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Spaces. Various spaces will be used/defined in this
pamphlet. Abbrevs: VS, vectorspace. NVS, normed vector-
space. IPVS, inner-product (vector)space. TOS, totally-ordered
space. MS, metric space. CMS, complete MS. TS, topological
space. HS, Hausdorff (topological) space.
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Prelim: VSes. To indicate that u is a vector in a

VS W, I’ll normally write “u € W”, both in notes and
on the blackboard; but I can’t write boldface on the black-
board, so it will be “u € W”. In notes, I'll use boldface

0. 7 7 k

e

0

for the zero-vector and for the three coordinate-vectors
in R3. On the blackboard, I'll write these as 0, i, j, k.
In contrast, I’'ll use an overarrow —see @, below— to in-
dicate sequences. (And indeed, these seqs will often be vectors
in R™.)

Over a field 7, consider ¥-VSes V and E. A map
L:V—E is ¥ -linear (or just linear) if:

Ya,B€F and VYv,we,
L(av + Bw) = aL(v) + BL(W).

necessarily

A map L: V-7 is called a functional (abbrev.: fac’al). In the
typical case, L() is linear (viewing ¥ as a 1-dim’al VS over F)
and we call L() a linear functional.
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Prelim: Sets.
times use

For arbitrary sets D and C, I’ll some-

2 the symbol CP to denote the set of functions
D—C.

(This is a std notation.) The “exponent” D is the domain of
these fncs, and C is their codomain. As an example, the
vectorspace R? can be viewed as the set of fncs RI' 31, or
as RI9-3_if convenient.

BTWay: When D and C are finite sets,

QI:  The cardinality |CP| equals |C|"”\.

Elementary MS/TOS theorems

In this section, we have a general totally-ordered
space (7, <). We also have a general metric space (2, d).

Notation for sequences. A symbol X means the (by default,
infinite) ordered tuple

3a: X = (x1,x2,x3,...);

however, the index-set might be a different “ray” of in-
tegers, e.g, X might be denoting (x3, x4, x5,...). Since X
is a fnc, Dom(X) denotes its index-set, and Range(X) =
{Xn}neDom) 18 its set of X-values. Most of the notation be-
low assumes the index-set is Z..

For a set S, expression “X C S ”” means

VYneDomX): x,€S8.
A ““list of indices” shall mean posints

3b: Ni < N < N3 < ...

A sequence € is a subsequence of X |FF there exists a
list (Bb) st. Yk: ¢ = xy,. Write “€ c X” to indicate this
relation. Each N € Dom(X) yields a subsequence called
“the N tail of X7,

Taily(X) =

Fix MS (Q,d). For X c Q > g, let “d-lim(X) = ¢ or
“Q-lim(X) = ¢ or just “lim(X) = ¢’ mean

(-xNv -xN+17 xN+2> . ) .

For each ball B := Bal(g), there exists an

3¢ index N = N(B) for which Taily(%) C B.

Implicit in our notation is “Limits, when they exist, are
unique”. Were this not the case, then we’d view lim(X)

Elementary MS/TOS theorems
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as a set, and write “q € lim(X)” rather than ¢ = lim(X).
Uniqueness is proved after (20), Pl6]

We will interpret a sequence € as the set Range(€) in
these two common contexts: “Diam(€)” and “€ c S”. For
example, a sequence X is d-Cauchy if:

3d:  Ve&>0, 3N such that d-Diam(Taily(X)) < €. i

4: MS-sequence Thm. Facts about seqs in MS (€, d):

A: IfX is convergent, then X is a Cauchy sequence.

B: IfX is Cauchy, then Diam(X) < oo.

-

C: Suppose Cauchy-seq X has a convergent subseqy C X.
Then X converges, and lim(X) = lim(y). O

Proof of (C)).  The first two parts were proved in class.
For the third, let p = lim(¥). Fix >0, then take N large
enough that Diam(Taily (X)) < &.

Write ¥ as (ij)j‘il’ Let J be the first posint large

enough that and d(xg, p) < 7e.
For each ¢ € [K .. ), observe that

d(x¢, p) < d(xe, xk) + d(xk, p)
< e+ 7 = 8¢.

Thus Tailg(X) C Balg.(p). ¢

5: Monotone-subsequence Thm. Each seqX C T has a
monotone subsequence. (“Sequence” means co-seq.)

Indeed, either X has a strictly decreasing subseq, or has
an increasing subsequence. (Dually, X has a strictly incr-subseq

or a decr-subseq.) ¢

Proof.  Let T C Z; comprise the “tall” indices N for
which: [Vk € (N ..o0): xy > xi].

If T is infinite, then (x;),c7 is a strictly-decreasing sub-
sequence of X.

Now suppose T finite. Let N; be the smallest index
exceeding all the tall indices (phrased this way, to cover the case
where T is empty). Arguing inductively, suppose we have
indices Ny < Np < --- < Ng_; for which

XN, S XNy S0 S XNk -

Since Ng_; is not tall, there exists a smallest integer
Nk > Nk_i for which xy, dominates xy,_,.

Continuing the induction yields (xy,),-,, an increasing
subsequence of X. ¢
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6: Induced-topology Lemma. Fix a MS Q and subset X.
Then a further subset U C X is X-open IFF there exists
an Q-openset U st UNX = U.  Proof. Exercise. o

Least upper-bound property [LUBP]. In TOS (Y, <),
consider sets A,B C T and a point u € T'. Let

A <u mean
A < B mean

[Va € A, necessarily @ < u] ;

[VaeAand VB e B: a<pl.

An upper-bound for a set A C T is an element u € T
such that A < u. Use UBy(A) for the set of upper-bnds,
and LB+(A) for the lower-bnd—set. (Dispense with the subscript
if clear from context.) Our (Y, <) has the LUBP if:

Each non-void A C Y which is upper-bnded [i.e
7a:  UBy(A) # @] has a least upper-bound. That is,
UB+(A) has a minimum element.

Reversing the inequalities yields the greatest lower-bound
property, abbreviated GLBP.

The LUB of a set A (when it has a LUB!) is called the
supremum of the set, and is written sup(A) or sup,(A).
Similarly, the infimum is the GLB, written inf(A).

7b: LUBP theorem. TOS (Y, <) has the LUBP IFF it
has the GLBP. o

Proof of [LUBP = GLBP]. Fix a non-void lower-bnded
subset B C T; so A := LBy(B) is non-empty. My goal is
to produce a (hence the) greatest lower-bound for B, using
that

def
I A = LBy(B), and
ol UBy(A) D B.

Since UBy(A) D B # @, and A is non-void, the LUBP
applies, and tells us that A := sup.-(A) exists. In particular

I 1> A.

Since A is the least upper-bnd, 4 < UBy(A) D B and so
A < B. Restating, A is alower-bound of B . (Note: A might
or might not be in B.)

And, by (f) and (7”), this A dominates each lower-
bound of B. So A is a greatest lower-bound of B. ¢

Elementary MS/TOS theorems
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Important announcement. A TOS (V,<) satisfing
LUBP [equivalently, GLBP] is said to be order-complete.
We take as an axiom [or derive via Dedekind cuts or Cauchy se-
quences] that

Tc: (R, <) is order-complete.

This means that the extended reals, R, satisfies a slightly
stronger property: Eacf. subset A C R has a sup(A) and
aninf(A) inR. In consequence, sup() and inf() are maps
from the full P(R)—R.

(See (T4). P for the definition of R, the extended reals.)

8: Monotone-sequence Thm. Each bounded monotone
sequence X C R is R-convergent. o

Proof. 'WLOG, X is increasing, and upper-bnded. Thus
X = Range(X) has a supremum in R; call it L. I claim that
lim(X) = L.

Fix £>0. Now L is the least UB of X, so L — & can not
be an upper-bnd. Hence there exists N with xy > L —¢.
For each ¢ > N, since X is increasing, we have that

L-—eg < xy < xy < L.

Thus Taily(X) C Bal.(L). ¢

9: Bounded-sequence Lemma. Each bounded se-
quence X C R has an R-convergent subsequence. 0

Proof. Use (3), then (8). ¢

10: R Thm. The set of reals is (metrically) complete. o

Proof.  Fix a Cauchy sequence X c R. Courtesy (4B)),
Diam(X) < co. So (9) applies, yielding a convergent sub-
sequence. Now use (@C). ¢

Bernard Bolzano (1781-1848) proved the following form
of the Intermediate-value Theorem.

11: IVT.  Suppose f:[a,b]>R is continuous, with f(a)
and f(b) non-zero and having different signs. Then there
exists a point ¢ € (a,b) which is a zero of f, i.e, f(c) = 0.0

“IE.g, sup(@) = -oo and inf(@) = +c0. Indeed, for A C R:

[A # @] < [inf(A) < sup(A)].
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Proof. WLOGenerality, f(a) < 0 and f(b) > 0; otherwise,
simply replace f by -f (which preserves continuity) and note
that a zero of -f is a zero of f.

Let Ly := a and Ry := b. For stagen = 1,2,..., either
up to some integer K, or out to oo, I will produce num-
bers L,, and R,, such that:

in]: a < L, <L, <R, <R,_; £b;

ii[n]: Ry — L, = %[Rn—l = Ly1];
iii[n]: f(L,) < 0 < f(Rp).

Stage-n construction. Let M be the midpoint of interval
[Lo-1, Ry-1) i€, M 1= 3[Lyo1 + Ryei ]

[CASEZ If f(M) is zero, then STOP} Set K = n—1.
By (i[K]), note that M is strictly between a and b. So
¢ = M fulfills the conclusion of the theorem.

[CASEZ Otherwise, f(M) # 0}
let L,=M& R, =R,_.
let L,=L,1 & R,:=M.

tions (i,ii,iii[n]), automatically hold.

If f(M) negative then
If f(M) positive then
In either case, condi-

Last step. WLOGenerality, we may assume that our
construction never STOPped. So we have two sequences,
L= (L) and R := (R)>,.

By (i), Lis increasing and is bounded above by b. Since
a bounded monotone seq must converge, Lo, := lim,_ Ly
exists; it is in interval [a, b], courtesy (i).

Thus f is defined —hence continuous— at Le,, $0 f(Lco)
equals lim, £(L,). And f(Le) < O since each f(L,) < 0.

Analogously, f(R.) = lim,_« f(R,) exists, and is
non-negative. Furthermore

Reo — Lo = lim[R, — L,], by what thm?,
n—oo

= lim [%]’1 -[b—a], by (ii) and induction,

n—oo

=0.

Thus R and L, equal a common value, call it ¢, in inter-
val [a, b]. The preceding paragraphs tell us that f(c¢) < 0
and f(c) = 0; so f(c) must be zero. Hence ¢ ¢ {a,b}. ¢

12: Addition-Cts thm. The addition operation CxC—C is
continuous. Restated: Suppose X,y C C with lim(X) = «
andlim(y) = B. With p,, := x,, + y,, then, im(p) = a + 8.0

Normed VSes and MSes
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Proof. Fix a posreal €. Take N large enough that
Taily(X) C Bals(@) and Taily(y) C Bals(8).

Each index k has p; — [a + 8] = [xx — a] + [yx — B]. For
each k > N, then,

pe—la+Bl| < b-al+n—-Bl < 5+5 =6 ¢

Remark. The same thm and proof hold for addition on a
normed vectorspace; simply replace |-| by the norm ||-||. O

13: Mult-Cts thm. The multiplication operation CxC—C is
continuous. ResTatep: Suppose X,y C C with lim(X) = «
and lim(y) = 8. With p,, := x,, - y,, then, im(p) = a - B. ¢
Proof. 'WELOG |B| < 7. Since X converges, necessarily
the Diam(X) is finite; WELOG
te ¥ posints n:  |x,| < 50.

For each posint n, adding and subtracting a term gives
X Vn—af = Xpyp— X8 + x,8—af

= Xplyn =Bl + [xp —lB.

Taking absolute-values, then upper-bounding, yields

IA

Xl - [y =Bl + |xn =l - [B]
50 Iyn =Bl + lxn—al-7,

e X yn — @Bl

INA

by (1) and the first sentence.
Fix a posreal . Since lim(y) = 8 and lim(X) = a, we
can take K large enough that each n € [K .. c0) satisfies

2
n =Bl < 85—0 and |x, —al < %
Plugging these estimates in to () gives that
Wyn—afl < 5022 4 2.7 KE

for eachn > K.
As this holds for every & positive, lim(X-y) indeed

equals af. ¢
Normed VSes and MSes
A norm ||-|| , on a real or complex vectorspace W, is a map

W—[0, o0) such that Yu,v € W:

N1: jju|=0 IFF u=0.
N2: V scalars a: |lau]| = |a] - ||u]l.
N3: Jju+ || < [fal] + |IV]].
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Metric Spaces. On a set X, a metric m is a map
XxX—[0, 00) such that Vx, y,z € X:

MS1: m(x,y) =0 IFF x=y.
MS2: m(x,y) = m(y, x).
MS3: m(x,z) < m(x,y) + m(y,2).

Evidently, a norm |[|-|| defines a metric m, by

Ya,veW: mu,v) = |[[u—-v|.

Equivalent metrics. Use Opn(m) for the collection of
open sets that metric m determines; so Opn(m) C P(X).
Say that two metrics m and d, on the same space, are fopo-
logically equivalent (topo-equiv) if Opn(m) = Opn(d). We
write m T(EO d.

opo

T
Ifm =

. . Ce
seqs, then they are Cauchy equivalent, written m =" d.

d and m and d have exactly the same Cauchy

Examples of metrics. Let’s first look at one-dimen-

sional examples.

El. Let S be the unit circle {(x, y) | x* +y? = 1%}. It has
an arclength-metric d .., and a chordal metric dcy. E.g,

da-Diam(S) = x«, and
dcp-Diam(S) = 2.
. Cau
Evidently, dare < dch- O

E2. 1 define the arctan metric, a, on R and on

— synon ..
R

14: R := {~oo} UR U {+00} = [-00,+00].

For points x,y € R, define (using dar)
a(x,y) = |arctan(x) - arctan(y)| .

Note that arctan(+co) = +7 and arctan(-c0) = -7. And «
is topo-equiv to the usual metric on R, but they are not
Cauchy-equivalent.

The set (14) is variously called the extended reals or the
2-point compactification of R. O

Normed VSes and MSes
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E3. The stereographic metric, o, on R and on
15: R = RU{oo},
comes from a projection, as did the arctan-metric. Recall

the circle S from (E1). Let S be the “punctured circle”,
where we removed the “north pole” NP = (0,1). We

have two homeomorphisms, f:S—R and its inverse-fnc

g:R—S. They are defined by a diagram. (See blackboard.)
A bit of algebra shows that

[y = 55

gh) = == -, -1).
We extend these maps to f:S—R and g:R—S, by
[1a: Ff(NP) := oo and g(c0) = NP.
Finally, our stereographic metric is: ¥ p, g € R,
I

The set (13)) is called the projectively extended reals or
the I-point compactification of R. O

16:

o(p,q) = dcn(g(p), (@)

Examples of normed-VSes. For a posint N, let’s define
a family of norms on N-dimensional space R x .N. x R. It
will be convenient to use (2)), P and write this VS as R’,
where J is the index-set J := [0.. N).

For exponent p € [1, o), define the £”-norm (“little-Lp
norm”) by

all, = [Zkejluklp]l/p. Also define

lallee =

17A:
Sup;ey lukl -

One often uses £ = £P(J) as the name of the VS; here,
since J is finite, the VS is R’. A bit of argument shows

17B: VaeR’:  lim |, = [julle.
p/

Infinite index-sets. Now let J := N, the set of real-valued
sequences. What should our vectorspace £”(J) be?

Take the case p := 1. As an example, the constant-7
sequence 7 has inﬁnit £'-“norm”; so we don’t want 7

in £!. So for each p € [1, o] we define, using (T7A),
17C: o) = {veR! |Vl is finite)

One can check that this set is sealed under vector-addition,
so it is a vector subspace of R”. O

“For each p € [1, ), indeed, [|7||, = +co. OTOHand, 17l = 7.
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Supremum-norm. On a MS X, let C(X) or C%(X) denote
the set —indeed, the vectorspace— of continuous functions
X—R. For f € C(X), define

f = sup|f(0)l.

Il = sup
Since this can take on the value +co, we drop to the vector-
subspace of bounded continuous fncs,

17D: Cpua(X) = {f € COO) | Ifllsup < o}

This pair (Cgna(X), [llsup) is @ normed-VS. If X is com-
pact then —we’ll later discover— every cts fnc is bounded.O

The following thm is easy, when J is finite, but takes
some work when the index-set is infinite. (A Banach space

[don’t panic] is a complete normed-vectorspace. )

18: £7 spaces are Banach spaces. Fix an indexing-set J.
Then for each p € [1, o], the space €”(J) is complete in
the metric induced by ||-|| . O

All the foregoing holds mutatis mutandis for R replaced
by C, the complex numbers. Equation (17B)), when stated
appropriately, holds even when J is infinite.

Topological Spaces
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Topological Spaces

A TS Q has a collection U C P(QQ) of sets that we call the
open sets. Family U is required to satisfy:

TS1: U owns @ and owns Q.
TS2: VA, B € U, the intersection A N B € U.

TS3: For each collection A c U: The union [J(A) is
in U. (Note that | J(A) is the set of points w € Q for which
there exists aset V € A with V 3 w.)

Let’s use OpN(Q) for this collection U, and use CLp(Q2) for
the family of closed subsets. Topologists tend to be biased
toward opens sets, and call Opn(QQ) “the fopology of Q.
This TS is metrizable if there exists a metric m on Q for
which Opn(m) = OpN(Q).

Classification of properties. A concept/property on/of
a space Q is (purely) fopological if it can be determined
solely by knowing OpN(£2). On a MS, a property is metric
if it can be determined from the metric. E.g Diam(Q) is
a metric property, but whether Q is connected is purely a
topological property.

Perhaps surprisingly, convergence of a sequence
“lim(X) = ¢” is just a topological property. For it can
be stated as

Foreach open U > q, there exists an index

19: N = N(U) for which Taily(®)  U.

The notation suggests that a sequence can have at most one
limit, and this is true for TSes with the Hausdor{f separa-
tion property (which trivially holds in MSes):

. For each pair of distinct points «, 8 € €, there exist
* disjoint open sets A > a and B 3 .

For if seq X converges to both @ and B, then 3J, K with
Tail;(X) C A and Tailg(X) C B. Setting N := Max(J, K)
gives the # that nv-set Range(Taily(X)) lies in both A
and B.

A TS with property (20) is called a Hausdorff space;
agree to use HS to abbreviate this.

Closure/Interior/Bdry etc. FixaTS QandasetS c Q.
A point g € Q is a “closure point of S ” if:

21: VYV 54, theintersection VNS # @.
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Use Clg(S) for the set of Q—closure-points of S. Easily

Cla(S) is Q-closed, and equals the intersection of all Q-closed

21r:

supersets of S ; hence, it is the smallest such.
A point g € Q is an “interior point of S 7 if:
22: AVP 5 g suchthat V.C S .

Use Itrg(S) for the set of Q—interior-points of §. And

221

Itrq(S) is Q-open, and equals the union of all Q2-open subsets

of S ; hence, it is the largest such.

Asset S is “a Q-neighborhood of a point ¢” if Itro(S) > g.
Equivalently, JU°P*" with S > U > g. Write this as

nbhd nbhd
q € S or S 3 ¢q.

Replacing g by a set, A, we say that *“S is a neighborhood
of set A” if Itr(S') D A. Analogously, write this relation as

nbhd nbhd
c S or S DA

The “Q-boundary of S ”°, written 0q(S ) or Bdryq(S), is
CI(S)NCI(QNS).

A point g € Q is a “cluster point of S iff
RII':  VVP"3g4: Intersection V NS is infinite.

Use Clustq(S) for the S'’s set of cluste points.
Switching from sets to sequences, a point g is

“a limit-poin)E of sequence X ”’

if X has some subsequence which converges to g.

Isomorphisms.
homeomorphis

A map ¢: Q=X between two TSes is a
if ¢ is a bijection st.:

For each open set A C €, the forward-image
¢@(A) is X-open. And for each open set S C X,
the inverse-image ¢™'(S) is Q-open. (Looking

ahead, each of ¢ and ¢™' is continuous.)

23:

A homeomorphism is a “topological isomorphism”.

Between two MSes (Q, 1) and (X,d), an isometr
is a bijection f:Q<»X which preserves distance: For all
@y, @y € Q, we have d(f(a1), f(a2)) = u(ai, @2).

“3Terms cluster point, accumulation point and limit point are related.
Alas, textbooks vary as to which term they assign to which concept.

“From Greek opolog (homoios) “similar”, and pop¢n (morph)
“form”, “shape”.

“From Greek 100g (isos), “equal”, and popdm (morph).

Topological Spaces
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Defn: Relative topology. Ina TS Q with subset X, how
should we define the X-open subsets? Motivated by the
Induced-topology Lemma, (6)), we specify that

A subset U C X is X-open IFF there exists an

24 Q-open set U such that UnX = U.

The collection of such sets U is indeed a topology on X
(fulfilling axioms (TS1,2,3)). It is called the relative topology
or induced topology on X.

25: Lemma. For a subset S of a Hausdorff TS: A point g
is a cluster-point of S IFF each V°P®" 5 g owns a point
of § difterent from q.  Proof. Exercise. o

Locally Countably Generated spaces. Consider a MS
Q and point g € Q. Evidently, by letting U,, := Balj/,(q).

There exists U , a countable family U; D Uy D ...
26: of Q-open sets, each owning q. Moreover for each
openV 3 g, there is some n with V O U,,.

Such a U is called a “countable local-base for q”. A
TS Q is LCG (locally countably-generated) if each g € Q has a
countable local-base. (The std phrase is “Q is first-countable™.)

27: Sequence-Closure Lemma.
subset S €  and point g € Q.

In TS Q, consider a

a: If there exists a sequence & C S with lim(&) = g, then
g € CI(S).

b: Now suppose that Q is LCG. If g € CI(S) then A7 C S
such that lim(&) = g, o

Proof. Leaving (a) as an exercise, let’s show (B).

Fix U as in (26). Each U, intersects S, since g € CI(S),
so we may pick a pointo, € U, N S.

Given an open V > ¢, there exists N with Uy C V. For
eachk > N, then, o € Uy Cc Uy C V. Le, Taily(d) C V.4

g% Every TS satisfies (Z7p). But conclusion 7B can fail in a non-
LCG space. It fails in the cartesian-power space {0, 1}~.

Lemma [27)implies, in an LCG space, that a set is closed IFF it is
(sequentially-)inescapable. ]

Filename: Problems/Analysis/Calculus/notes-AdvCalc.latex



Prof. JLF King

Compactness

A TS X is sequentially compact (seq-cpt) if each X-
sequence has a X-convergent subsequence.

28: Lemma. In a MS Q (Hausdorff & LCG, suffices), SUppOse
subset X is sequentially compact. Then X is Q-closed. ¢

Proof.  Fix an arbitrary Q-convergent seq X C X. Let
w = lim(X) € Q. Since X is sequentially-cpt, there exists
an X-convergent subseq ¥ C X; so z := lim(¥y) is in X. But
% is Q-convergent, s0 w == z. Thus w € X.

This holds for each sequence X C X, so X is Q-
inescapable. But Q is a MS, so applies and tells us
that X is Q-closed. ¢

A TS X is cluster-point compact (cluster-pt cpt) if each
infinite subset S C X has a cluster-point in X.

29: Lemma. For a general TS Q:
a: Sequentially compact = Cluster-point compact.

b: If Q is LCG, then Cluster-point compactness implies
Sequential-compactness. o

Pf of (a). Consider an co-subset S ¢ X. Forn =1,2,3,...,
pick a point

*e bl’l € S\{b17b2,~~~,bn—l};

this is possible, since S is infinite. Since X is seq-cpt, there
is a subseq & C b which is X-convergent; let ¢ := lim(&).
Now & Cc b C S, so g is a closure-point of §. But a has
distinct terms, since b does, courtesy (). Thus ¢ is, in
fact, a cluster-point of S. ¢

Pf of (B). Fix a seq b c X. A constant subseq is certainly
convergent, so WLOG no value in b occurs ocoly-often.
Hence we can let & C b be the subsequence obtained by
keeping just the first occurrence of each value in b. Au-
tomatically, € has distinct terms, so {ce};2, is infinite, and
thus has a cluster-point; pick one such, and call it g.

For g, fix countable local-base U as in (26). Set Ny == 0.
Fork =1,2,...,let N; be the smallest index n > Nj_; st.
¢y € Ug. Such an n exists, since Uy owns ooly many points
from {c,}$°, and the £ — ¢, map is injective.

Compactness
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Let e¢x = cy,. To show that seq € converges to g, fix an
open set V 3 g, then take K (smallest, say) so that Ug C V.
But each index k > K has

e, € Uy, c Uy C V.

Le, Tailg(€) C V. ¢

Covers. For X c Q, an “Q-cover of X is a collection
C c P(Q) for which X c [J(C). A subset S c Cisa
subcover (of X) if | J(8) D X. The elements of a cover are
sometimes called patches.

An open cover has each patch open. Inconsistently, a
cover C is a finite cover if |C| < co.

A TS X is compact |FF each X-open-cover C, of X,
has (some folks say, “admits”) a finite subcover. In practice, X
is a subset of some TS Q. Courtesy (24)) (and (8), indirectly):

30: X is compact IFF each Q-open-cover of X has

" afinite subcover.

31: Diameter/compactness Prop’n. Suppose Diam(X™5)
is infinite. Then X is not compact. o

Pf. Since X non-void (Diam >0), we can pick a point z € X.
Let B,, be the center=z ball of radius-n. Thus C := {B,,}®

n=1
is an open-cover of X. It has no finite subcover, since such
would force Diam(X) < oo. ¢

32: Compact-intervals theorem. For all reals a < b, the
closed interval J = [a, b] is compact. o

Pf. WELOG, J = [3,7]. Given an arbitrary cover C of J
by R-open sets, ISTProduce a finite subcover.

So our job is to show that 7 is good, where an x€J is
“good” IFF there exists a finite subcollection FcC€ cov-
ering [3, x]. We’ll first show that this number,

T 7 =

sup{x € J | x is good},

exceeds 3. We’ll then show that z is good, and equals 7.

Some patch P € C owns 3, so 36>0 with
P o [3-63+4].

So singleton {P} covers [3,3 + 6]. WLOG 3+6 < 7; thus

z>3+06. Hence.
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Also, some C-patch Q owns z. So e>0 with
t: 0> lz—¢&z+e] D lz—¢ 1],

and we can shrink & so that z—& > 3. (Here is where we
use that z exceeds 3.) Automatically (why?), the number z — &
is good; let FcC be a finite family which covers [3, z—¢].

Then F U {Q} covers [3, z]. Le, .

Lastly, FTSOContradiction suppose z ; 7. Then we
could have taken £ so small that z+& < 7. But ¥ U {Q}
covers interval [3, z + €], thus showing that z + & is good;
And that rudely contradicts (7). ¢

Metric ideas related to compactness

A MS Q is totally-bounded (abbrev.: TB) if: For each >0,
there exists a cover of Q by finitely many e-balls.

33: TB-iff-CauchySubseq Thm. MS X is totally-bounded

IFF each seq a C X has a Cauchy subsequence € C a.
Corollary. A MS is complete and totally-bounded IFF

it is sequentially compact. 0

Proof: TotBnded = Every-seq-has-a-CauchySubseq.

For each K = 1,2, ... we can, by hypothesis,

let B{(, Bg, e, BfK be a finite list of radius-+

33a: . Lk, K
balls, whose union is X.

Fixing a sequence & C X, our goal is to produce a subse-
quence which is Cauchy.

Define index sets Iy :=Z, > I, > I3 D ..., as follows.
At stage K, with Ix_; defined, let B be the first ball in

list (33a)) that owns coly many indices from Ix_;. Le,
33b: Iy = {l €lx_1 | B> ai} is infinite.

Automatically
. . . 2
33c: Dlam({ai |ie IK}) < Diam(B) < &

Let N; := 1 and let each Ng be the smallest element
of I that exceeds Nk-_1; possible, courtesy (33b).

To see that sequence (an,)x_, is Cauchy, fix £>0, then a
K with % < &. For each pair of indices j, £ dominating K,
note that N; € I; C Ig; ditto Ny € Ix. By (33¢), then,

Dist(ay;, an,) < €. ¢

Metric ideas related to compactness
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Pf: Every-seq-has-a-CauchySubseq = TB.  FTSOC,
suppose X is not TB. So there exists a “bad” posreal ¢ st.

33d: there is no finite cover of X by e-balls.

Use B, to denote the radius-¢ ball centered at a point p.
In X, pick points py, p2, ..., pk,... st. each

pk isinnone of By, Bp,, ..., By ;.

This process never gets stuck, courtesy (33d). Hence
(pk)x-, is an (infinite) sequence, which certainly has no
Cauchy-subseq, since each two entries are at least £ apart.
Contradictionm ¢

Lebesgue number. In a MS Q, a posreal r is a Lebesgue
number of an Q-cover C if:

For each g € Q, there exists a patch P € C for
which Bal,(q) C P.

For want of a better term, say that Q is a “cover-positive
space” if each open-cover has a Lebesgue number.

Note that Q := Z is cover-positive; indeed r := 1 is a
Lebesgue number for every cover! That Z fails to be com-
pact does not contradict the below Compactness notions
Thm because. .. Z is not totally-bounded. O

The equivalence in t.bel Compactness notions Thm does not hold
in a general TS; neither Compactness nor Sequential Compactness
implies the other. The uncountable product Y := {0, 1}* is compact, but
not seq-cpt. Conversely, equipping the first uncountable ordinal, w,
with the order-topology, gives a seq-cpt space that is not cpt. O

34: Compactness notions Theorem. In (X, d), a metric
space, TFAEquivalent:

a: X is sequentially-compact.

b’: X is totally-bounded and (metrically) complete.

b: X is totally-bounded and cover-positive. (Leb. number.)
c: X is compact.

d: X is cluster-point compact. O

Pf(a) = (b").  Seq-cptness gives totally-boundedness,
using (33). To get completeness, fix a Cauchy-seq a. By
seq-cptness, & has a convergent subseq; so @C) implies
that & converges. ¢

“Note: In a space where this process By, B,,, Bp,, ... never gets
stuck, there is no reason for this collection of balls to cover X. Indeed,
there are MSes where for each >0, no countable collection of r-balls
can cover the space.
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Pf (a)<=(b’). Fix a seq a. Hypothesis (b’) and (33) show
that a has a Cauchy-subseq. And completeness forces this
subseq to converge. Hence X is sequentially-compact. ¢

Pf(a) = (B). We get totally-boundedness from (33).

FTSOC, suppose there exists an open-cover € with no
Lebesgue number. So, fixing posreals g, \, 0, there is a
point y, € X st. ball Bal,, (y,) lies in no C-patch.

By seq-cptness, ¥ has a convergent subseq. Pick one
such, rename it ¥ and let ¢ := lim(¥). Since C covers X,
there exists a patch P € C with P > q.

Since P is open, there exists >0 st. Balys(g) € P. Pick
N big enough that ey < ¢ and Dist(yy, g) < 6. Now

Bal., (yy) C Balys(q) C P.

Alas, this contradicts the “FTSOC” paragraph. ¢

Pf(®) = (). Given an open-cover C, take a Lebesgue
number r>0. Since X is TB, there is a finite collection F
of radius-r balls that cover X. But r is a Leb-number for
G, so for each ball B € J there is a patch P € C that
includes B. Pick one such and call it B.

Hence € := {E |BeJF}isa finite family of C-patches.
But does it cover X? Yes, since | J(C) > J(F) = X. ¢

Pf(c) = (d). (This implication holds in all Topological Spaces.)
Fix a subset § C X with no cluster-pts. To show §
finite, note that each point z € X must have an open nbhd
V. 5 z having finite intersection with S.
Family {V, | z € X} is an open cover of X. So there
exists a finite set F' < X st. {V_},cr covers X. Thus

Sn&pﬂ = ;ﬂSan

S = SnX =

Being a finite union of finite sets, then, S must be finite. ¢

Pf({d) = (a). Follows from (29). ¢

For us, Euclidean space R° = Rx.D.xR, is finite di-
mensional and equipped with ||-||», the Euclidean norm.

35: Product-space Convergence Lemma. InQ := RP,

write the n' term in sequence X as
132 43
x, = (b, b, b, ..

.,bP),  with each b € R.

Then X converges in Q IFF foreachk =1,...,D, the seq
ne— bﬁ converges in R. With /3" = lim; 00 bﬁ, moreover,
lim(X) equals (8',...,8°) € Q.  Proof. Exercise. 0

Metric ideas related to compactness
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36: Heine-Borel theorem. In Euclidean space Q := RP, a
subset K is compact IFF K is Q-closed and bounded. ¢

Pf. WELOG, Q = RXR. Let’s show that a closed rectangle

where I := [a,b] C R

S = 1IXJs 47 =[edcR

is sequentially-compact. Consider a seq X C S, with

x, = (a.B) € IxJ.

Courtesy (32)), Compact-intervals thm, and (34), our I is
seq-cpt. So we can drop to a subseq (and rename) so that,
now, n — «, converges. Use cptness of J to subsequence
again. The new X converges, using (33)), and this X is a
subseq of the original.

A closed subset, K, of a compact space is necessarily
[Exer: ] cpt. Now consider an Q-closed and bounded set K.
Being bnded, there exist closed intervals I and J so that
IxJ D K. Since K is Q-closed, this K is automatically

IxJ-closed; hence K is compact.

The converse. Fix an Q-compact set K; necessarily
bounded, by @ Were K not Q-closed, there there’d be
a sequence X C K which converges to a point ¢ € Q \ K.
So no subseq could K-converge. ¢

Precompactness. In a topological space €, a subset X C Q
is Q-precompact if Clg(X) is compact@

The Heine-Borel thm is tantamount to saying that the
precompact subsets of Euclidean space are precisely the
bounded subsets.

Trying to characterize the precompact subsets of a gen-
eral MS (Q, d), leads naturally to the following nice prob-
lem. O

Exer 1. In MS (€, d), suppose a subset X C Q is totally-
bounded. Must its closure Y = Clg(X) automatically be
totally-bounded too? O

(YEs, as shown by Andy, Michael R., Lindsay, Taylor, and .. .)

“TRecall that compactness is an absolute notion. However, pre-
compactness depends on the closure operator, and is a relative no-
tion. As an example, the interval (0, 1) is R-precompact, but is not
Q-precompact for Q := [0, 1).
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Proof. (All balls here are Q-balls.) Fix £>0. The TBness of X
hands us a finite set F C X such that

t:  The e-balls {Bal(c)}, . cover X.

ISTProve that the [2g]-balls with centers in F C X n%te Y
indeed cover Y. To this end, fix a point P € Y. Being in
the Q-closure of X, there exists an x € X with d(x, P) < &.
By (), there exists a point ¢ € F with d(c, x) < &. So

dc,P) < d(c,x)+d(x,P) < e+e&,

and the cavalry (i.e, Anequality) rides up and saves the day.4

Bufferable pairs of sets.  (The following terminology is provi-
sional, and may get changed. But the Mathematics will remain. .. )

Ina TS Q, a disjoint pair of sets E| and E» is bufferable
if there exists disjoint open sets U; D E;. Usually just say
that “E, E; is a bufferable pair”.

Suppose that foo and fum are two properties that a
subset of Q might or might-not have. We’ll say that
Q is “foo:fum-buffered” if for each disjoint pair of sets,
a foo E| and a fum E,, the pair (E|, E>) is bufferable.
Examples are: Q might be compact:compact-buffered or
compact:closed-buffered.

We’ll call Q point:compact-buffered if each point p
(technically, each singleton E; := {p}) can be buffered from each
compact set E, that does not own p. In this language,
“Q is Hausdorff”” means that Q is point:point-buffered.

As an abbreviation, let “fum-buffered” mean fum:fum-
buffered. O

37: Compactness lemma. Consider a TS Q.
a: If Q is compact, then each Q-closed subset is compact.

b: Suppose Q Hausdorff. Then Q is point:compact-buffered,
and each compact subset Y C Q is Q-closed. Further,
Q is compact-buffered.

c: Suppose Q is metrizable. If d is a metric consistent
with the topology, then (€2, d) is complete. o

Proof of (a). (Let “open” mean “Q-open”.) Take an Q-closed
Y ¢ Q and Q-open cover, C, of Y. Thus {Q\ Y} U C is
an Q-open cover of Q. So it has a finite subcover (of Q),
which we can write as {Q \ Y} U JF, where F C C is finite.
And therefore F covers Y. ¢

Metric ideas related to compactness
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Proof of (b). Fix a point p € Q\Y. For each point z € Y,
Hausdoffness gives disjoint open sets

U,ap and V,;>5z.

Compactness of Y asserts a finite set Z C Y such that
{V.}.ez covers Y. It follows that these disjoint sets,

U = ﬂzez U, and Vo= UzEZ V.,

are open. Since U> p and V > Y, we have buffered the
p, Y pair. _
Renaming U to U,, we have that

note
U prmm—
UPEQ\Y p

is Q-open. Thus Y is Q-closed.

Lastly, fix disjoint compact sets C,Y c Q. For each
point p € Q \'Y, there exist open sets U, > pand V, D Y,
with U, NV, = @. Since {Up} ¢ is an open-cover of C,
there exists a finite set F/ C C so that {Up} . already
covers C. Automatically, these open sets,

U = UpeF U, and Vo= mpeF Vi,

are disjoint from each other. Finally, U>CandVDOY. ¢

Pf of (c). Fix a Cauchy sequence X. Sequential-compact-
ness says there exists a convergent subseq ¥ C X. So ({@C)
of the MS-sequence Thm tells us that X converges. ¢
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Continuity Proof.  FTSOC, suppose we have an £>0 for which no §

A map f:(X, d)—(Q, ) is “continuous at g € X if:

Vex>0,36 = 6(q, €)>0 such that:
38: VxeX,ifd(x,q) <6 then u(f(x), f(q) < &.
Le, setting w := f(q): Bals(g) c f(Baly(w)).

And “f is continuous” if it is cts at each point g of its
domain. Notice that the 6 = d(e, g) depends on both &
and ¢. In contrast, f is uniformly continuous if we can

quantify g after ¢6:

Ve>0, 16 = 6(e) > 0 st. foreach g € X:
Bals(q) € f'(Balo(f(9))).

Equivalently: Ye>0,36>0 st. Vx,q € X, ifd(x, g) < ¢ then
u(f(x), f(@) < e. Exer: Prove this equivalence!

Metricless continuity. Our defn (39) of uniform continuity
seems to really use a metric. But just “continuity at a
point”, (38), can be stated purely in terms of open sets:

39:

B For each Q-open A > f(q), its inverse-image
f71(A) is a neighborhood ™| of g.

(Again equivalently: Each Q-nbhd A of f(g) has its inverse-image be-
ing a nbhd of ¢.) Indeed, for a map f:X—Q between gen-
eral TSes, we take (38[)) as our definition of

“f is continuous at q”’.

We use Cty(f) for the continuity set of f; those g € X at
which f is continuous. Use

DisCty(f) = X\ Cty(f)

for f’s . discontinuity set See examples (@3) and @7). O

In the case where f is continuous everywhere we can,
in (38[)), simplify “neighborhood” to “open set”.

40: Baby continuity Lemma. A map f:X—Q between
topological spaces is continuous IFF f'(A) is X-open,
for each Q-open set A.  Proof. Exercise. o

41: Uniform-continuity Theorem. Consider a continuous
map f:(X, d)—(Q, u) between MSes. If X is compact, then
f is uniformly continuous. o

“8Even with f continuous at ¢, discontinuities at other points can
ruin f'(A) being open; whence the weaker requirement that f™'(A)
have ¢ in its interior.

is small enough. L.e, there are seqs &b C X such that

2 lim d(ay, by) = 0. And Yn: u(f(@n). f(b)) > €.
Since X is seq-cpt, are indices Ny < N> < ... so that
@ = limj_, ay; exists in X. Rename 4 to this (an,)}’, by
re-indexing & and b. Now lim(@) = «, and (%) still holds.

Use seq-cptness again to drop to a convergent subseq
of 5; then re-index. So now, 3 := lim(l;) exists.

Continuity of f at @ and 8, and (), implies (Exer: do this!)
that

recall

£ u(f(@), fB) 2 & > 0.

OTOHand, the Anequality and (f) imply (Exer: show this!)
that d(a, 8) = 0. Hence o = . But this contradicts (f). ¢

2" proof. Fix £>0. Let D be the set of e-balls in Q. So

¢ = {f'(A)|AeD}

is an open-cover of X, courtesy (@0). By the Compact-
ness notions theorem, C has a Lebesgue number r>0.
Consider two points x,y € X less than r apart. Since
x,y € Bal,(x), there exists a C-patch P = f~!(A) owning
both. Hence f(x) and f(y) lie in a common Q-g-ball, A. ¢

Defn. Examine map f:(X, d)—(Q, u) between MSes. The
posreal 7 is a Lipschitz bound for f if:

Vxy € X: Distance p(f(x), f()) < 7-d(x,y) .
A fnc f is Lipschitz continuous |FF AU € [0, o) so that:
42:  Vx,y € X: Distance u(f(x), f(y)) < U -d(x,y)

Such a U is called “a Lipschitz bound for f”°. The in-
fimum of such is “the Lipschitz constant of f”, and is

written | Lip(f) |. Easily,

Lipschitz continuity = uniform continuity .

The converse does not hold: The function R—R by
x - x!'/3 is uniformly —but not Lipschitz— continuous.
This also is an example of an invertible uniformly-cts
function whose fnc-inverse is not uniformly continuous.O
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43: Lip-Diff Lemma. On an interval J, suppose f:J—R is
differentiable. Then f is Lipschitz continuous IFF

U = sup,lf

is finite; and then U is Lip(f), the Lipschitz constant
of f. o

Proof of (<). Fix x < yin J. The Mean-Value Theorem
asserts a point ¢ € [x, y] such that

fO-f» = flo-x-yl.
Consequently, |[f(x)—fO)| < U -|x -y ¢
Proof of (=). Exercise. ¢

Definition. A map h:(X, d)—(Q, ) is biLipschitz if h is
invertible, and both 47! and 4 are Lipschitz maps.

Two metrics m and d, on the same space X, are Lip-
schitz equivalent (Lip-equiv) if the identity map

x b x from (X, d)—(X, p)

. . . . Lip
is biLipschitz. We write m < d. O

L

ip Cau .
44: Lemma. If m < dthenm =< d. Proof. Exercise.¢

45: Indicator functions. Fix a set Q. Each subset S ¢ Q
yields a fnc 15:Q—{0, 1}, the indicator function

Is(x) = {1 when x € § }
0 when x € O\S

Since the notation doesn’t show the space (i.e, we don’t write
150), we sometimes write “1g:Q—R” to emphasize the
domain. For example: What is the discontinuity-set of fnc
1g:R—R? Answer: All of R. But the discontinuity-set of
1g:Q—R is empty; this fnc is constant-1, hence cts.

As another example, let J be the set of positive rationals
whose square lies between 4 and 7. Let g mean 1;: Q—R,

and f mean 1;:R—R. Use A for l[z,xﬁ]:R—ﬂR. Then

DisCty(g) = {2} ¢ Q, and
DisCty(f) = [2,V7] c R.

But DisCty(h) = {2} U V7, just a doubleton.

Continuity
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46: Prop’n.  For a subset E C Q of a topological space,
DisCty(1g) = do(E).  Proof. Exercise. o

Ruler function. We are born grokking the dyadic rationals,

D = {%’neZandeeN}.

Say that a fraction “n/d” is in standard form (LCTerms?)
ifneZandd € Z,, withn L d. (Std.form is unique. As a
fraction, the std. form of 0 is 0/1.)

From a subset S C Q, define the *S-ruler function”
ZRS :R-R by

() =

SRS (x) =

for g € § in std.form;
47:

1
d b
0, forxeR\S.

In the special case where S := D, we call this just the ruler
Junction R := Rp. O

Exer.[f7] 1: Ruler function Ry is idempotent |IFF the sub-
set § C Q satisfies ... What?

The ruler fnc is interesting in that both its cty and its
discty sets are dense in R, as the next Observation shows.

48: Obs. For S c Q arbitrary, DisCty(Rs) = S. ¢
Proof of DisCty(Rs) D S. Exercise. ¢

Proof of DisCty(Rs) ¢ S. FTSOC, supposeal € R\ S
is a discty-point of Rg. Then there exists a posint D and
sequence r,, — A with each Rg(r,,) > L. Soeach r, is in
the set Qp from (@9)), below. But (@9) implies that QO has
no cluster-points. Thus F is eventually-constant, WLOG
constant. So each r, equals A. Since Rg (1) = 0, this is an
outrageous contradiction. ¢

49: Lem HW1. For N a posint, let Qy be the set of
ratios /ZE withk € Z and € € [1..N]. Produce a posint Py
so that: For all distinct x,y € Qy, nec. |x —y| > 1/Py. ¢
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Proof.  Note that Q; is Z, so P; = 1. It turns out that
the value Py := N! works, but we can get a better formula

when , which we henceforth consider.

Firstly, 771 — % = e S0 Pv 2 [N-1IN. Let’s

establish the reverse inequality, thus proving
490 1: Py = [N-1]N,
Write x = 7 and y = g as ratios of integers, with k and ¢
in [1 .. N]. Setting L := LCM(k, £), observe that

foreach N € [2 .. ).

Y—y = m for some integer m. This
y = L’ m#0,sincex#y.

Hence [x —y| > %, so Py is less-equal the max-value that

L can assume. Thus
@2 Py < Max{LOM(.0) | kell.N]).

If k = ¢, then LCM(k,¢) < N. Thus LCM(k,£) <
[N-1]N, since N-1 > 1. Conversely, if k < ¢, then

LOM(k,€) < k-{ < [N-1]N. In either case, we get the
“reverse inequality”, courtesy [@9[2)). Hence (@9[T). ¢

50: Lem HW2.  Consider A € R and integers b,>0 and
aﬂ

ay (not-nec coprime) such that r, — A, where r, = 3*, yet
eachr, # A. Then b,, — o, asn /. ¢

Piecewise-linear functions. ~ Consider a closed interval
J :=[a,b] C R and a tuple P of cutpoints of J,

a=py < py < p2... < pyv-1 < pyn=b.

Call the subinterval By, = [p_1, pi] the “ih plock of p”.
A function g: J—R is “piecewise linear on J”

i: if g is continuous and
ii: each restriction g| g, has a straight-line graph.

Using the heights A := g(px), here is the formula for g(x)
when x € By:

900 = [ h] 4 [ - ).

Turning this around, a cutpoint-tuple p and a “height-
tuple” h = (hg,hy,...,hy) of reals, engenders a P.L
(piecewise linear) fnc. For x € By,

X~ Pk X~ Pk-1
51: PL.o(x) = | ———— Iy |+ | ——— - I
ph [Pk—l - Dk ] [Pk — Dik-1 ]
More generally, we can have PLﬁﬁ map interval J into a
real vectorspace W. Each h; is a vector in W, and each

. xX— . .
ratio, e.g p4_’;33 , 1s a scalar in R. O

Continuity
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Continuity and VSes. Given TSes X and Q, let C(X—Q)
be the set of continuous functions X—Q.

Usually Q is a MS; suppose u is its metric. We can
define an extended-metric pg,, on C(X—Q) by:
52 Ilsup(f, g) = supu(f(x),g(x)).
xeX
An f € C(X—Q) is bounded if Diam(Range(f)) < oo.
Use Cgna(X—Q) for these; note that on this set, pg,p is an
actual metric.

When Q is a real-VS W, the set | V:= C(X—W)| be-

comes a R-VS under pointwise operations

[f+81(x) = f(x) + g(x), and [5£](x) = 5f(x).

Putting a norm ||-|| on W engenders the supremum-norm
Il = supllfeoll, oV,
xeX

which is necessarily finite when X is compact, thus mak-
ing (V, ||-/lsup) @ normed-VS. (When X non-compact, we can use
Cgna(X—W) as a normed-VS.) O

53: P.L-approximation thm. Fix J := [a, b] C R, normed-
VS (W, ||l), and continuous f:J—W. Then, given >0,
there exists a PL function g:J—>W with ||f — gllsup < &. ¢

Proof. For free, f is unif-cts since J is cpt. Pick posint N
large enough that, with ¢ := ]’N;“: For all pairs x,y € J,

x=yl<6 = |If(0)-f@I=<e/2.

Define cutpoints py := a + ké and heights Ay := f(py), for

k=0,1,...,N.Isthe g := PLﬁH function &-close to f?
WELOG, fix an x € By. Since g| p, is linear,

llg(pa) — g™l < llg(ps) — g(p3)l

Why?
s —h3ll < &/2.

Now [lx — pall < 6, so [I[f(x) = f(pa)ll < &/2. By the
/\nequality, difference || f(x) — g(x)|| is less-equal the sum

1/ ) = fpOIl + 1L f (pa) — g(pD)Il + llg(pa) — g(0)I
< &/2+|ha—hall+€/2 = &. ¢
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Defn. Afnch = PLﬁ - is a rational-P.L function if every
cutpoint and height is rational. More generally, given an
(open, closed, half-open) interval I C [pg, py], its restriction
f = h];is also called “Q-piecewise-linear”. This allows
us to define “rational-P.L” on intervals whose endpoints
are not rational. O

54: Theorem. On a bounded interval J C R, have Q
denote the set of Q-piecewise-linear functions. Then Q is
countable. Moreover, Q is ||||sup-dense in the set of all PL
fncson J.

When J is compact, then Q is ||-||sup-dense in C(J—R).
Thus C(J—R) becomes a CSD normed-VS. O

Proof. Exercise. Use the P.L-approximation thm. ¢

Uniform Convergence

Consider a TSes X and €, as well as functions g, f,: Xx—Q.
Let f denote this sequence (fi,f2,...). Say that
“Sequence f converges pointwise to g”’ if

VxeX: fi(x) =S g(x).

Now suppose (Q, 1) is a MS, and use g from (52)) as
a metric on fncs. If we have that

%1 Msup(fnr g) — 0, asn, 00,

then say that “sequence f converges uniformly to g”.
When Q is a normed-VS (Q, ||-||) then we can restate (*)
as || fn — 8llsup — 0.

55: Uniform-convergence theorem. With notation from

uniformly
above: If each f, is continuous, and fn———>g, then g is

continuous.

Now suppose that (Q, ) is a complete metric-space
(acMS). Then A := Cppa(X—Q) is complete with respect
to the 5y metric. 0

Proof. Let m denote the metric g, from (52).

Fix a point P € X and an £>0. Pick N large enough that
M(fn, g) < & WELOG, suppose N = 7.

Since f7 is continuous at P, there exists an X-open set
U > P for which: If x € U then

(i), H(P) < 3e.
For such an x, note that u(g(x), g(P)) is dominated by
p(g(x), f7(x)) + u(fr(x), f(P)) + pu(f7(P), 8(P))

< &+3& +¢& = D5e.

Uniform Convergence
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Completeness of A. Consider an m-Cauchy sequence
f c A. Fixaz € X. For each pair of indices j and k,

u(fi@ fi@) < m(f f);

son — f,(2) is u-Cauchy. Call its limit g(z).

This defines a (not-nec cts) fnc g:X—€, which is the
pointwise limit of f Exer: Show f,, — g uniformly.

To demonstrate that f is A-convergent, we need to prove
that the above g is in A, i.e, that g is continuous and
bounded. The continuity follows from the uniform con-
vergence. As for boundedness, pick N large enough that
m(fy,g) < 17. The Anequality then shows (Exer: exercise)
that

Diam(Range(g)) < Diam(Range(fy))+34. ¢

56: Weird Appl. of Unif-Conv.  Suppose f,"g, for
maps g,f,: XT5—(QMS, 11). Consider points y, z; € X with
zr — y. If y e Cty(g) then

T2 Iim fo(z) = g(). 0

k—oo

Proof. Fix £>0. Choose an index N large enough that
foreachn > N.

:usup(fm g < 2e,

Since g is continuous at y, we can take K so that

u(g(z), 8(») < &,
Forall n > N and k > K, then,

1220, 80)) < p(falzi). 8(0)) + 1(8(z1). 1))

< 2 +¢& = 3¢.

for each k > K.

Exer 2. Modify the proof of Uniform-convergence thm

to show: Suppose fn g ‘g, for maps g, f,,: (X, d)—(Q, w). If
each f, is uniformly continuous, then so is g. m|

57: Unif-conv Composition Lemma. Consider sets Z, Y
and MSes X and Q. For maps f,,g:Y—X, suppose

I it g, asn — oo. Then the following hold.
iz For an arbitrary tnc B: Z—Y: [ f, ﬁ] [g o S].

ii: Suppose map a:X—€ is uniformly continuous. Then

if,
[@o fu]l == [aogl, asn — co. 0
Proof. Exercise 3. ¢
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What does nesting give? Use “f,,™\, g” to mean, for
each x, thatn — f,(x) is decreasing, and decreases to g(x).

58: Nested uniform-convergence thm (Nested UC). On a

metric space X, suppose functions g, f,,: X—R are continu-
i . uniformly L.
ous, and f,,"\, g pointwise. Then f,——g, if either:
n—oo

it Space X is compact, or
ii: Ye>0, d an index K such that the set

{xeX | [fk — gl(x) > &} is compact. o

Preliminary reduction. — Use ||| for ||-|[sup. Replace “f,”
by f,—g (which is continuous, since f, and g are) and replace “g”

by 0, the zero-function. By hypothesis,

fiz2fh>f3>--->0, pointwise.

So n — ||f4l| is decreasing (non-increasing) and thus f con-
verges uniformly IFF Ve, AN with ||fyll < &.

In particular, ISTShow that some subseq of f converges
uniformly. O

Proof of (i). FTSOC, suppose inf, ||f,|| dominates, say, 7.
So there are points y, € X with

It fan) = 6.

Since MS X is cpt, it is seq-cpt, so we can subsequence
and renumber so that

o8 z = limy, exists in X.

n—0o0

But f,(z)—0. WLOG fi(z) < 5. Since f; is continuous
at z, there is an open set U > z on which fi|y < 5.

But each f, < fi, 50 fi(yn) 2 fu(yn) 2 6, by (). Thus
no y, point is in U. This is a grave insult to (}). ¢

Pfof (i1). Fix &>0. Pick K st.C = {x € X | fx(x) > &}
is compact. Part (i) tells us the restriction f,| ¢, as n—oo,
converges uniformly to 0] . So we can pick an N large
enough that || fy!c|l < €. We can also have taken N > K.
Thus

“fNJ[X\C]” < “fKJ[x\C]” < e.

Hence ||fy]l < &. ¢

Miscellaneous continuity/limit results
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2" proof of (i). Fix £>0. 'l produce an N with || fy|| < &.
Fix a z € X. Since f,(z) — 0, there exists an index L

with f1(z) < &; let L, be the smallest such. Thus

U. = {xeX|fi.(x)<s},

is an open set owning z.
Since {U, | z € X} is an open cover of X, there exists a
finite set £ C X with {U, | z € E} covering X. I claim that

N = Max{L;|z€E}

satsifies ||fy]l < &. To see this, fix an arbitrary y € X.
There exists a z € E with U, 3 y. Thus

0 < O < fr.(y) < &,

since f is nested and N > L,. ¢

CEXes to Nested UC.On X := R, let f, be zero on (-0, n],
growing linearly from zero to three on [n,n+1], and three
on [n+1,+00). So f decreases pointwise to 0, but each
I/l = 3. AR/, but our X is not compact.

On compact X := [5, 6], let f,, be piecewise-linear with
cutpoints (5, 6—%, 6) and heights (0, 0, 3). Although f de-
creases pointwise to g := 3-1i¢), this f does not converge
uniformly. Oh/, but g is not continuous.

Keep X = [5,6]. On [5,6), define A, to be the above
P.L f,, but define 4,(6) := 0. Now h decreases pointwise
to 0. Alas!, each h, is not continuous. O

Miscellaneous continuity/limit results

There are several elementary properties that we will use
without proof, e.g, that a composition of cts fncs is con-
tinuous.

Composition notation.  Consider fncs ALB and BSC.
The std notation for their composition is g o f, where
[g o f1(a) means g(f(a)). It is sometimes convenient to
have chiral versions of the composition operator. Define

59:  [feglla) = g(f(@) and [g<f](a) = g(f(a).

So g < fisasynonym of g o f.

When a fnc maps a space to itself, XLX, use f°" for
the composition of n copies of f, the fnc f o .”. of. O
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60: Prop'n. Suppose f:XTS—QTS is cts. Let g denote the
map f but with CoDom(g) = f(X). Then g is cts@ o

Proof.  Fixing an f(X)-open set U, there is an Q-open
set Ust. UN f(X) = U.ANOW f’l(U) is X-open, since f is
cts. Thus g '(U) = f’l(U) is X-open. ¢

61: Forward-inheritance Lemma. Consider a continuous
map f:X—€Q between TSes. Suppose X is compact or
connected or path-connected. Then f(X) has the same
property.  Reduction. WLOG, f is surjective. o

Pf of compactness. Let T be an open-cover of Q. Its
pull-back @ := {f'(P)| P € T} covers X. This is an X—
open-cover, since f is cts. Compactness of X implies there
exists a finite subset @ C 1" for which {f’1 (P) | Pe d}
covers X. Thus @ covers Q; this, since f maps onto Q. ¢

Pf of connectedness. Consider an Q-open partition
Q = P Q of Q. The pull-backs f!(P) and f'(Q) form
an X-open partition of X. Since X is connected, WLOG
£71(Q) is empty. Hence Q is empty, since f is surjective.4

Pf of path-connectedness. Fix points By,81 € Q. Since
f is onto, there exist points b; € f'(8;). And X is path-
connected, so there is a cts map (a “path”) p: [0, 1] =X with
p(0) = by and p(1) = b;. Hence p» f is a path from Sy
to B1. ¢

62: General limits. In MS (X, d), centered at g € X, the
punctured ball of radius ¢ is

PBals(¢) = |{xe X ' 0 <d(x.q) <é}.

Consider a map f:(X, d)—(Q, ), points g € X and w € Q.
Analogous to (38) on P[T2] we define

B21: lim f(x) = w.
X—q
to mean:
&2 For each >0 there exists 5>0 such that
6212: _
PBals(q) < f"(Baly(w))

Extending this to general TSes X and Q is routine. In
the general case, (62[T) means the following.

For each Q-open set A > w there exists an
X-open set U 5 g with O
-1
Uxfgb < f1(A).

“*This Prop’n is for convenience. It allows us to start some proofs
with: “Our continuous function, WLOG, is surjective”.

[6213:

Miscellaneous connectedness results
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Miscellaneous connectedness results

In a TS Q, the relation of two points being in the same
connected-component is an equivalence relation. Also,
path-connected is an equivalence relation.

63: Connected-interval Thm.  Each interval J in R is
connected. (The interval can be infinite, or half-open, or....) ¢

Proof. WELOG (exercise), J = [3,7], and let “open” mean
J-open. Suppose we have an open-ptn J = A LI B; so we
have colored each point either Amber or Blue. WLOG, 3
is amber. To show there is no blue, we let

note

Te a = J-inf(B) € J.

Since 3 is in the interior of amber, there exists £>0 so
that interval [3, 3+¢) is amber. Thus .

Could @ be blue? If yes, then since B is open there
exists a posreal £ < @ — 3 so that interval (e—¢, @] is blue.
But this contradicts (), so .

FTSOC, suppose @ < 7. Since A is open, there would
exist an £>0 with [, a+¢) all amber. But [a, a+¢&) is am-
ber, so this would force J-inf(B) > a+¢, annoying (7).

The upshot: and consequently B is empty. ¢

Filename: Problems/Analysis/Calculus/notes-AC-CptCty-.latex



Prof. JLF King

§A Differentiability

Differentiability of a fnc h:R—E, where (E,||-|]) is a
normed-VS, is our goal. The Reader is to modify the
discussion accordingly when the domain is just some
(punctured) interval in R, or when we are taking 1-sided
derivatives; or when the domain is some subset of C, with
E a complex normed-VS.

Suppose that # is defined in a nbhd of a point P
in Dom(#). Suppose (using (62)) the following limit exists:

W(P) = Jim "0 = (P

x—P x—P

note
S

64:

Then we say that 4 is differentiable at P, and its derivative
is the vector A’(P). So K’ is a vector-valued fnc just like &
is, but with a possibly smaller domain.

How discontinuous can a derivative be?
by continuity, the function

h(x) =

Extending,

X -exp(-1/x77),
is a simple example of an everywhere-differentiable fnc
whose derivative is not cts, &’ is not cts at the origin.

But certain kinds of discontinuities are ruled out.

65: Deriv-cty Lemma. Suppose h:(a, c]—=R is continuous,
with h differentiable on (a, ¢), and L := lim, . h’(x) exists.
Then h(), at ¢, has a lefthand derivative, which equals L. ¢

Proof.  Fixing an &>0, ISTEstablish , below. Pick
b € (a,c) close enough to c that, letting J = [b,c), the
values of /' ; lie within & of L.

For each x € J, the MVT asserts a point Ye (x, ¢) with

h(c) — h(x) mvT h’().c) Z L

c—Xx

Consequently,

63 : 1im/sup%—L < e ¢
X/ c

67: Appl. Fnc h:[0, c0)—R is diff’able on J = (0, o).
iz Our h is continuous, with h(0) = 0. And...
ii: AM>0 such thatVx € J: |W'(x)] £ M - |h(x)|.

Then h is constant-zero. o

A DIFFERENTIABILITY
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Pf. Fnc g(x) := h(5;) fulfills (i) for M=1. So WLOG

67: VYxelJ: [K(x)| < |h(x).

And limy o 2(x) = h(0) = 0, so (67) forces h'(x) — 0.

Thus by (63)), /' is diff"able at the origin, and | 4’'(x) = 0.

FTSOC, suppose {x € J | h(x) # 0} is non-void; let B
be its infimum. By cty from the left, necessarily #(B) = 0.
Therefore, replacing 4 by its translate x — h(x — B), now

There are numbers y>0, as small as one

67: pleases, with h(y) # 0.

The Bound. T’1l henceforth assume that 0 < /&’ < h
on [0, o0); the hard-working Reader can put in the abs-
value signs so as to make a complete proof.

Since #'(0) = 0 < 1, there exists a number C>0 so,
for each x € [0, C], that 0 < A(x) < x. So we’ve shown
exponent 1 to be good. .. where: A posint N is good it

67:  foreach x € [0, C], we have 0 < h(x) < xV.

Let’s show that [N good] = [[N+1] good]. Fix an
x € [0, C]. Then by the Fund. Thm of Calculus,

h(x) = h(x) - h(0) 2= f xh’(t)dt
0

X
sf N dr
0
L. [xN+1 _ ON+1]

=N+l

which is less-equal xV+1.

Each posint is good, so (67) tells us that 4(x) = 0 when-
ever 0 < x < Min(C, 1). But this offends (67). ¢

fmf Potential H-problem.

Weighted averages. Consider a point L in E, a normed
vectorspace. Given two vectors close to L, we seek a con-
dition implying that all appropriate weighted-averages of
these vectors are also close to L. For generality, we’ll al-
low our weights, v;, to be complex numbers. When apply-
ing (68[), below, we will typically send & \ 0; hence the
particular constant 2[1 + U] is usually irrelevant.

68: Weighted-average lemma. Fix a bound U € R, and
L € E. Given &>0, suppose we have vectors R{,R, € E
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with each [|[R;— L|| < &. Suppose we have (possibly complex)
weights vi + v, = 1. Then

G- H[V1R1 + mRs] - LH < 2+U] - e,
if, for at least one value of j, we have |v;| < U. o

Proof. WLOG |vq| £ U. So || < 1+U, since vi +v, = 1.
Thus each |vj| < C = 1+U.
Note that L = v{L + v, L. Thus LhS(68[) is less-equal

note
il -llRy = LI + D2l - IRz =Ll < Ce+Ce. ¢

69: Deriv-sample lemma. Fix a normed-VS E, an upper-
bound U € R, and a point P € R. Suppose h:R—E is
differentiable at P.

Then, given € there exists 6 so that for each pair of dis-
tinct “sample points”y and z that are §-close to P:

T2 —h(y;:?@ is e-close to h'(P),

Min(|y-P|, [z—P|)
[y—zl

as long as < U. o

Pf. Let L := K (P). WLOG neither y nor z equals P. In

light of (68[), let @ := 5757 and take 6 small enough that:

If x € PBalg(P) then |"21P) _ 1| <.

: ._y-P P—z 010
Setting v; := = and v, = et POFA . informs us that
. hy-hz)  _ h(y)—h(P) h(z)=h(P)
o o = Vi opo tvrT o

Since v + v, = 1 and Min(|vy], |v2]) £ U, the Weighted-
average lemma applies. It insists that
[RSGH - L] < 2[+Ul-a = .

Hence |[LhS($) — L| < &, which s (1). ‘

“19Plain Old-Fashioned Algebra.

A DIFFERENTIABILITY
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vdW’s no-where differentiable fnc. LetJ =[O0, 1]. We

will define van der Waerden’s fnc W:R—J and prove that

it does not even have a one-sided derivative, anywhere.
Let ¢(-) be the distance-to-nearest-integer func-

tion

e(x) = Min(x-
Its graph looks like

Lx], [x] - x).
Forn € N, let f,(x) := 3 ¢(2"x). Thus
SetOfZeros(f,) = = -Z.

om

Each f, is continuous, since ¢ is. Hence each partial sum

2 Ja

nel0.. K)

8k =

is cts. Since ||fullsp = 1/2"*1, and seq n — 1/2"*! is
summable, sequence (gi)~; is ||-llsup-Cauchy. By the Uni-
form-convergence thm, then, g converges uniformly to a

continuous fnc
(o)
ano fn ’

To show its nondifferentiability, we will evaluate W at
dyadic rationals, elements of the set

D = {2%

}.

70: vdW-function thm. At each point P € R,
van der Waerden’s fnc W has no onesided-derivative. ¢

Proof (Due to Patrick Billingsley). FTSOC, suppose W() has
a righthand derivative at PER. Fix posint K. Take the
unique integer ¢ st.

y z

-1 4 {+1

. - +
B Z_KSP< by < 5K

For each n > K, note that f,(y) = 0 = f,(z). Thus

W(z) - W(y)
7—

*3%k 3

Z Jn@) = fu¥) (z) fn(y)

Sn

But y and z are consecutive order-K dyadic rationals, and
n < K, so each slope s,, above, must be +1.

“I'There doesn’t seem to be a std name for this beast. It is related
to the fractional part fnc, x — | x]; and that name isn’t great, since the
“fractional part” need not be rational.
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In (%), rename the y,z points to yk,zgx. Equality (sx)
tells us that ratio

Wi(zg) = W(yk)
K — YK

rg =

is a sum of K many instances of +1. It follows that the
difference rx41 — rg is odd. Therefore sequence F is not
convergent.

This contradicts the Deriv-sample lemma, (69), which
insists that ¥ converge to W/(P). And the lemma indeed

applies, with bound U := 1, since () forces llyy'__gl <I1. ¢

Product rule. Here are several examples of bilinear maps:
Multiplication, RXR—R.  Scalar-vector-mult, RxV—V.
Inner-product, VXV—R. Cross-product, R? x R? — R>.
Matrix-multiplication, MaT(3, 5) X Mat1(5, 2)—>Mat(3, 2).

71: Product-rule thm. On normed VSes we have a bilin-
ear map {)): A X B—>W which is (jointly) continuous. Sup-
pose maps F:R—A and G:R—B are differentiable at a
point p € R. Then, for t € R, the map

1 t & (F0.G0) : RH>W
is differentiable at t=p. And its derivative, there, is

2 (F®.6m)+(FP).G D). 0

Pf. For brevity, use pF for F(p), etc. So (i, tG))—((pF , pG »
equals

" 19 = «p" 1) + «p", 1) — «p", p%Y
= " = pf O+ ¢p", 1 - p%Yy.
Dividing both sides by 7 — p gives
G

(2o o S,

Sending t — p gives (%), using cty of F, G and {-,-)). ¢

Total derivative
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Total derivative

Consider a map f:(V,[-1)—(E,|||) between normed
VSes, Near a point p € V we can try to approximate f
with a linear map L:V—E, by examining the error term,

note

72: Bm(x) = [fx+p) - f(p)] - L) "€ E.

Unsurprisingly, say that f is “differentiable at p”’ if there
exists such a linear map (evidently unique) for which

Erry(x)
[LxI

Equivalently, in terms of the two norms,

ol

721

— 0g, asx— Oy.

Ve>0,30>0st.Yx eV,

/e
s if [x] < ¢ then: [xT
73: Lemma.  (Notation from above.) There is at most one
linear map with zero-going error term. ¢

Pf. Contemplate two such linear approximators, L and M.
Fixing a (WLOG non-zero) vector v € V, our goal is to show
that the difference vector, d := L(v) — M(v), equals Og.
With x := av, for a positive scalar a, linearity implies
L(x) — M(x) = a - d. Dividing by ||x|| L a-[v] yields

L(av) — M(av) i
[av] vl

Note L(x) — M(x) = Erry/(x) — Errz(x). Hence (72f]) im-
plies, as a N\, 0, that LhS(*) — Og. But RhS(x) doesn’t
change with @. Thus d has secretly been Og, all along. ¢

Defn. Courtesy uniqueness, we call the linear L from (72]),
““the total derivative of f at a point p”’. We write this L
either as D), ; or D,[f] or D/(p), depending on what we
wish to emphasize. To evaluate this linear map at vector v,
we write D, #(v) or D,[f](v) or Df(p)(v).

Henceforth, we use ||| for the norm on all of our
normed VSes.

Equality (74}t), stated further below, is written to resem-
ble this “Calc 1” version of the Chain rule:

(74 [go f1I'(p) =g (f(P)- f'(p). O

74: Basic derivative thm. Consider maps f,f:V—>E and
g:E—W between normed vectorspaces, a scalar o and a
point p € V. Then
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a: Differentiation is linear: D, [ f + f] = D,[f]+ Dp[,]?]
and D,[af] = aD,[f].

b: Chain rule:
[74}:: D/ (p) = DA(f(p) o D/ (p). 0

In alternate notation: D,[g o f] = Dylgl o D,[f].
Proof. Exer: Exercise. ¢

In finite dim’al spaces. — In applications, often V and E
have finite dimension; say K and N, respectively. Fixing
ordered bases, each linear map V—E is represented by an
NxK matrix. So formula (74}:) becomes

D¢/ (p) = DE(f(p)) e D/ (p).

TP

where the “e” is denoting matrix-multiplication. O

B RIEMANN INTEGRATION
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§B Riemann Integration

We employ the word “partition” (abbrev. “ptn”) in the spe-
cialized way@ itis used in RIL.

Initially, we’ll discuss the 1-dimensional case, integrat-
ing over an interval J := [a, b]. A “partition P of J” will
be determined by a tuple of cutpoints

a=p)o < p1r < pr... < pxr <...<py=b.

Call the closed subinterval By := [pr—1, pkl, the “kth plock
of P”. We’ll use P to also denote the setr of P-blocks, e.g
we might write ) g.p Diam(B) < 5.

The mesh(size) of P is

Mesh(P) = Max {Diam(By) | kell.N).

75a: Use P #Set of P-blocks) L N and
CutPts(P) = (po, p1,---,PN)-

We say that ptn Q refines P, written Q > P, if each P-

block is a union of Q-blocks. Equivalently, in our 1-dim

case, CutPts(Q) D CutPts(P) [interpreted as sets, not tuples].
A pair of ptns {P, Q} has a smallest common refinement

75b: R = PvQ,

called “the join of P and Q”, whose cutpoint set is
CutPts(P) U CutPts(Q).

Sample points. A pointed partition P (also called a “tagged
ptn”) is a partition together with tags (xi,..., xy), also
called sample points, such that each x; € B;. Use no-
tation

75¢: Tags(P) = (x1,...,xn).

Given a function f: J—R, our pptn (“pointed partition”) gives
a Riemann sum

75d:  RS/(P) = Zszl [£x0) - Size(By).

But wait?! Why a vague word like “size”? Well, in the
1-dim case, “size” will mean length, whereas for 2-dim
integrals, “size” will mean area.

Treating the 1-dimensional integral, below, Size(By)
will mean the unsigne length |px — pix-1|. From now

“I2In set theory, a partition of a set Q is a pairwise-disjoint collection,
P, of Q-subsets whose union, | |[(P), is all of Q. The elements of P are
called “the atoms of P”. Usually one assumes that the atoms of P are
non-empty, and that there are only finitely many atoms in a partition.

“I3Later, we will extend to integrating over an oriented interval, and
then Size(By) will mean the “signed length” p; — pi—1.
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on, [I’ll use B to abbreviate Size(B)]. In the 1-dim’al

case, B equals Diam(B). The general case simply needs

Ve>0, 46>0 st. for each set B that can be the

75e: . —
If Diam(B) < 6, then B <e.

block of a ptn:

Analogous to Mesh(P), define

MaxSiz(P) := Max {,E ' BeP} o
Standing convention: Henceforth, J=[a, b] is a closed
bounded positive-length interval. And f:J—R is a func-
tion, not necessarily integrable.

Oscillation/Variation. The f-variation of a block B, is

(Irrelevant whether we use
brackets or absolute-values.)

75t sup [f(x) - fO)].

xX,yE€B

Write this as Var/(B) or Var(B). The quantity that we are
really interested in is the f—oscillatiorm of a block B:

75g:  Osc(B) = Osc/(B) = B -Var/(B).

Define the “f-oscillation of a partition P”’ to be

= ZBep Osc/(B).

Analogously, Var/ (P) := 3, BeBIks(P) Var/(B). O

75h:  Osc(P) = Osc/(P)

76: Osc lemma. Consider partitions P, Q, R:
If Osc/ (P) < o then |f] is bnded.
For P<Q pptns: Osc/(P) > [RS/(P) - RS/(Q)|.

If Q < R then Osc/(Q) > Osc/(R). Exer: Exercise.

® ® ® ©

Suppose U = sup,; | f(x)| is finite. Suppose we split
one Q-block C to get a partition R, i.e 'R = 1 +*Q
and Q < R. Then

Osc/(Q) < Osc/(R) + 2U-MaxSiz(Q).

When 1-dim’al, Osc/ (Q) < Osc/(R) + 2U-Mesh(Q).¢

“14So variation is average oscillation; it is oscillation-per-length.

B RIEMANN INTEGRATION
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Pfof[@l  Were f unbnded, then there is a P-block B on
which f| g is unbnded; so Osc/ (B) is already infinite. ¢
Pf of[2l Focus on some P-block B and its tag xp, and let

S = SB = Supx’y€B|f(x) - f(y)l .
This B equals a union of (consecutive) Q-blocks, say
B = C;5UCqUC7UCgUCy,

which overlap only at their endpoints. Adding sizes,
I /E = 22: 5 a .

Use yy for the Q-tag of Cy; so |f(xp) — f(yr)| < S, since
B > xp,yx. Thus

S-Cr < fp)Cr — fORCr < S-Cx.
Summing over k,
$: Sp B < f(xp) B — S2f01)Cr < Sz B.

Summing this over all P-blocks B yields the desired in-
equality that —Osc(P) < RS(P) — RS(Q) < Osc(P). ¢

Pf of[@]
[U —-U]-"C, which is upper-bnded by 2U-MaxSiz(Q). ¢

The largest value that Osc’ (C) can assume is

Riemann integral. We define the “proper” Riemann in-
tegral, which is only useful for bounded fncs. Later, we’ll
extend to “improper” integrals.

A partition P is *“6-small” if Mesh(P) < . A function
f:J—>R is (Riemann) integrabl with integral V € R, if:

Ve>0,36>0 st.for each pointed-partition P

T2z yhich is &-small: [RS/(P) - V| < &.

Trivially, if such a number V exists then it is unique. We

may write this V as
f f@dr.
J

fjfor

b,, . .
We do not yet use symbol fu ”, since it presupposes an

f or

[a.b]

. . . T b
orientation of J, allowing us to distinguish f: from fa .O
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77: Integrability-equivalence Lemma. Integrability of f
is equivalent to each of the following. The first is a kind
of “Cauchy condition”.

b: For each £>0, 46>0 so that for each two 6-small pptns
PandQ: |RS/(P)-RS/(Q)<e.

c: Y&>0,36>0 so for each two pptns P < Q with the P
partition 6-small: |l56f(P) - RSf(Q)| <e.

d: Ve, 36 st. ¥ 6-small partitions P:  Osc/(P) < ¢.

e: Ye, d a partition P such that Osc/(P) < «. o

Pf[3V e R st. (T7TR)| & (B). Implication (=) is imme-
diate, so we establish (<). To this end, take a sequence
(Q,);,_; of pointed-ptns with lim,, Mesh(Q,,) = 0.

Condition (b) implies that m — RS/(Q,,) is a Cauchy
sequence of reals. Hence this limit exists:

vV = limRS/Q,) € R.
m—-o0
Using (b)) again shows that V fulfills (77). ¢

Pf(® < (). Exer. 3:Prove (<), the non-trivial direction.

[Hint: Fix >0. Take 6=0(s/2) from (). Given unrelated 5-small
ptns P and Q, consider their join, R := P v Q. Now... ] ¢

Pf () < (d). Dir (<) follows from (762}, Osc lemma.
For (=), let P and Q be the same partition, but let the

tags of each vary over all possibilities. The supremum

of |RSf (P) — RS/ (Q)| over all tags is precisely Osc/ (P). ¢

Pf() < (e). Since some partition has finite oscillation,
(760D) says that our f is bounded; WELOG 3 > |f].
To establish the non-trivial (<), fix some ptn P with

Osc/(P) < £.

With N = *P, let 6 b £/6N. Given a 6-small Q, the
refinement R := P Vv Q is obtained by splitting fewer than
N blocks of Q. Applying (76®) at most N times yields

Osc(Q) < Osc(R) + N -[2:3:6] < Osc(R) + §.

And (76/3) courteously gives Osc(R) < Osc(P) < 5.
Hence Osc(Q) < § + § = ¢, as requested. ¢

“1“When J is not 1-dim’al, there is an extra step. We pick ¢ small
enough that every §-small partition Q has MaxSiz(Q) < 5/ 6N.

Closure properties of Rl
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78: Basic Rl Thm.  (For improper integrals, this needs to be al-
tered.) Consider interval J := [a, b] and fnc f:J—R. Then

it If f continuous, then f is integrable.

ii: If f monotonic, then f is integrable. (For discontinuous
R-Stieltjes integrators, this is false.) ¢

Proof of (). Fix an &>0. Since f is uniformly-cts (being
continuous on a compact set) there is a >0 such that

Vxyeld: lx—y<é = Ifx)-fo)l<el T .

This implies that Osc/(P) < &, whenever P is a §-small
partition. Hence (77d). ¢

Proof of (). We use (77g). WLOG J = [0, 1]. WLOG, f
is increasing (i.e, non-decr). For each subinterval B := [x, y],
then, Var/(B) = f(y) — f(x).

Given posint N, let partition Py cut J into N equal-
length blocks, with j"-block B; := [, £1. So

Os/(Py) = D &+ Var'(8))
IOt
= 3 [f( - 0]
And this latter goes to zero, as N co. ¢

Closure properties of Rl

Let RI(J—R) denote the set of Riemann-integrable func-
tions J—R.

As an example of non-integrability, let h be 1g, but re-
stricted to J. For each partition P, then, Osc(P) = 177
So h is a non-RI fnc with the peculiar property that s o & is
integrable, since ho h = 1.

79: Integration-is-Linear lemma. W = RI(J>R) is
an R-vectorspace. The map [h - fj h], from W—R, is a
positive (non-negative) R-linear-functional. Consequently,

for integrable f and g: [f > g] = [fjf > fjg] o
Proof. That Wis a VS follows from observing that

RS>/ (Q)
RS/ *2(Q)

5-RS/(Q) and
RS/(Q) + RS4(Q),
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for arbitrary fncs f, g: J—R, scalar 5€R and pptn Q. This
also shows (exercise) that [h - fj h] is a linear functional.

When & € Rl is non-negative, then RS"(Q) > 0 for each
pptn Q; so f]h > 0. Now apply thisto i == f — g. ¢

Pos/Neg parts. We define the positive/negative parts of a
function. The “positive part of f” is

e

Max(f,0), ie. f(x) = Max(f(x),0). And

BOL1:
50 —Min(f, 0)

is the negative part of f.

Easily, each of f* and f~ is non-negative, and

T+ f o= and
R02: S =
ff=fr=1r.
For a pair of functions, one verifies that
R03: Max(f,g) = [f+g +1/~gll/2 and
Min(f,g) = [f+g — If—gll/2.

80: AbsValue Rl Thm. Suppose f,g: J—R are integrable.
Then each of f*, f~,|f], Max(f, g) and Min(f, g) is inte-
grable. Finally

[BOk: [ f] < [ 0

Proof.  The f*-oscillation of each partition P is upper-
bnded by its f-oscillation; so f* is R, by (7/d). Ditto
f~ is RI; hence so is |f], their sum. Consequently, func-
tions are integrable.

For (80F), note ff = ff+ - ff‘. By the Anequality,

A < Afrl+ 1]
= [+ [ = [Ifl. *

IA

81: Product-RI Thm. If f,g € RI(J—>R). then f - g € RL.O

Pi. WLOG (|f] < 2 and |g| <3}, Let h := f-g. ISTEstab-
lish

?
Osc"(P) <

3-0sc/ (P) + 6-Osc?(P)
for each partition P. Fixing P and a P-block B, our goal is

?
81a: Osc"(B) < 3-Osc/(B) + 6:0scé(B)

Closure properties of Rl
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Fix pts x,y € B. Define numbers @, v,I', w by © := f(x),
O+v:=f(y),I =gk and I +w := g(y). Subtracting,

h(y)—h(x) = [©®+ V][ +w] -0
=v[ + Ow + vw
< W3 +2wl+[2 —-2]w]

3lv| + 6|w|
< 3.Var/(B) + 6-Var(B).

Multiply by B, then take SUp,cp to obtain (BTa). ¢

Exer. 7: Prove: Suppose f € RI(J—=R) and L > 0, where
L := [inf ey |f(x)l|. Prove that 1/f is integrable.

Exer. 4: Dis/Prove: Suppose f.,g:[0, 1]-[0, 1] are (Rie-
mann) integrable fncs. Then h := g o f is integrable.
False. Let f be the ruler-function Rq. So f(g) = é, when
p L g are integers with ¢ > 0. And f(irrational) is O.

Let g := 1¢,13. Then g o f is the indicator-fnc of the
rationals; this is not Riemann-integrable.

In contrast, the reverse composition f o g is RI, indeed
continuous. Indeed, f o g is the constant-1 function. ¢

Exer. 5: (Does t.fol hold for R-Stieltjes integration?)

Dis/Prove: On compact sets K,J C R, with J an inter-
val, we have an integrable f:J—K function and continu-
ous g: K—R. Then h := g o f is integrable.

True. WLOG |g()] < 3. WLOG J <2.Tlluse “partition”
to mean a partition of J.
Fix >0. I will produce 6>0 st. for each 6-small ptn P:

?
ta: Osc®/(P) < 8.

Bad blocks. The uniform-continuity of g produces an

such that

itb: VabeK: la-bl<e = |gla)—gb) <.

Since f € RI, we can take ¢ so small that each §-small
partition P has

ke Osc/(P) < &°.
Define the set of “good” blocks

td: § = {BeBlks(P)|Var(B)<eg}.
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Define the “bad” blocks B =

and (Ed),
2

&

Blks(P) \ §. From

Osc/(B)

v

BeB

~—~ —

> Z e-B = & B.
BeB

Dividing by & yields . For each block B,

Osc*/(B) < [3-3]"B = 6 B,

by our bound on |g|. Summing over the bad blocks,

fer  Osc®(B) < 6B < 68 < 6n.

Good blocks. Fix B € G and x,y € B. By (%d),

then (ib), the oscillation Osc®/(B) < - B. Summing
over good blocks,

Osct/(9) < n-? < n-7 = 2n.
Adding this to the inequality, yields (ia). ¢

Exer. 6: Dis/Prove: On compact intervals K,J C R,
we have a continuous f:J—K and an integrable g: K—R.
Then h := g o f is integrable.

82: Closure-RI Thm.  Fix an integrable f:J—R. Then
for each closed subinterval I C J, the restriction f|; is
integrable.

Conversely, consider a fnc g:J—R and a pointy € J. If
g is integrable on [a, y] and on [y, b], then g is integrable.¢

Proof. Fix &>0 and take ¢ from (77d) applied to f on J.
Given a 6-small ptn P of /, extend this P to create a §-small
ptn P’ of J. Thus Osc/ (P) < Osc/ (P’) < «.

Conversely, fixing & there exist ptns Q of [a,y] and R
of [y, b] each with oscillation less than 5. Glue them to-
gether to get a ptn of J with oscillation less than ¢. ¢

Oriented integral. We may write an integral on J = [a, b]

as b b
f f or f or f f or f f(r)dr.
J [a,b] a a

Reversing the “limits of integration”, define

faf = - f-
b [a.b]

So our 1-dim’al integral is an oriented integral. O

The Fundamental Theorem of Calculus
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83: Lemma. Fora,b,c € R, and function f:

c b C
Lro= L A=15
as soon as f is integrable on the interval from Min(a, b, c)
to Max(a,b,c). Proof. Exer: o

The Fundamental Theorem of Calculus

For an integrable (not-necessarily cts) function f: J—R, recall
that U := sup,.; | f(#)| is finite. And

p(x) = f[a’x]f, as a map ¢: J—R,

is well-defined, thanks to (82)). This ¢ is sometimes called
an antiderivative of f.

84: FTC. With f(), U, ¢() from above: This ¢ is Lipschitz
continuous, with U a Lipschitz bound. Moreover, at each
f-continuity point z € J, our ¢ is differentiable and

84a: ¢'(2) = f(2).
Conversely, each fac ¢ € C'(J—R) has ¢’ € Rl and

84b: W=
[a.b]

w(b) - y(a). 0

Pf of (84a)). For x<y in J, note, ¢(y) — ¢(x) = f[xy] f. So
o) = = |fon /] < foylfl < =2l U,
by and (79). Hence ¢ is U-Lipschitz.
At an f-continuity-point z. ' WELOG, z is not an end-

point of J. WLOG f(z) = 4. Fixing an £>0, the continuity
of f at z asserts an open interval / 3 z st.

e 4—e < fl; £ 4+e¢.

Consider a small non-zero “bump” § € R with z+ 8 € I.
WELOG B > 0; let B := [z, z+ S]. Courtesy (79), inte-

grating (T) over B yields, since B equals 3, that

de [4-¢]-B < Lf < [4+¢€]-B.

But the integral equals ¢(z + ) — ¢(2). Thus the

difference-quotient satisfies
4 e < 90(Z+)8)_90(Z) < 4 &
S T S d+te.

This holds for every small-enough non-zero 5. Thus ¢ is
differentiable at z, and ¢’(z) = 4 = f(2). ¢
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Pf of (84D). Firstly, since ¢ is cts, it is RI. Define ¢ by

@(x) = v,

[a,x]

as a map ¢: J—R,

Thus [,¢' £ ¢(b) = ¢(b) - ¢(a), since p(a) = 0.

By (84a), ¢’ = ¢’. This means (Exer: By what thm?)
that i — ¢ is a constant-fnc. Thus (b)) —y(a) equals ¢(b) —
¢(a), which equals fJ /8 ¢

Measuring the size of sets

Fix a metric space X and a way of measuring the size of
open balls; we’ll use “ball” to mean “non-empty open
ball”. At a “center” ¢ € X, we use Bal,(c) for the (open)
ball of radius r.

Fix u, a ““measure on open balls”: For each center ¢ € X
and radius r € R, this u assigns a “mass”

85a: u(Bal,(c)) € [0,00).

Henceforth, in this section, let cover mean a cover by open
balls. For a set KcX, let “C is a K-cover” mean that each
BeC is an open ball, and | J(C) D K. Agree to use u(C) to

mean
= ZBGG H(B).

Defining two measures. To measure a set E C X, we let C
vary over all covers of E; finite covers for Jordan mass,
F (), and countable covers for Lebesgue mass, A():

u(©)

85b:  Z(E) = inf p(©). AE) = inf u(C).

€ countable

We impose the following requirements on .

M1: Each ball Bis _¢#-measurable and A-measurable, and
F(B) = AB) = u(B).

M2: For each ¢ € X: lim,u(Bal(c)) = 0.
Occasionally we will want some of these conditions.

M3: The function r — u(Bal,(c)) is continuous.

M4: The function r — u(Bal,(c)) is strictly increasing. O

86: Basic measure lemma. For all sets A,B,E € P(X):

it AE) < _#(E).

Measuring the size of sets
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—~

iz IfA C B, then #(A) < _#(B) and A(A) < A(B).

iii: _#(2)=0=A(2).

iv: IfAJUA; > B then #(A) + #(A2) > #(B). Ditto
for A().

v: If [UTAn] D B then [X7A(A,)] > A(B). o

—
~

Remark. In contrast to A, Jordan-measure is not countably-
subadditive: Enumerate Q := Q N[0, 1], and let A,, com-
prise the first n rationals in Q. Then },°, 7(A,) = 0,

but_#(Q) = 1. O

87: Prop’'n. Consider E,K € P(X), with K compact. Then

a: _J(K) < co.
b: _Z(K) = A(K).

c: Suppose (M3). Then #(CNE)) = #(E).  (This fails
for Jordan-measure replaced by A(): Let X =R and E :=Q.) ¢

(Exer: .)

Pf of (B)). Fix &>0. Since A(K) < oo, we can find a count-
able K-cover € with u(C) < &+ A(K). The compactness
of K asserts a finite subcover FcC. Thus

A(K) < u@&) < u) < e+ AK).
For each ¢ this holds, so #(K) < A(K). ¢

Pfof (). Fix e>0. WLOG _#(E) < oo, so there is a finite

E-cover {Balrj(cj)};v:l, with

T2 S uBal(cp) < 28+ J(E).
Take a posreal ¢ sufficiently small that for each j € [1.. N],
i: :u(Bald+rj(cj)) - M(Balrj(cl)) <

possibly, since there are only finitely many balls under
consideration, and each map r — u(Bal,(c)) is cts.
Automatically, collection {Bals,,(c j)}?’:l covers

g/N;

N note note
%3 Bal(;(Uj:l Bal,(c;)) > Baly(E) > CI(E).

Inequalities (%) and (7) justify

S (Balser, () < £+ u(Bal, (c))
3e+ J(E).

From (), then, Z(CI(E)) < 3e+ _Z(E). Now send £\,0.4

IA

IA
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A condition for Integrability

Let’s examine the discontinuity set of an f:J—R.
Fixing £>0, define two sets C, K C J to comprise those
x € J such that for each posreal ¢:

88a: For C: dy € Bals(x) with |f(y) — f(x)] > e.
88b: For K:  dyy,y2 € Bals(x) with [f(y1) — f(32)| > &.

Both C and K are e-approximations to DisCty(f). While
C is simpler to describe, it need not be closedm In con-
trast, K is closed (Exer: ), hence compact.

Rematerializing the ¢, easily C; C K, and, by the
/Anequality, K,. C C.. Redefining, let C, denote
where € = rl; Make the analogous defn for K,,. Thus

CicCyc... and K;CcK,C...

88c¢: and C, Cc K, C Cy.
Thus U2, K, = L2, Cn =2 DisCly(f).

Complexity of sets. We need names for two types of
sets. A subset E of X is said to be a “Gs-set” if it can be
written as a countable intersection of open sets. A subset
is an “f,-set” if it equals some countable union of closed
sets On a topological space X,

A decompositionA U B =X has: A € ¥, © B € Gs.

The last line of shows the following.

For a function f:X—Y between two metric
88d:  spaces, its discontinuity set is always an F,
and Cty(f) is always a Gs.

Staying in metric spaces, here is a nice exercise:

Exer. 8: Suppose K ¢ XMS is closed. Then K is X-Gs.
More generally, GsN % O CLp(X) U OpN(X).

Alas, this can fail in general topological spaces. O

“1"To make an example, let § := [3,5] N Q. Define f:R—R so that
f is the indicator-fnc 15 except that f(5) := 1/2. Then for € := 1, the
corresponding C, set is the half-open [3, 5), which is neither open nor
closed. Yet K, = [3, 5], which is closed.

This f has closed discty set, since DisCty(f) = K., for e=1. Asa
contrasting example, DisCty(Rulerg) is Q, which is neither open nor
closed. But Q is indeed an 7,-set.

“18The “F” is from the French word fermé, “closed”, and the “o is
from the German word Summe, sum, here meaning “union”.

The “G” is from Gebiet (German, “area”), here meaning “open set”.
And the “6” is from the German Durchschnitt, meaning intersection.

A condition for Integrability

Page 27 of

89: Integrability Theorem.  On interval J = [a, b], con-

sider a subset S C J.

a: The map 1g:/—-R
A0,8)) = 0.

[Recall exercise OP[I3) that (S ) = DisCty(1s).]

is Riemann-integrable IFF

b: A function f:J-R is Rl IFF f is bounded and
A(DisCty(f)) = 0. o

Pfof(a).  The discontinuity set of an indicator-fnc is
closed; hence is compact, since J is. Thus its Jordan-mass
equals its Lebesgue-mass. So (a) is implied by (b). ¢

Direct proof of (a=)). Fix &>0. Take a ptn P
with Osc!s (P) < &. Let G comprise those “good” P-blks
B on which 1; is constant. Use B be the remaining “bad”
blocks. By defn,

e > Oscls(P) = 0°G +1.B .

Le, B <& But |J(B) > DisCty(Is); so £ > _7(3(S)). ¢

Pfof (bf=)). Earlier work shows that f is bounded.
Write A := DisCty(f) as ;> Cp, from (88c)): A point x
isin C, IFF there is a seq ¥ converging to x, so that each
point y € ¥ has |f(y) — f(x)] > ;.
ISTShow, for each n, that A(C,) = O, since then the
countable subadditivity of shows that A is a nullset.
Fixn,letC :=C, and ¢ := ,ll Fix an arbitrary 6>0 and
take a ptn P with Osc(P) < &6. A P-block B is “bad” if

Var(B) > . So Osc(B) > £B. Summing over the bads,

g > Osc(P) > ¥ & B.
B bad

Thus 6 > A(L), where .

Consider a point z € C. If z is in the interior of a
block B, then automatically B is bad, so z € L. Thus

C c CutPts(P)U L.

Hence A(C) < 0 + 6 = 6. This holds for all 6>0, so C is a
Lebesgue nullset. ¢
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Brillo’s proof of (B<)). WLOG |f] < 3. WLOG J = 1.
Write J = A | |T, where A := DisCty(f) and I := Cty(f).
Fix &>0; we’ll produce a partition P with

¥: Osc/(P) < 8e.

Since A(A) = 0, there exists a countable cover D of A
with u(D) < e.

For each z € I, there an open interval I, > z with
Var/(1,) < 5e. Thus C := {I.}.er covers I and so the union
U := D U C is an open cover of J. Hence U has a Lebes-
gue number 9; this, since J is compact.

Consider a ptn P with Mesh(P) < ¢; necessarily, each
P-block lies inside of some U-patch. Call P-block B
“good” if there exists a patch I € C with I > B. So

ZOSC-f(B) < 5¢-J = Se.
B good

Each “bad” B is covered by some D-patch. Thus

D 0sc/(B) < Var/ ()Y U < [3-F]-e = 3e.
B bad UeD

Adding these together yields that Osc/(P) < 8e. ¢

Interchange of limit-operations

An exercise that could have been stated earlier.

90: Obs. Take fncs g, f,: X 5= QMS with each f,, bounded.

uniformly .
If f,———g, then g is bounded.  Pf. Exer: o

More interestingly.

91: Prop’n.  Suppose b,f:J—R are bounded functions;
set & := ||b||sup. Then for each partition P,

|OSCf+b(P)—OSCf(P)| <2 J. (Exer:) ¢

Interchange of limit-operations

Page 28 of

92: Integral-Convergence Theorem. Consider functions

. uniformly
g.fn: JoR, with f, € Rl. Suppose f,—g. Then g
is Rl. Moreover, fan - fjg, asn,/"co. o

Pf. Take £>0 and take n large enough that ||g — Flsyp < &,
where F := f,. Now take a ptn P st. Osc/(P) < &. By (O1),

|Osc#(P) - Osc”(P)| < 2e T

So Osc!(P) < Osc"(P) + 25 J < [1 +2.J Je. This
holds for each &, so (77E) tells us that g is integrable.

Being integrable, we can replace f, by f, — g, and re-
unif

place g by g — g, to say WLOG f,——0. But
n—oo

[ Al < Wallsap T

so[f; ] —— 0. And, indeed, 0 = /0. ¢

93: DUC Thm (Derivative uniform-convergence). We have
functions f, € C'(J—R) whose derivative-sequence ( N
is sup-norm Cauchy. Thus function

93a: A = unif-limf,
n—oo
exists. Suppose there is a point A € J such that

93b: lim f,(A) exists inR.
n—00

Then for each x, the limit g(x) := lim,_,, f,(x) exists in R.
Moreover, g is differentiable and g’ = A. o

Proof. Fix an x € J. Thanks to (92), and FTC applied to
each f,,

X
[
A

So (©3D) tells us that lim,—, fn(x) exists in R.
Restating, the map g: J—R is well-defined, and

g(A) + f AO).
A

By hypothesis, each f; is cts; thus A is cts, by (33)), P[T5]
By FTC, P the map x — foA is differentiable, and its
derviative equals A. So g is differentiable, and g’ = 0+A.¢

(=2

y O3

fim [ £ = JHm(£00 = )]

glx) =
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Series and Sequences

In a normed-VS V, a series § C V is convergent if the
“sequence P of partial sums” converges in V, where

k
94a: pr = Zn:lsn.

Series § C Vis absolutely convergent if ey l1sall is finite.

94b: Lemma.  Suppose § C 'V, where V is a complete
normed-VS. If § is absolutely convergent, then § is con-
vergent. o

Proof. Let py == Y¥_, s,. Our goal is to show B Cauchy.

Fix &>0. Take Kj st. for all pairs L>K exceeding Kj,

: < e&.
* Zne(K..L] lIsnll < &

By Anequality, LhS(x) dominates the norm of

note
Z 5, e
ne(K .. L]

Thus & > ||p,, — pkll. ¢

PL— Pk -

Exer. 9:Dis/Prove: Even in a non-complete normed-VS,
abs-convergence implies convergence.

Defn. A sequence § C R is a function, so use §* to mean the

corresponding positive-part sequence, from (801, and
N .

use S~ for the seq of negative parts. These two sequences

are non-negative, and satisfy that

+ 5

and
9c: &

- S

n
w = S

95: Reordering Thm. Suppose sequence S C R satisfies
iz Terms s — 0, as k "oo.
ii: Sum Y, sy =co. And Y, s, = co.

Then for each pair of values A < B in [-00, +0], there exists
a reordering, y, of § for which

[limsup Zyn] = B and [liminf Zyn] =A. 9
K=o el k) Koo dr

Series and Sequences

Page 29 of

Pf(Sketch).  Let by = by > --- > 0 be an enumerata-
tion of the positive elts of §. Leta; < a, < --- < 0 be
an enumeratation of the non-positive elts of §. From (i)

and (ii),

950:
950:

b,\0 and a, 70, as n—co.

Yoy by = t00 and Y7, ar = oo,

Think of ¥ as initially being an empty “stack”, into which

we “pop” the elts of b and &, also viewed as stacks. We

leave to the Reader the case where either A or B is 0.
Pop the b-stack until the running-sum

Pk, = [Zne[l..Kl]sn] exceeds B.

Now pop the a-stack until the first time K, > K; that the
running-sum has pg, < A. Return to popping the b-stack,
stopping at the first time K3 > K, that pg, > B. Etc.
Condition says that the procedure never stops; so
the limsup >B and the liminf <A. Condition implies
that limsup <B and liminf >A. ¢
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Appendix: Menagerie 0][ S trange Pf of (ii). The foregoing showed Range(€) C DisCty(V).
. For the opposite, we fix a z € J \ Range(€) and show that
Functions .
V() is left-cts at z.

(Being revised) Unfinished: as of 27Mar2024 ¢

Prelims. For a fnc f:R—R and point z € R, let
Al: f(Z") :=1lim f(x) and f(z7) := lim f(x),
Nz x/z

when these limits exist. Use “f is right-continuous at 7
to mean that f(z*) = f(z). Define left-continuous analo-
gously.

Strictly increasing fnc, with Cty and DisCty dense.
Let J = [0,1]. Mapping from J—R, we define a fnc
V=V, determined by a placement sequence écJ,anda

height sequence h c R,. The place-seq € must be dense
in J, and have distinct values. The height-seq must have
>.(h) finite. We typically

A2:  Normalize )" | h, = 1, and have ¢ 3 0.
Our definition, for each x € J is:

A3 V() = Ve = (e kezoand .

< Xx

Courtesy (AZ), we have V()= S(h)=1 and
V(0) = X(2) = 0.

A4: Jag-fnc Thm.  Consider a V=V which is normal-
ized, (AZ). Then V(1) = 1 and V(0) = 0. Further, V is
strictly-increasing and maps J—J. Moreover

it Function V is right-continuous. And for each N:
flen) = flen™) = hn.
ii: DisCty(V) = Range(©). O

Sketch of right-cty. Fix z € [0, 1). For each x € (z, 1], let
R, be the set of indices k with ¢, € (z, x]. Thus

Vx) - V() = Z By .

keR,

And R, decreases to the void-set, as x\,z, so the sum goes
to zero. (Exer: Fill in the details, and for next paragraph too.)

Fix N. For x € [0, cy), let L, comprise those k with ¢, €
(x,cn]. So Viey) — V(x) equals X ier hi. Sending x, 7z
makes the L, sets decrease down to the singleton {cy}. ¢
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I use these Notes in my Advanced
Calc and Modern Analysis courses.

Crp(metric-OR-space), [6]
OpN(metric-OR-space), [5]
1-point compactification of R,
2-point compactification of R,

Lip
2 113

Topo Cau

= =

>, <, refining ptns, [21]

f*, f~, positive/negative part,
0, <,>, See composition
absolutely convergent, 29|
Addition-is-continuous thm, 4]
antiderivative,

B

ball, punctured, [T7]
Banach space, [6]
block, 21]

Bolzano, 3]
boundary, [7]
bufferable, [T1]

circular reasoning, see tautology
closure point, [6]

cluster point, [7]

cluster-pt cpt,

CMS = “complete MS”, [I3]
compactness properties, [§]

complete, 3] [13]
composition, [16] [24]
continuity set, Cty(f),[I2]
continuous, [I2} [14]

uniformly, [T2]
C(X), Cpna(X), 6]
C(X—-Q), Cppa(X—Q),
convergence

of %, 2] 6]

pointwise, uniform, [I3]
countable local-base, [7]
cover,

finite, [§]
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Lebesgue number, [9} [12]
open, [§]
patch, 8]
CSD = “Countably self-dense”,[T9]

cutpoints,

D, differentiation, 20,
Discontinuity set, DisCty(),[I2] 13|
approximations, [27]

D, dyadic rationals,

error term,
extended reals, [3

finite cover, see cover
first-countable, see space, LCG

Fo-set, 27]

function(al), see map

Gs-set, 27]

grok, see STRANGER IN A STRANGE LD, @
HS = “Hausdorff space”, [6]

indicator function, 15 (-), [I3]
induced topology,[7]

integrable, 2]

interior point, [7]

IPVS = “inner-product space”, []]

join of a partition, 21]
Jordan mass,

Lebesgue mass, 26]
Lebesgue number, [9] 28]
limit-point, [7]

linear functional, [1]
Lip-equiv, [I3]
Lipschitz,[I3] 23]

[P, ”” ps @
LUBP, Least upper-bound property, [3]
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map
antiderivative,
bilinear, [20]

biLipschitz, [I3]
homeomorphism, 7]
isometry, [7]
linear, -functional, [} 23]
nearest-integer, distance, @
ruler function, [73] 24]
van der Waerden,
mesh size, 21]
metric,
arclength, chordal,
arctan, stereographic,
Equivalence
topologically/Cauchy,
Lipschitz, [I3]
Mr. Rogers, see neighborhood
MS = “metric space”,
Multiplication-is-cts thm, 4]

neighborhood, nbhd, [7]

norm, 4 [6} [T8]
Euclidean,
111 » llsup» P
NVS = “normed vectorspace”,
NP = “north pole”, [j]

Open Cover, see cover
oscillation, 22|

PL, see piecewise-linear
panic
don’t, [6]
partition, [T7] 21]
atom, 21]
block, [I4] 21]
join, 27]
pointed, 21|
refinement, 21]
piecewise-linear fnc, PLﬁ,ﬁ’ W E
rational, [T3]
POFA, [T9]
pointwise operations,
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positive/negative part, 24} [29]
pptn = “pointed partition”, 21]
precompact, [I0]
prejudice, [§]
Proof
by contradiction, [0} [T0} [T2]
circular, see circular reasoning
provisional, [TT]
ptn, see partition

relative topology, |Z|

ruler function, [I3} 24]

S, S, (punctured) circle, E|
sample point, tag, 21|
seq-cpt, [§]
sequence
Cauchy,
tail of,
set
inescapable, [7]
open, [6]
space/property
cluster-point compact, [§]
compact, [6] [8]
cover-positive,
HausdorfT, [6]
LCG,7
metric/topological, [6]
metrizable, [6]
sequentially compact,
totally-bounded, TB,
space/property Euclidean,
standard form, [73]

tag, sample point, 27]

Taily(X), 2]

tautology, see Proof, circular

TB = “totally bounded”, 9]

Theorems
Addition-is-continuous, []
Multiplication-is-cts, 4]

topo-equiv,

topology, [6]

TOS = “totally-ordered space”, 2]

total derivative, [20)
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TS = “Topological space”, 6]

unif. convergence, see convergence
uniform continuity, see continuous
upper-bound,

van der Waerden function,
variation, 22]

vectorspace, [6]

VS = “vector space”, [I]

0, 0, zero-vector,
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