 8ε .U:

Since λ(∆) = 0, there exists a countable cover D of ∆

with µ(D) ≤ ε.
For each z ∈ Γ, there an open interval Iz 3 z with

Var f (Iz) ≤ 5ε. Thus C := {Iz}z∈Γ covers Γ and so the union
U := D ∪ C is an open cover of J. Hence U has a Lebes-
gue number δ; this, since J is compact.

Consider a ptn P with Mesh(P) < δ; necessarily, each
P-block lies inside of some U-patch. Call P-block B
“good” if there exists a patch I ∈ C with I ⊃ B. So∑

B good

Osc f (B) ≤ 5ε ·
︷︷
J = 5ε .

Each “bad” B is covered by some D-patch. Thus∑
B bad

Osc f (B) ≤ Var f (J) ·
∑
U∈D

︷︷
U ≤

[ 3
2 −

−3
2
]
· ε = 3ε .

Adding these together yields that Osc f (P) ≤ 8ε. �

Interchange of limit-operations
An exercise that could have been stated earlier.

90: Obs. Take fncs g, fn:XSet→ΩMS with each fn bounded.

If fn
uniformly
−−−−−−−→g, then g is bounded. Pf. Exer: ♦

More interestingly.

91: Prop’n. Suppose b, f : J→R are bounded functions;
set ε := ‖b‖sup. Then for each partition P,∣∣∣Osc f +b(P) − Osc f (P)

∣∣∣ ≤ 2ε ·
︷︷
J . (Exer : ) ♦

92: Integral-Convergence Theorem. Consider functions

g, fn: J→R, with fn ∈ RI. Suppose fn
uniformly
−−−−−−−→

n→∞
g. Then g

is RI. Moreover,
∫

J fn →
∫

J g, as n↗∞. ♦

Pf. Take ε>0 and take n large enough that ‖g − F‖sup ≤ ε,
where F := fn. Now take a ptn P st. Osc f (P) ≤ ε. By (91),∣∣∣Oscg(P) − OscF(P)

∣∣∣ ≤ 2ε ·
︷︷
J .

So Oscg(P) ≤ OscF(P) + 2ε ·
︷︷
J ≤ [1 + 2 ·

︷︷
J ]ε. This

holds for each ε, so (77e) tells us that g is integrable.
Being integrable, we can replace fn by fn − g, and re-

place g by g − g, to say WLOG fn
unif
−−−−−→
n→∞

0. But

∣∣∣∫
J fn

∣∣∣ ≤ ‖ fn‖sup ·
︷︷
J ,

so
[∫

J fn
]
−−−−−→
n→∞

0. And, indeed, 0 =
∫

J 0. �

93: DUC Thm (Derivative uniform-convergence). We have
functions fn ∈ C1(J→R) whose derivative-sequence ((( f ′n)))∞1
is sup-norm Cauchy. Thus function

∆ := unif-lim
n→∞

f ′n93a:

exists. Suppose there is a point A ∈ J such that

lim
n→∞

fn(A) exists in R.93b:

Then for each x, the limit g(x) := limn→∞ fn(x) exists in R.
Moreover, g is differentiable and g′ = ∆. ♦

Proof. Fix an x ∈ J. Thanks to (92), and FTC applied to
each fn,∫ x

A
∆

by (92)
======= lim

n→∞

∫ x

A
f ′n = lim

n→∞

[
fn(x) − fn(A)

]
.

So (93b) tells us that limn→∞ fn(x) exists in R.
Restating, the map g: J→R is well-defined, and

g(x) = g(A) +

∫ x

A
∆() .

By hypothesis, each f ′n is cts; thus ∆ is cts, by (55), P.15.
By FTC, P.25, the map x 7→

∫ x
A ∆ is differentiable, and its

derviative equals ∆. So g is differentiable, and g′ = 0+∆.�
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Series and Sequences

In a normed-VS V, a series ~s ⊂ V is convergent if the
“sequence ~p of partial sums” converges in V, where

pk :=
∑k

n=1
sn .94a:

Series~s ⊂ V is absolutely convergent if
∑∞

n=1 ‖sn‖ is finite.

94b: Lemma. Suppose ~s ⊂ V, where V is a complete
normed-VS. If ~s is absolutely convergent, then ~s is con-
vergent. ♦

Proof. Let pk :=
∑k

n=1 sn. Our goal is to show ~p Cauchy.
Fix ε>0. Take K0 st. for all pairs L>K exceeding K0,∑

n∈(K .. L]
‖sn‖ ≤ ε .∗:

By
a

nequality, LhS(∗) dominates the norm of∑
n∈(K .. L]

sn
note
==== pL − pK .

Thus ε ≥ ‖pL − pK‖. �

Exer. 9:Dis/Prove: Even in a non-complete normed-VS,
abs-convergence implies convergence.

Defn.A sequence~s ⊂ R is a function, so use~s + to mean the
corresponding positive-part sequence, from (80.1), and
use ~s− for the seq of negative parts. These two sequences
are non-negative, and satisfy that

s+
n + s−n = |sn| and

s+
n − s−n = sn .

94c: �

95: Reordering Thm. Suppose sequence ~s ⊂ R satisfies

i: Terms sk → 0, as k↗∞.

ii: Sum
∑∞

n=1 s+
n = ∞. And

∑∞
n=1 s−n = ∞.

Then for each pair of values A ≤ B in [ ∞, ∞], there exists
a reordering, ~y, of ~s for which[

limsup
K→∞

∑
n∈[1 ..K]

yn
]

= B and
[
liminf
K→∞

∑
n∈[1 ..K]

yn
]

= A . ♦

Pf (Sketch). Let b1 ≥ b2 ≥ · · · > 0 be an enumerata-
tion of the positive elts of ~s. Let a1 ≤ a2 ≤ · · · ≤ 0 be
an enumeratation of the non-positive elts of ~s. From (i)
and (ii),

bn↘0 and an↗0, as n→∞.95¶: ∑∞
k=1 bk = ∞ and

∑∞
`=1 a` = ∞ .95·:

Think of ~y as initially being an empty “stack”, into which
we “pop” the elts of ~b and ~a, also viewed as stacks. We
leave to the Reader the case where either A or B is ±∞.

Pop the ~b-stack until the running-sum

pK1 :=
[∑

n∈[1 ..K1] sn
]

exceeds B.

Now pop the ~a-stack until the first time K2 > K1 that the
running-sum has pK2 < A. Return to popping the ~b-stack,
stopping at the first time K3 > K2 that pK3 > B. Etc.

Condition (95·) says that the procedure never stops; so
the limsup≥B and the liminf ≤A. Condition (95¶) implies
that limsup≤B and liminf ≥A. �
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Appendix: Menagerie of Strange
Functions

(Being revised)

Prelims. For a fnc f :R→R and point z ∈ R, let

f (z+) := lim
x↘z

f (x) and f (z−) := lim
x↗z

f (x) ,A1:

when these limits exist. Use “ f is right-continuous at z”
to mean that f (z+) = f (z). Define left-continuous analo-
gously.

Strictly increasing fnc, with Cty and DisCty dense.
Let J := [0, 1]. Mapping from J→R, we define a fnc
V=V~c,~h determined by a placement sequence ~c ⊂ J, and a

height sequence ~h ⊂ R+. The place-seq ~c must be dense
in J, and have distinct values. The height-seq must have∑

(~h) finite. We typically

Normalize
∑∞

n=1 hn = 1, and have ~c = 0.A2:

Our definition, for each x ∈ J is:

V(x) = V~c,~h(x) :=
∑({

hk

∣∣∣∣ k ∈ Z+ and
ck ≤ x

})
.A3:

Courtesy (A2), we have V(1) =
∑

(~h) = 1 and
V(0) =

∑
(∅) = 0.

A4: Jag-fnc Thm. Consider a V=V~c,~h which is normal-
ized, (A2). Then V(1) = 1 and V(0) = 0. Further, V is
strictly-increasing and maps J↪→J. Moreover

i: Function V is right-continuous. And for each N:
f (cN) − f (cN

−) = hN .

ii: DisCty(V) = Range(~c). ♦

Sketch of right-cty. Fix z ∈ [0, 1). For each x ∈ (z, 1], let
Rx be the set of indices k with ck ∈ (z, x]. Thus

V(x) − V(z) =
∑

k∈Rx
hk .

And Rx decreases to the void-set, as x↘z, so the sum goes
to zero. (Exer: Fill in the details, and for next paragraph too.)

Fix N. For x ∈ [0, cN), let Lx comprise those k with ck ∈

(x, cN]. So V(cN) − V(x) equals
∑

k∈Lx hk. Sending x↗z
makes the Lx sets decrease down to the singleton {cN}. �

Pf of (ii). The foregoing showed Range(~c) ⊂ DisCty(V).
For the opposite, we fix a z ∈ J r Range(~c) and show that
V() is left-cts at z.

Unfinished: as of 27Mar2024 �
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§Index for Advanced-Calc Notes

I use these Notes in my Advanced
Calc and Modern Analysis courses.

Cld(metric-OR-space), 6
Opn(metric-OR-space), 5
1-point compactification of R, 5
2-point compactification of R, 5

Lip
� , 13

Topo
� ,

Cau
� , 5

<,4, refining ptns, 21
f +, f −, positive/negative part, 24
◦, /, ., see composition
absolutely convergent, 29
Addition-is-continuous thm, 4
antiderivative, 25

ball, punctured, 17
Banach space, 6
block, 21
Bolzano, 3
boundary, 7
bufferable, 11

circular reasoning, see tautology
closure point, 6
cluster point, 7
cluster-pt cpt, 8
CMS = “complete MS”, 15
compactness properties, 8
complete, 3, 15
composition, 16, 24
continuity set, Cty( f ), 12
continuous, 12, 14

uniformly, 12
C(X), CBnd(X), 6
C(X→Ω), CBnd(X→Ω), 14
convergence

of ~x, 2, 6
pointwise, uniform, 15

countable local-base, 7
cover, 8, 26

finite, 8

Lebesgue number, 9, 12
open, 8
patch, 8

CSD = “Countably self-dense”, 15
cutpoints, 14, 21

D, differentiation, 20
Discontinuity set, DisCty( f ), 12, 13

approximations, 27
D, dyadic rationals, 13, 19

error term, 20
extended reals, 3, 5

finite cover, see cover
first-countable, see space, LCG
Fσ-set, 27
function(al), see map

Gδ-set, 27
grok, see Stranger in a Strange Land, 13

HS = “Hausdorff space”, 6, 7

indicator function, 1S (·), 13
induced topology, 7
integrable, 22
interior point, 7
IPVS = “inner-product space”, 1

join of a partition, 21
Jordan mass, 26

Lebesgue mass, 26
Lebesgue number, 9, 28
limit-point, 7
linear functional, 1
Lip-equiv, 13
Lipschitz, 13, 25
`p, ‖·‖p, 5
LUBP, Least upper-bound property, 3

map
antiderivative, 25
bilinear, 20
biLipschitz, 13
homeomorphism, 7
isometry, 7
linear, -functional, 1, 23
nearest-integer, distance, 19
ruler function, 13, 24
van der Waerden, 19

mesh size, 21
metric, 5

arclength, chordal, 5
arctan, stereographic, 5
Equivalence

topologically/Cauchy, 5
Lipschitz, 13

Mr. Rogers, see neighborhood
MS = “metric space”, 5
Multiplication-is-cts thm, 4

neighborhood, nbhd, 7
norm, 4, 6, 18

Euclidean, 10
‖·‖p , ‖·‖sup, 5
NVS = “normed vectorspace”, 4
NP = “north pole”, 5

open cover, see cover
oscillation, 22

P.L, see piecewise-linear
panic

don’t, 6
partition, 17, 21

atom, 21
block, 14, 21
join, 21
pointed, 21
refinement, 21

piecewise-linear fnc, PL~p,~h, 14, 16
rational, 15

POFA, 19
pointwise operations, 14
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positive/negative part, 24, 29
pptn = “pointed partition”, 21
precompact, 10
prejudice, 6
Proof

by contradiction, 9, 10, 12
circular, see circular reasoning

provisional, 11
ptn, see partition

relative topology, 7
ruler function, 13, 24

◦

S,S, (punctured) circle, 5
sample point, tag, 21
seq-cpt, 8
sequence

Cauchy, 2, 5
tail of, 2

set
inescapable, 7
open, 6

space/property
cluster-point compact, 8
compact, 6, 8
cover-positive, 9
Hausdorff, 6
LCG, 7
metric/topological, 6
metrizable, 6
sequentially compact, 8
totally-bounded, TB, 9

space/property Euclidean, 10
standard form, 13

tag, sample point, 21
TailN(~x), 2
tautology, see Proof, circular
TB = “totally bounded”, 9
Theorems

Addition-is-continuous, 4
Multiplication-is-cts, 4

topo-equiv, 5
topology, 6
TOS = “totally-ordered space”, 2
total derivative, 20

TS = “Topological space”, 6

unif. convergence, see convergence
uniform continuity, see continuous
upper-bound, 3

van der Waerden function, 19
variation, 22
vectorspace, 6
VS = “vector space”, 1

0, 0̂, zero-vector, 1
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