

Advanced-Calc Notes

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 27 March, 2024 (at 17:38)

Spaces. Various spaces will be used/defined in this pamphlet. Abbrevs: **VS**, *vectorspace*. **NVS**, *normed vectorspace*. **IPVS**, *inner-product (vector)space*. **TOS**, *totally-ordered space*. **MS**, *metric space*. **CMS**, *complete MS*. **TS**, *topological space*. **HS**, *Hausdorff (topological) space*.

§Outline

Elementary MS/TOS theorems	2
MS-sequence Thm	2
Monotone-subsequence Thm	2
Induced-topology Lemma	3
LUBP theorem	3
Important announcement	3
Monotone-sequence Thm	3
Bounded-sequence Lemma	3
\mathbb{R} Thm	3
Intermediate-value Theorem [IVT]	3
Stage- n construction	4
Last step	4
Addition-Cts thm	4
Mult-Cts thm	4
Normed VSes and MSes	4
Metric Spaces	5
Examples of metrics	5
Examples of normed-VSes	5
ℓ^p spaces are Banach spaces	6
Topological Spaces	6
Classification of properties	6
Closure/Interior/Bdry etc.	6
Isomorphisms	7
Defn: Relative topology	7
Locally Countably Generated spaces	7
Sequence-Closure Lemma	7
Compactness	8
Covers	8
Diameter/compactness Prop'n	8
Compact-intervals theorem	8
Metric ideas related to compactness	9
TB-iff-CauchySubseq Thm	9
Compactness notions Theorem	9
Product-space Convergence Lemma	10
Heine-Borel theorem	10
Bufferable pairs of sets	11
Compactness lemma	11
Continuity	12
Baby continuity Lemma	12
Uniform-continuity Theorem	12
Lip-Diff Lemma	13
Piecewise-linear functions	14
P.L-approximation thm	14
Uniform Convergence	15
Uniform-convergence theorem	15
Weird application of unif-convergence	15
Nested uniform-convergence thm	16
Miscellaneous continuity/limit results	16
Composition notation	16
Forward-inheritance Lemma	17
Miscellaneous connectedness results	17

A Differentiability	18
How discontinuous can a derivative be?	18
Deriv-cty Lemma	18
vdW's no-where differentiable fnc	19
vdW-funcion thm	19
Product-rule thm	20
Total derivative	20
B Riemann Integration	21
Integrability-equivalence Lemma	23
Basic RI Thm	23
Closure properties of RI	23
Integration-is-Linear lemma	23
AbsValue RI Thm	24
Product-RI Thm	24
Closure-RI Thm	25
The Fundamental Theorem of Calculus	25
Fundamental Theorem of Calculus [FTC]	25
Measuring the size of sets	26
Basic measure lemma	26
A condition for Integrability	27
Integrability Theorem	27
Interchange of limit-operations	28
Integral-Convergence Theorem	28
DUC Thm	28
Series and Sequences	29
Appendix: <i>Menagerie of Strange Functions</i>	30
Strictly increasing fnc, with Cty and DisCty dense	30
Index for ADVANCED-CALC NOTES	31

Index for ADVANCED-CALC NOTES

Prelim: VSes. To indicate that \mathbf{u} is a vector in a VS \mathbf{W} , I'll normally write " $\mathbf{u} \in \mathbf{W}$ ", both in notes and on the blackboard; but I can't write boldface on the blackboard, so it will be " $u \in W$ ". In notes, I'll use boldface

$$\mathbf{0} \stackrel{\text{or}}{=} \vec{0}, \quad \vec{i}, \quad \vec{j}, \quad \vec{k}$$

for the **zero-vector** and for the three coordinate-vectors in \mathbb{R}^3 . On the blackboard, I'll write these as $\vec{0}, \vec{i}, \vec{j}, \vec{k}$. In contrast, I'll use an overarrow –see (3a), below– to indicate *sequences*. (And indeed, these seqs will often *be* vectors in \mathbb{R}^∞ .)

Over a field \mathcal{F} , consider \mathcal{F} -VSes \mathbf{V} and \mathbf{E} . A map $L: \mathbf{V} \rightarrow \mathbf{E}$ is **\mathcal{F} -linear** (or just *linear*) if:

$$1: \quad \forall \alpha, \beta \in \mathcal{F} \quad \text{and} \quad \forall \mathbf{v}, \mathbf{w} \in \mathbf{V}, \quad \text{necessarily} \\ L(\alpha\mathbf{v} + \beta\mathbf{w}) = \alpha L(\mathbf{v}) + \beta L(\mathbf{w}).$$

A map $L: \mathbf{V} \rightarrow \mathcal{F}$ is called a ***functional*** (abbrev.: *fnc'al*). In the typical case, $L()$ is linear (viewing \mathcal{F} as a 1-dim' al VS over \mathcal{F}) and we call $L()$ a ***linear functional***.

Prelim: Sets. For arbitrary sets D and C , I'll sometimes use

2: the symbol C^D to denote the set of functions
 $D \rightarrow C$.

(This is a std notation.) The “exponent” D is the domain of these fncs, and C is their codomain. As an example, the vectorspace \mathbb{R}^3 can be viewed as the set of fncs $\mathbb{R}^{[1..3]}$, or as $\mathbb{R}^{[0..3]}$, if convenient.

BTWay: When D and C are finite sets,

2': The cardinality $|C^D|$ equals $|C|^{|D|}$.

Elementary MS/TOS theorems

In this section, we have a general totally-ordered space (Υ, \prec) . We also have a general metric space (Ω, d) .

Notation for sequences. A symbol \vec{x} means the (by default, infinite) ordered tuple

3a: $\vec{x} = (x_1, x_2, x_3, \dots)$;

however, the index-set might be a different “ray” of integers, e.g., \vec{x} might be denoting (x_3, x_4, x_5, \dots) . Since \vec{x} is a fnc, $\text{Dom}(\vec{x})$ denotes its index-set, and $\text{Range}(\vec{x}) = \{x_n\}_{n \in \text{Dom}(\vec{x})}$ is its set of \vec{x} -values. Most of the notation below assumes the index-set is \mathbb{Z}_+ .

For a set S , expression “ $\vec{x} \subset S$ ” means

$$\forall n \in \text{Dom}(\vec{x}): x_n \in S .$$

A “list of indices” shall mean posints

3b: $N_1 < N_2 < N_3 < \dots$

A sequence \vec{c} is a **subsequence** of \vec{x} IFF *there exists* a list (3b) st. $\forall k: c_k = x_{N_k}$. Write “ $\vec{c} \subset \vec{x}$ ” to indicate this relation. Each $N \in \text{Dom}(\vec{x})$ yields a subsequence called “the N^{th} **tail** of \vec{x} ”,

$$\text{Tail}_N(\vec{x}) := (x_N, x_{N+1}, x_{N+2}, \dots).$$

Fix MS (Ω, d) . For $\vec{x} \subset \Omega \ni q$, let “ $d\text{-lim}(\vec{x}) = q$ ” or “ $\Omega\text{-lim}(\vec{x}) = q$ ” or just “ $\text{lim}(\vec{x}) = q$ ” mean

3c: For each ball $B := \text{Bal}(q)$, there exists an index $N = N(B)$ for which $\text{Tail}_N(\vec{x}) \subset B$.

Implicit in our notation is “*Limits, when they exist, are unique*”. Were this not the case, then we'd view $\text{lim}(\vec{x})$

as a *set*, and write “ $q \in \text{lim}(\vec{x})$ ” rather than $q = \text{lim}(\vec{x})$. Uniqueness is proved after (20), P.6.

We will interpret a *sequence* \vec{e} as the *set* $\text{Range}(\vec{e})$ in these two common contexts: “ $\text{Diam}(\vec{e})$ ” and “ $\vec{e} \subset S$ ”. For example, a sequence \vec{x} is **d-Cauchy** if:

3d: $\forall \varepsilon > 0, \exists N$ such that $d\text{-Diam}(\text{Tail}_N(\vec{x})) < \varepsilon$. \square

4: MS-sequence Thm. *Facts about seqs in MS (Ω, d) :*

A: If \vec{x} is convergent, then \vec{x} is a Cauchy sequence.

B: If \vec{x} is Cauchy, then $\text{Diam}(\vec{x}) < \infty$.

C: Suppose Cauchy-seq \vec{x} has a convergent subseq $\vec{y} \subset \vec{x}$. Then \vec{x} converges, and $\text{lim}(\vec{x}) = \text{lim}(\vec{y})$. \diamond

Proof of (C). The first two parts were proved in class. For the third, let $p := \text{lim}(\vec{y})$. Fix $\varepsilon > 0$, then take N large enough that $\text{Diam}(\text{Tail}_N(\vec{x})) < \varepsilon$.

Write \vec{y} as $(x_{K_j})_{j=1}^{\infty}$. Let J be the first posint large enough that $K := K_J \geq N$ and $d(x_K, p) < 7\varepsilon$.

For each $\ell \in [K .. \infty)$, observe that

$$\begin{aligned} d(x_{\ell}, p) &\leq d(x_{\ell}, x_K) + d(x_K, p) \\ &< \varepsilon + 7\varepsilon = 8\varepsilon . \end{aligned}$$

Thus $\text{Tail}_K(\vec{x}) \subset \text{Bal}_{8\varepsilon}(p)$. \diamond

5: Monotone-subsequence Thm. *Each seq $\vec{x} \subset \Upsilon$ has a monotone subsequence.* (“Sequence” means ∞ -seq.)

Indeed, either \vec{x} has a strictly decreasing subseq, or has an increasing subsequence. (Dually, \vec{x} has a strictly incr-subseq or a decr-subseq.) \diamond

Proof. Let $\mathcal{T} \subset \mathbb{Z}_+$ comprise the “tall” indices N for which: $[\forall k \in (N .. \infty): x_N > x_k]$.

If \mathcal{T} is infinite, then $(x_{\tau})_{\tau \in \mathcal{T}}$ is a strictly-decreasing subsequence of \vec{x} .

Now suppose \mathcal{T} finite. Let N_1 be the smallest index exceeding all the tall indices (phrased this way, to cover the case where \mathcal{T} is empty). Arguing inductively, suppose we have indices $N_1 < N_2 < \dots < N_{K-1}$ for which

$$x_{N_1} \leq x_{N_2} \leq \dots \leq x_{N_{K-1}} .$$

Since N_{K-1} is not tall, there exists a smallest integer $N_K > N_{K-1}$ for which x_{N_K} dominates $x_{N_{K-1}}$.

Continuing the induction yields $(x_{N_k})_{k=1}^{\infty}$, an increasing subsequence of \vec{x} . \diamond

6: Induced-topology Lemma. Fix a MS Ω and subset X . Then a further subset $U \subset X$ is *X-open* IFF there exists an Ω -open set \widehat{U} st. $\widehat{U} \cap X = U$. **Proof.** Exercise. \diamond

Least upper-bound property [LUBP]. In TOS (Υ, \prec) , consider sets $A, B \subset \Upsilon$ and a point $u \in \Upsilon$. Let

- 7: $A \leq u$ mean $[\forall \alpha \in A, \text{necessarily } \alpha \leq u]$;
 7: $A \leq B$ mean $[\forall \alpha \in A \text{ and } \forall \beta \in B: \alpha \leq \beta]$.

An **upper-bound** for a set $A \subset \Upsilon$ is an element $u \in \Upsilon$ such that $A \leq u$. Use $\text{UB}_\Upsilon(A)$ for the *set* of upper-bnd, and $\text{LB}_\Upsilon(A)$ for the lower-bnd-set. (Dispense with the subscript if clear from context.) Our (Υ, \prec) has the **LUBP** if:

- 7a: Each non-void $A \subset \Upsilon$ which is upper-bnded [i.e $\text{UB}_\Upsilon(A) \neq \emptyset$] has a least upper-bound. That is, $\text{UB}_\Upsilon(A)$ has a minimum element.

Reversing the inequalities yields the **greatest lower-bound property**, abbreviated **GLBP**.

The LUB of a set A (when it *has* a LUB!) is called the **supremum** of the set, and is written $\sup(A)$ or $\sup_\Upsilon(A)$. Similarly, the **infimum** is the GLB, written $\inf(A)$.

7b: LUBP theorem. TOS (Υ, \prec) has the LUBP IFF it has the GLBP. \diamond

Proof of [LUBP \Rightarrow GLBP]. Fix a non-void lower-bnded subset $B \subset \Upsilon$; so $A := \text{LB}_\Upsilon(B)$ is non-empty. My goal is to produce a (hence the) greatest lower-bound for B , using that

$$\begin{aligned} \dagger: \quad A &\stackrel{\text{def}}{=} \text{LB}_\Upsilon(B), \quad \text{and} \\ \ddagger: \quad \text{UB}_\Upsilon(A) &\supset B. \end{aligned}$$

Since $\text{UB}_\Upsilon(A) \supset B \neq \emptyset$, and A is non-void, the LUBP applies, and tells us that $\lambda := \sup_\Upsilon(A)$ exists. In particular

$$\dagger': \quad \lambda \geq A.$$

Since λ is the *least* upper-bnd, $\lambda \leq \text{UB}_\Upsilon(A) \supset B$ and so $\lambda \leq B$. Restating, λ is a lower-bound of B . (Note: λ *might* or *might not* be in B .)

And, by (\dagger) and (\dagger') , this λ dominates each lower-bound of B . So λ is a *greatest* lower-bound of B . \diamond

Important announcement. A TOS (Υ, \prec) satisfying LUBP [equivalently, GLBP] is said to be **order-complete**. We take as an axiom [or derive via Dedekind cuts or Cauchy sequences] that

7c: (\mathbb{R}, \prec) is order-complete.

This means that the extended reals, $\bar{\mathbb{R}}$, satisfies a slightly stronger property: Each¹ subset $A \subset \bar{\mathbb{R}}$ has a $\sup(A)$ and an $\inf(A)$ in $\bar{\mathbb{R}}$. In consequence, $\sup()$ and $\inf()$ are maps from the full $\mathcal{P}(\bar{\mathbb{R}}) \rightarrow \bar{\mathbb{R}}$.

(See (14), P.5, for the definition of $\bar{\mathbb{R}}$, the extended reals.)

8: Monotone-sequence Thm. Each bounded monotone sequence $\vec{x} \subset \mathbb{R}$ is \mathbb{R} -convergent. \diamond

Proof. WLOG, \vec{x} is increasing, and upper-bnded. Thus $X := \text{Range}(\vec{x})$ has a supremum in \mathbb{R} ; call it L . I claim that $\lim(\vec{x}) \stackrel{?}{=} L$.

Fix $\varepsilon > 0$. Now L is the *least* UB of X , so $L - \varepsilon$ can not be an upper-bnd. Hence there exists N with $x_N > L - \varepsilon$. For each $\ell \geq N$, since \vec{x} is increasing, we have that

$$L - \varepsilon < x_N \leq x_\ell \leq L.$$

Thus $\text{Tail}_N(\vec{x}) \subset \text{Bal}_\varepsilon(L)$. \diamond

9: Bounded-sequence Lemma. Each bounded sequence $\vec{x} \subset \mathbb{R}$ has an \mathbb{R} -convergent subsequence. \diamond

Proof. Use (5), then (8). \diamond

10: \mathbb{R} Thm. The set of reals is (metrically) complete. \diamond

Proof. Fix a Cauchy sequence $\vec{x} \subset \mathbb{R}$. Courtesy (4B), $\text{Diam}(\vec{x}) < \infty$. So (9) applies, yielding a convergent subsequence. Now use (4C). \diamond

Bernard Bolzano (1781–1848) proved the following form of the Intermediate-value Theorem.

11: IVT. Suppose $f: [a, b] \rightarrow \mathbb{R}$ is continuous, with $f(a)$ and $f(b)$ non-zero and having different signs. Then there exists a point $c \in (a, b)$ which is a zero of f , i.e., $f(c) = 0$. \diamond

¹E.g., $\sup(\emptyset) = -\infty$ and $\inf(\emptyset) = +\infty$. Indeed, for $A \subset \bar{\mathbb{R}}$: $[A \neq \emptyset] \iff [\inf(A) \leq \sup(A)]$.

Proof. WLOG generality, $f(a) < 0$ and $f(b) > 0$; otherwise, simply replace f by $-f$ (which preserves continuity) and note that a zero of $-f$ is a zero of f .

Let $L_0 := a$ and $R_0 := b$. For stage $n = 1, 2, \dots$, either up to some integer K , or out to ∞ , I will produce numbers L_n and R_n such that:

$$\text{i}[n]: a \leq L_{n-1} \leq L_n < R_n \leq R_{n-1} \leq b;$$

$$\text{ii}[n]: R_n - L_n = \frac{1}{2}[R_{n-1} - L_{n-1}];$$

$$\text{iii}[n]: f(L_n) < 0 < f(R_n).$$

Stage- n construction. Let M be the midpoint of interval $[L_{n-1}, R_{n-1}]$, i.e., $M := \frac{1}{2}[L_{n-1} + R_{n-1}]$.

CASE: If $f(M)$ is zero, then STOP Set $K := n-1$. By (i[K]), note that M is strictly between a and b . So $c := M$ fulfills the conclusion of the theorem.

CASE: Otherwise, $f(M) \neq 0$. If $f(M)$ negative then let $L_n := M$ & $R_n := R_{n-1}$. If $f(M)$ positive then let $L_n := L_{n-1}$ & $R_n := M$. In either case, conditions (i,ii,iii[n]), automatically hold.

Last step. WLOG generality, we may assume that our construction never STOPped. So we have two sequences, $\vec{L} := (L_n)_{n=0}^{\infty}$ and $\vec{R} := (R_n)_{n=0}^{\infty}$.

By (i), \vec{L} is increasing and is bounded above by b . Since a bounded monotone seq must converge, $L_{\infty} := \lim_{n \rightarrow \infty} L_n$ exists; it is in interval $[a, b]$, courtesy (i).

Thus f is defined –hence continuous– at L_{∞} , so $f(L_{\infty})$ equals $\lim_n f(L_n)$. And $f(L_{\infty}) \stackrel{\text{must}}{\leq} 0$ since each $f(L_n) \leq 0$.

Analogously, $f(R_{\infty}) := \lim_{n \rightarrow \infty} f(R_n)$ exists, and is non-negative. Furthermore

$$\begin{aligned} R_{\infty} - L_{\infty} &= \lim_{n \rightarrow \infty} [R_n - L_n], \quad \text{by what thm?}, \\ &= \lim_{n \rightarrow \infty} [\frac{1}{2}]^n \cdot [b - a], \quad \text{by (iii) and induction}, \\ &= 0. \end{aligned}$$

Thus R_{∞} and L_{∞} equal a common value, call it c , in interval $[a, b]$. The preceding paragraphs tell us that $f(c) \leq 0$ and $f(c) \geq 0$; so $f(c)$ must be zero. Hence $c \notin \{a, b\}$. \spadesuit

12: Addition-Cts thm. The addition operation $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is continuous. Restated: Suppose $\vec{x}, \vec{y} \subset \mathbb{C}$ with $\lim(\vec{x}) = \alpha$ and $\lim(\vec{y}) = \beta$. With $p_n := x_n + y_n$, then, $\lim(\vec{p}) = \alpha + \beta$. \diamond

Proof. Fix a posreal ε . Take N large enough that

$$\text{Tail}_N(\vec{x}) \subset \text{Bal}_{\frac{\varepsilon}{2}}(\alpha) \quad \text{and} \quad \text{Tail}_N(\vec{y}) \subset \text{Bal}_{\frac{\varepsilon}{2}}(\beta).$$

Each index k has $p_k - [\alpha + \beta] = [x_k - \alpha] + [y_k - \beta]$. For each $k \geq N$, then,

$$|p_k - [\alpha + \beta]| \leq |x_k - \alpha| + |y_k - \beta| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad \spadesuit$$

Remark. The same thm and proof hold for addition on a normed vectorspace; simply replace $|\cdot|$ by the norm $\|\cdot\|$. \square

13: Mult-Cts thm. The multiplication operation $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is continuous. RESTATED: Suppose $\vec{x}, \vec{y} \subset \mathbb{C}$ with $\lim(\vec{x}) = \alpha$ and $\lim(\vec{y}) = \beta$. With $p_n := x_n \cdot y_n$, then, $\lim(\vec{p}) = \alpha \cdot \beta$. \diamond

Proof. WELOG $|\beta| \leq 7$. Since \vec{x} converges, necessarily the $\text{Diam}(\vec{x})$ is finite; WELOG

$$\dagger: \quad \forall \text{ posints } n: |x_n| \leq 50.$$

$$\begin{aligned} \text{For each posint } n, \text{ adding and subtracting a term gives} \\ x_n y_n - \alpha \beta &= x_n y_n - x_n \beta + x_n \beta - \alpha \beta \\ &= x_n [y_n - \beta] + [x_n - \alpha] \beta. \end{aligned}$$

Taking absolute-values, then upper-bounding, yields

$$\begin{aligned} \ddagger: \quad |x_n y_n - \alpha \beta| &\leq |x_n| \cdot |y_n - \beta| + |x_n - \alpha| \cdot |\beta| \\ &\leq 50 \cdot |y_n - \beta| + |x_n - \alpha| \cdot 7, \end{aligned}$$

by (\dagger) and the first sentence.

Fix a posreal ε . Since $\lim(\vec{y}) = \beta$ and $\lim(\vec{x}) = \alpha$, we can take K large enough that each $n \in [K .. \infty)$ satisfies

$$|y_n - \beta| \leq \frac{\varepsilon/2}{50} \quad \text{and} \quad |x_n - \alpha| \leq \frac{\varepsilon/2}{7}.$$

Plugging these estimates in to (\ddagger) gives that

$$|x_n y_n - \alpha \beta| \leq 50 \cdot \frac{\varepsilon/2}{50} + \frac{\varepsilon/2}{7} \cdot 7 \stackrel{\text{note}}{=} \varepsilon,$$

for each $n \geq K$.

As this holds for every ε positive, $\lim(\vec{x} \cdot \vec{y})$ indeed equals $\alpha \beta$. \spadesuit

Normed Vses and Mses

A **norm** $\|\cdot\|$, on a *real* or *complex* vectorspace \mathbf{W} , is a map $\mathbf{W} \rightarrow [0, \infty)$ such that $\forall \mathbf{u}, \mathbf{v} \in \mathbf{W}$:

N1: $\|\mathbf{u}\| = 0$ IFF $\mathbf{u} = \mathbf{0}$.

N2: \forall scalars α : $\|\alpha \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|$.

N3: $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$.

Metric Spaces. On a set X , a *metric* m is a map $X \times X \rightarrow [0, \infty)$ such that $\forall x, y, z \in X$:

$$\text{MS1: } m(x, y) = 0 \text{ IFF } x = y.$$

$$\text{MS2: } m(x, y) = m(y, x).$$

$$\text{MS3: } m(x, z) \leq m(x, y) + m(y, z).$$

Evidently, a norm $\|\cdot\|$ defines a metric m , by

$$\forall \mathbf{u}, \mathbf{v} \in W: m(\mathbf{u}, \mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|.$$

Equivalent metrics. Use $\text{OPN}(m)$ for the *collection* of open sets that metric m determines; so $\text{OPN}(m) \subset \mathcal{P}(X)$. Say that two metrics m and d , on the same space, are *topologically equivalent* (*topo-equiv*) if $\text{OPN}(m) = \text{OPN}(d)$. We write $m \xrightarrow{\text{Topo}} d$.

If $m \xrightarrow{\text{Topo}} d$ and m and d have exactly the same Cauchy seqs, then they are *Cauchy equivalent*, written $m \xrightarrow{\text{Cau}} d$.

Examples of metrics. Let's first look at one-dimensional examples.

E1. Let \mathbb{S} be the unit circle $\{(x, y) \mid x^2 + y^2 = 1^2\}$. It has an *arclength-metric* \mathbf{d}_{Arc} , and a *chordal metric* \mathbf{d}_{Ch} . E.g,

$$\begin{aligned} \mathbf{d}_{\text{Arc}}\text{-Diam}(\mathbb{S}) &= \pi, \quad \text{and} \\ \mathbf{d}_{\text{Ch}}\text{-Diam}(\mathbb{S}) &= 2. \end{aligned}$$

Evidently, $\mathbf{d}_{\text{Arc}} \xrightarrow{\text{Cau}} \mathbf{d}_{\text{Ch}}$. □

E2. I define the *arctan metric*, α , on \mathbb{R} and on

$$14: \quad \overline{\mathbb{R}} \stackrel{\text{synon}}{=} \mathbb{R} := \{-\infty\} \sqcup \mathbb{R} \sqcup \{+\infty\} = [-\infty, +\infty].$$

For points $x, y \in \overline{\mathbb{R}}$, define (using \mathbf{d}_{Arc})

$$\alpha(x, y) := |\arctan(x) - \arctan(y)|.$$

Note that $\arctan(+\infty) = +\frac{\pi}{2}$ and $\arctan(-\infty) = -\frac{\pi}{2}$. And α is topo-equiv to the usual metric on \mathbb{R} , but they are *not* Cauchy-equivalent.

The set (14) is variously called the *extended reals* or the *2-point compactification of \mathbb{R}* . □

E3. The *stereographic metric*, σ , on \mathbb{R} and on

$$15: \quad \dot{\mathbb{R}} := \mathbb{R} \sqcup \{\infty\},$$

comes from a projection, as did the arctan-metric. Recall the circle \mathbb{S} from (E1). Let $\overset{\circ}{\mathbb{S}}$ be the “punctured circle”, where we removed the “north pole” $\mathbf{NP} := (0, 1)$. We have two homeomorphisms, $f: \overset{\circ}{\mathbb{S}} \rightarrow \mathbb{R}$ and its inverse-fnc $g: \mathbb{R} \rightarrow \overset{\circ}{\mathbb{S}}$. They are defined by a diagram. (See blackboard.) A bit of algebra shows that

$$16: \quad \begin{aligned} f((x, y)) &= \frac{x}{1-y}; \\ g(t) &= \frac{1}{t^2+1} \cdot (2t, t^2 - 1). \end{aligned}$$

We extend these maps to $f: \mathbb{S} \rightarrow \dot{\mathbb{R}}$ and $g: \dot{\mathbb{R}} \rightarrow \overset{\circ}{\mathbb{S}}$, by

$$16': \quad f(\mathbf{NP}) := \infty \quad \text{and} \quad g(\infty) := \mathbf{NP}.$$

Finally, our stereographic metric is: $\forall p, q \in \dot{\mathbb{R}}$,

$$16'': \quad \sigma(p, q) := \mathbf{d}_{\text{Ch}}(g(p), g(q)).$$

The set (15) is called the *projectively extended reals* or the *1-point compactification of \mathbb{R}* . □

Examples of normed-VSes. For a posint N , let's define a family of norms on N -dimensional space $\mathbb{R} \times \mathbb{R}^N \times \mathbb{R}$. It will be convenient to use (2), P.2, and write this VS as \mathbb{R}^J , where J is the index-set $J := [0 .. N]$.

For exponent $p \in [1, \infty)$, define the ℓ^p -norm (“little-Lp norm”) by

$$17A: \quad \begin{aligned} \|\mathbf{u}\|_p &:= \left[\sum_{k \in J} |u_k|^p \right]^{1/p}. \quad \text{Also define} \\ \|\mathbf{u}\|_\infty &:= \sup_{k \in J} |u_k|. \end{aligned}$$

One often uses $\ell^p = \ell^p(J)$ as the name of the VS; here, since J is finite, the VS is \mathbb{R}^J . A bit of argument shows

$$17B: \quad \forall \mathbf{u} \in \mathbb{R}^J: \quad \lim_{p \nearrow \infty} \|\mathbf{u}\|_p = \|\mathbf{u}\|_\infty.$$

Infinite index-sets. Now let $J := \mathbb{N}$, the set of real-valued sequences. *What should our vectorspace $\ell^p(J)$ be?*

Take the case $p := 1$. As an example, the constant-7 sequence $\vec{7}$ has infinite² ℓ^1 -“norm”; so we *don't* want $\vec{7}$ in ℓ^1 . So for each $p \in [1, \infty]$ we define, using (17A),

$$17C: \quad \ell^p(J) := \left\{ \mathbf{v} \in \mathbb{R}^J \mid \|\mathbf{v}\|_p \text{ is finite} \right\}.$$

One can check that this set is sealed under vector-addition, so it is a vector subspace of \mathbb{R}^J . □

²For each $p \in [1, \infty)$, indeed, $\|\vec{7}\|_p = +\infty$. OTOH and, $\|\vec{7}\|_\infty = 7$.

Supremum-norm. On a MS X , let $\mathbf{C}(X)$ or $\mathbf{C}^0(X)$ denote the set –indeed, the *vectorspace*– of continuous functions $X \rightarrow \mathbb{R}$. For $f \in \mathbf{C}(X)$, define

$$\|f\|_{\sup} := \sup_{x \in X} |f(x)|.$$

Since this can take on the value $+\infty$, we drop to the vector-subspace of *bounded* continuous fncs,

$$17D: \quad \mathbf{C}_{\text{Bnd}}(X) := \{f \in \mathbf{C}(X) \mid \|f\|_{\sup} < \infty\}.$$

This pair $(\mathbf{C}_{\text{Bnd}}(X), \|\cdot\|_{\sup})$ is a normed-VS. If X is *compact* then –we'll later discover– *every* cts fnc is bounded. \square

The following thm is easy, when J is finite, but takes some work when the index-set is infinite. (A *Banach space* [don't panic] is a complete normed-vectorspace.)

18: **ℓ^p spaces are Banach spaces.** Fix an indexing-set J . Then for each $p \in [1, \infty]$, the space $\ell^p(J)$ is complete in the metric induced by $\|\cdot\|_p$. \diamond

All the foregoing holds *mutatis mutandis* for \mathbb{R} replaced by \mathbb{C} , the complex numbers. Equation (17B), when stated appropriately, holds even when J is infinite.

Topological Spaces

A TS Ω has a collection $\mathcal{U} \subset \mathcal{P}(\Omega)$ of sets that we call the *open* sets. Family \mathcal{U} is required to satisfy:

TS1: \mathcal{U} owns \emptyset and owns Ω .

TS2: $\forall A, B \in \mathcal{U}$, the intersection $A \cap B \in \mathcal{U}$.

TS3: For each collection $\mathcal{A} \subset \mathcal{U}$: The union $\bigcup(\mathcal{A})$ is in \mathcal{U} . (Note that $\bigcup(\mathcal{A})$ is the set of points $\omega \in \Omega$ for which *there exists* a set $V \in \mathcal{A}$ with $V \ni \omega$.)

Let's use $\text{OPN}(\Omega)$ for this collection \mathcal{U} , and use $\text{CLD}(\Omega)$ for the family of *closed* subsets. Topologists tend to be biased toward opens sets, and call $\text{OPN}(\Omega)$ “the *topology* of Ω ”. This TS is *metrizable* if *there exists* a metric m on Ω for which $\text{OPN}(m) = \text{OPN}(\Omega)$.

Classification of properties. A concept/property on/of a space Ω is (purely) *topological* if it can be determined solely by knowing $\text{OPN}(\Omega)$. On a MS, a property is *metric* if it can be determined from the metric. E.g $\text{Diam}(\Omega)$ is a metric property, but whether Ω is *connected* is purely a topological property.

Perhaps surprisingly, convergence of a sequence “ $\lim(\vec{x}) = q$ ” is just a topological property. For it can be stated as

19: For each open $U \ni q$, there exists an index $N = N(U)$ for which $\text{Tail}_N(\vec{x}) \subset U$.

The notation suggests that a sequence can have at most one limit, and this is true for TSes with the *Hausdorff separation property* (which trivially holds in MSes):

20: For each pair of distinct points $\alpha, \beta \in \Omega$, there exist disjoint open sets $A \ni \alpha$ and $B \ni \beta$.

For if seq \vec{x} converges to both α and β , then $\exists J, K$ with $\text{Tail}_J(\vec{x}) \subset A$ and $\text{Tail}_K(\vec{x}) \subset B$. Setting $N := \text{Max}(J, K)$ gives the \ast that nv-set $\text{Range}(\text{Tail}_N(\vec{x}))$ lies in both A and B .

A TS with property (20) is called a *Hausdorff space*; agree to use **HS** to abbreviate this.

Closure/Interior/Bdry etc. Fix a TS Ω and a set $S \subset \Omega$. A point $q \in \Omega$ is a “*closure point* of S ” if:

21: $\forall V^{\text{open}} \ni q$, the intersection $V \cap S \neq \emptyset$.

Use $\text{Cl}_\Omega(S)$ for the *set* of Ω -closure-points of S . Easily

21': $\text{Cl}_\Omega(S)$ is Ω -closed, and equals the intersection of all Ω -closed supersets of S ; hence, it is the smallest such.

A point $q \in \Omega$ is an “**interior point** of S ” if:

22: $\exists V^{\text{open}} \ni q$ such that $V \subset S$.

Use $\text{Itr}_\Omega(S)$ for the *set* of Ω -interior-points of S . And

22': $\text{Itr}_\Omega(S)$ is Ω -open, and equals the union of all Ω -open subsets of S ; hence, it is the largest such.

A set S is “a Ω -neighborhood of a point q ” if $\text{Itr}_\Omega(S) \ni q$. Equivalently, $\exists U^{\text{open}}$ with $S \supset U \ni q$. Write this as

$$q \stackrel{\text{nbhd}}{\in} S \quad \text{or} \quad S \stackrel{\text{nbhd}}{\ni} q.$$

Replacing q by a set, A , we say that “ S is a **neighborhood** of set A ” if $\text{Itr}(S) \supset A$. Analogously, write this relation as

$$A \stackrel{\text{nbhd}}{\subset} S \quad \text{or} \quad S \stackrel{\text{nbhd}}{\supset} A.$$

The “ Ω -boundary of S ”, written $\partial_\Omega(S)$ or $\text{Bdry}_\Omega(S)$, is $\text{Cl}(S) \cap \text{Cl}(\Omega \setminus S)$.

A point $q \in \Omega$ is a “**cluster point** of S ” iff

21": $\forall V^{\text{open}} \ni q$: Intersection $V \cap S$ is infinite.

Use $\text{Clust}_\Omega(S)$ for the S ’s set of cluster³ points.

Switching from sets to sequences, a point q is

“a **limit-point**³ of sequence \vec{x} ”

if \vec{x} has some subsequence which converges to q .

Isomorphisms. A map $\varphi: \Omega \leftrightarrow X$ between two TSes is a **homeomorphism**⁴ if φ is a bijection st.:

23: For each open set $\Lambda \subset \Omega$, the forward-image $\varphi(\Lambda)$ is X -open. And for each open set $S \subset X$, the inverse-image $\varphi^{-1}(S)$ is Ω -open. (Looking ahead, each of φ and φ^{-1} is continuous.)

A homeomorphism is a “topological isomorphism”.

Between two MSes (Ω, μ) and (X, d) , an **isometry**⁵ is a bijection $f: \Omega \leftrightarrow X$ which preserves distance: For all $\alpha_1, \alpha_2 \in \Omega$, we have $d(f(\alpha_1), f(\alpha_2)) = \mu(\alpha_1, \alpha_2)$.

³Terms *cluster point*, *accumulation point* and *limit point* are related. Alas, textbooks vary as to which term they assign to which concept.

⁴From Greek ομοιος (homoios) “similar”, and μορφη (morph) “form”, “shape”.

⁵From Greek ισος (isos), “equal”, and μορφη (morph).

Defn: Relative topology. In a TS Ω with subset X , how should we define the X -open subsets? Motivated by the Induced-topology Lemma, (6), we specify that

24: A subset $U \subset X$ is **X -open** IFF there exists an Ω -open set \widehat{U} such that $\widehat{U} \cap X = U$.

The collection of such sets U is indeed a topology on X (fulfilling axioms (TS1,2,3)). It is called the **relative topology** or **induced topology** on X .

25: **Lemma.** For a subset S of a Hausdorff TS: A point q is a **cluster-point** of S IFF each $V^{\text{open}} \ni q$ owns a point of S different from q . **Proof.** Exercise. ◇

Locally Countably Generated spaces. Consider a MS Ω and point $q \in \Omega$. Evidently, by letting $U_n := \text{Bal}_{1/n}(q)$,

There exists \vec{U} , a countable family $U_1 \supset U_2 \supset \dots$ 26: of Ω -open sets, each owning q . Moreover for each open $V \ni q$, there is some n with $V \supset U_n$.

Such a \vec{U} is called a “**countable local-base** for q ”. A TS Ω is **LCG** (*locally countably-generated*) if each $q \in \Omega$ has a countable local-base. (The std phrase is “ Ω is *first-countable*”.)

27: **Sequence-Closure Lemma.** In TS Ω , consider a subset $S \subset \Omega$ and point $q \in \Omega$.

a: If there exists a sequence $\vec{\sigma} \subset S$ with $\lim(\vec{\sigma}) = q$, then $q \in \text{Cl}(S)$.

b: Now suppose that Ω is LCG. If $q \in \text{Cl}(S)$ then $\exists \vec{\sigma} \subset S$ such that $\lim(\vec{\sigma}) = q$. ◇

Proof. Leaving (a) as an **exercise**, let’s show (b).

Fix \vec{U} as in (26). Each U_n intersects S , since $q \in \text{Cl}(S)$, so we may pick a point $\sigma_n \in U_n \cap S$.

Given an open $V \ni q$, there exists N with $U_N \subset V$. For each $k \geq N$, then, $\sigma_k \in U_k \subset U_N \subset V$. I.e, $\text{Tail}_N(\vec{\sigma}) \subset V$. ♦

Every TS satisfies (27a). But conclusion (27b) can fail in a non-LCG space. It fails in the cartesian-power space $\{0, 1\}^{\mathbb{R}}$.

Lemma 27 implies, in an LCG space, that a set is closed IFF it is **(sequentially-)inescapable**. □

Compactness

A TS X is **sequentially compact** (seq-cpt) if each X -sequence has a X -convergent subsequence.

28: **Lemma.** *In a MS Ω (Hausdorff & LCG, suffices), suppose subset X is sequentially compact. Then X is Ω -closed.* \diamond

Proof. Fix an arbitrary Ω -convergent seq $\vec{x} \subset X$. Let $\omega := \lim(\vec{x}) \in \Omega$. Since X is sequentially-cpt, there exists an X -convergent subseq $\vec{y} \subset \vec{x}$; so $z := \lim(\vec{y})$ is in X . But \vec{x} is Ω -convergent, so $\omega \stackrel{\text{must}}{=} z$. Thus $\omega \in X$.

This holds for each sequence $\vec{x} \subset X$, so X is Ω -*inescapable*. But Ω is a MS, so (27) applies and tells us that X is Ω -closed. \diamond

A TS X is **cluster-point compact** (cluster-pt cpt) if each infinite subset $S \subset X$ has a cluster-point in X .

29: **Lemma.** *For a general TS Ω :*

- a: *Sequentially compact \implies Cluster-point compact.*
- b: *If Ω is LCG, then Cluster-point compactness implies Sequential-compactness.* \diamond

Pf of (a). Consider an ∞ -subset $S \subset X$. For $n = 1, 2, 3, \dots$, pick a point

$$*: \quad b_n \in S \setminus \{b_1, b_2, \dots, b_{n-1}\};$$

this is possible, since S is infinite. Since X is seq-cpt, there is a subseq $\vec{a} \subset \vec{b}$ which is X -convergent; let $q := \lim(\vec{a})$. Now $\vec{a} \subset \vec{b} \subset S$, so q is a closure-point of S . But \vec{a} has distinct terms, since \vec{b} does, courtesy (*). Thus q is, in fact, a *cluster-point* of S . \diamond

Pf of (b). Fix a seq $\vec{b} \subset X$. A constant subseq is certainly convergent, so WLOG no value in \vec{b} occurs ∞ ly-often. Hence we can let $\vec{c} \subset \vec{b}$ be the subsequence obtained by keeping just the *first occurrence* of each value in \vec{b} . Automatically, \vec{c} has distinct terms, so $\{c_\ell\}_{\ell=1}^\infty$ is infinite, and thus has a cluster-point; pick one such, and call it q .

For q , fix countable local-base \vec{U} as in (26). Set $N_0 := 0$. For $k = 1, 2, \dots$, let N_k be the smallest index $n > N_{k-1}$ st. $c_n \in U_k$. Such an n exists, since U_k owns ∞ ly many points from $\{c_\ell\}_1^\infty$, and the $\ell \mapsto c_\ell$ map is injective.

Let $e_k := c_{N_k}$. To show that seq \vec{e} converges to q , fix an open set $V \ni q$, then take K (smallest, say) so that $U_K \subset V$. But each index $k \geq K$ has

$$e_k \in U_k \subset U_K \subset V.$$

I.e, $\text{Tail}_K(\vec{e}) \subset V$. \diamond

Covers. For $X \subset \Omega$, an “ Ω -cover of X ” is a collection $\mathcal{C} \subset \mathcal{P}(\Omega)$ for which $X \subset \bigcup(\mathcal{C})$. A subset $\mathcal{S} \subset \mathcal{C}$ is a **subcover** (of X) if $\bigcup(\mathcal{S}) \supset X$. The elements of a cover are sometimes called **patches**.

An **open cover** has each patch open. Inconsistently, a cover \mathcal{C} is a **finite cover** if $|\mathcal{C}| < \infty$.

A TS X is **compact** IFF each X -open-cover \mathcal{C} , of X , has (some folks say, “admits”) a finite subcover. In practice, X is a subset of some TS Ω . Courtesy (24) (and (6), indirectly):

30: *X is compact IFF each Ω -open-cover of X has a finite subcover.*

31: **Diameter/compactness Prop'n.** *Suppose $\text{Diam}(X^{\text{MS}})$ is infinite. Then X is not compact.* \diamond

Pf. Since X non-void ($\text{Diam} > 0$), we can pick a point $z \in X$. Let B_n be the center- $=z$ ball of radius- n . Thus $\mathcal{C} := \{B_n\}_{n=1}^\infty$ is an open-cover of X . It has no finite subcover, since such would force $\text{Diam}(X) < \infty$. \diamond

32: **Compact-intervals theorem.** *For all reals $a \leq b$, the closed interval $J := [a, b]$ is compact.* \diamond

Pf. WELOG, $J = [3, 7]$. Given an arbitrary cover \mathcal{C} of J by \mathbb{R} -open sets, ISTProduce a finite subcover.

So our job is to show that 7 is *good*, where an $x \in J$ is “good” IFF there exists a finite subcollection $\mathcal{F} \subset \mathcal{C}$ covering $[3, x]$. We'll first show that this number,

$$\dagger: \quad z := \sup\{x \in J \mid x \text{ is good}\},$$

exceeds 3. We'll then show that z is good, and equals 7.

Some patch $P \in \mathcal{C}$ owns 3, so $\exists \delta > 0$ with

$$P \supset [3 - \delta, 3 + \delta].$$

So singleton $\{P\}$ covers $[3, 3 + \delta]$. WLOG $3 + \delta \leq 7$; thus $z \geq 3 + \delta$. Hence $\boxed{z > 3}$.

Also, some \mathcal{C} -patch Q owns z . So $\exists \varepsilon > 0$ with

$$\ddagger: \quad Q \supset [z - \varepsilon, z + \varepsilon] \supset [z - \varepsilon, z],$$

and we can shrink ε so that $z - \varepsilon \geq 3$. (Here is where we use that z exceeds 3.) Automatically (why?), the number $z - \varepsilon$ is good; let $\mathcal{F} \subset \mathcal{C}$ be a finite family which covers $[3, z - \varepsilon]$. Then $\mathcal{F} \cup \{Q\}$ covers $[3, z]$. I.e., z is good.

Lastly, FTSOContradiction suppose $z < 7$. Then we could have taken ε so small that $z + \varepsilon \leq 7$. But $\mathcal{F} \cup \{Q\}$ covers interval $[3, z + \varepsilon]$, thus showing that $z + \varepsilon$ is good; And that rudely contradicts (\ddagger).

Metric ideas related to compactness

A MS Ω is **totally-bounded** (abbrev.: **TB**) if: For each $\varepsilon > 0$, there exists a cover of Ω by *finitely many* ε -balls.

33: TB-iff-CauchySubseq Thm. *MS X is totally-bounded IFF each seq $\vec{a} \subset X$ has a Cauchy subsequence $\vec{c} \subset \vec{a}$.*

Corollary. *A MS is complete and totally-bounded IFF it is sequentially compact.*

Proof: *TotBnded \Rightarrow Every-seq-has-a-CauchySubseq.*

For each $K = 1, 2, \dots$ we can, by hypothesis,

33a: let $B_1^K, B_2^K, \dots, B_{L_K}^K$ be a finite list of radius- $\frac{1}{K}$ balls, whose union is X .

Fixing a sequence $\vec{a} \subset X$, our goal is to produce a subsequence which is Cauchy.

Define index sets $I_1 := \mathbb{Z}_+ \supset I_2 \supset I_3 \supset \dots$, as follows. At stage K , with I_{K-1} defined, let B be the first ball in list (33a) that owns ∞ many indices from I_{K-1} . I.e.,

33b: $I_K := \{i \in I_{K-1} \mid B \ni a_i\}$ is infinite.

Automatically

33c: $\text{Diam}(\{a_i \mid i \in I_K\}) \leq \text{Diam}(B) \leq \frac{2}{K}.$

Let $N_1 := 1$ and let each N_K be the smallest element of I_K that exceeds N_{K-1} ; possible, courtesy (33b).

To see that sequence $(a_{N_K})_{K=1}^\infty$ is Cauchy, fix $\varepsilon > 0$, then a K with $\frac{2}{K} < \varepsilon$. For each pair of indices j, ℓ dominating K , note that $N_j \in I_j \subset I_K$; ditto $N_\ell \in I_K$. By (33c), then,

$$\text{Dist}(a_{N_j}, a_{N_\ell}) < \varepsilon.$$

Pf: *Every-seq-has-a-CauchySubseq \Rightarrow TB.* FTSOC, suppose X is not TB. So there exists a “bad” posreal ε st.

33d: *there is no finite cover of X by ε -balls.*

Use B_p to denote the radius- ε ball centered at a point p .

In X , pick points $p_1, p_2, \dots, p_K, \dots$ st. each

$$p_K \text{ is in } \text{none of } B_{p_1}, B_{p_2}, \dots, B_{p_{K-1}}.$$

This process never gets stuck, courtesy (33d). Hence $(p_K)_{K=1}^\infty$ is an (infinite) sequence, which certainly has no Cauchy-subseq, since each two entries are at least ε apart. Contradiction.⁶

Lebesgue number

In a MS Ω , a posreal r is a **Lebesgue number** of an Ω -cover \mathcal{C} if:

For each $q \in \Omega$, there exists a patch $P \in \mathcal{C}$ for which $\text{Bal}_r(q) \subset P$.

For want of a better term, say that Ω is a “**cover-positive** space” if each open-cover has a Lebesgue number.

Note that $\Omega := \mathbb{Z}$ is cover-positive; indeed $r := 1$ is a Lebesgue number for *every* cover! That \mathbb{Z} fails to be compact does not contradict the below Compactness notions Thm because... \mathbb{Z} is *not* totally-bounded. \square

 The equivalence in t.bel Compactness notions Thm does not hold in a general TS; neither *Compactness* nor *Sequential Compactness* implies the other. The uncountable product $Y := \{0, 1\}^\mathbb{R}$ is compact, but not seq-cpt. Conversely, equipping the first uncountable ordinal, ω_1 , with the order-topology, gives a seq-cpt space that is not cpt. \square

34: Compactness notions Theorem. *In (X, d) , a metric space, TFAE equivalent:*

a: *X is sequentially-compact.*

b: *X is totally-bounded and (metrically) complete.*

b: *X is totally-bounded and cover-positive. (Leb. number.)*

c: *X is compact.*

d: *X is cluster-point compact.*

Pf (a) \Rightarrow (b'). Seq-cptness gives totally-boundedness, using (33). To get completeness, fix a Cauchy-seq \vec{a} . By seq-cptness, \vec{a} has a convergent subseq; so (4C) implies that \vec{a} converges. \spadesuit

⁶Note: In a space where this process $B_{p_1}, B_{p_2}, B_{p_3}, \dots$ never gets stuck, there is no reason for this collection of balls to cover X . Indeed, there are MSes where for each $r > 0$, no countable collection of r -balls can cover the space.

Pf(a) \Leftarrow (b'). Fix a seq \vec{a} . Hypothesis (b') and (33) show that \vec{a} has a Cauchy-subseq. And completeness forces this subseq to converge. Hence X is sequentially-compact. ♦

Pf(a) \Rightarrow (b). We get totally-boundedness from (33).

FTSOC, suppose there exists an open-cover \mathcal{C} with no Lebesgue number. So, fixing posreals $\varepsilon_n \searrow 0$, there is a point $y_n \in X$ st. ball $\text{Bal}_{\varepsilon_n}(y_n)$ lies in no \mathcal{C} -patch.

By seq-cptness, \vec{y} has a convergent subseq. Pick one such, rename it \vec{y} and let $q := \lim(\vec{y})$. Since \mathcal{C} covers X , there exists a patch $P \in \mathcal{C}$ with $P \ni q$.

Since P is open, there exists $\delta > 0$ st. $\text{Bal}_{2\delta}(q) \subset P$. Pick N big enough that $\varepsilon_N < \delta$ and $\text{Dist}(y_N, q) < \delta$. Now

$$\text{Bal}_{\varepsilon_N}(y_N) \subset \text{Bal}_{2\delta}(q) \subset P.$$

Alas, this contradicts the “FTSOC” paragraph. ♦

Pf(b) \Rightarrow (c). Given an open-cover \mathcal{C} , take a Lebesgue number $r > 0$. Since X is TB, there is a *finite* collection \mathcal{F} of radius- r balls that cover X . But r is a Leb-number for \mathcal{C} , so for each ball $B \in \mathcal{F}$ there is a patch $P \in \mathcal{C}$ that includes B . Pick one such and call it \tilde{B} .

Hence $\tilde{\mathcal{C}} := \{\tilde{B} \mid B \in \mathcal{F}\}$ is a finite family of \mathcal{C} -patches. But does it cover X ? Yes, since $\bigcup(\tilde{\mathcal{C}}) \supset \bigcup(\mathcal{F}) = X$. ♦

Pf(c) \Rightarrow (d). (This implication holds in *all* Topological Spaces.)

Fix a subset $S \subset X$ with no cluster-pts. To show S finite, note that each point $z \in S$ must have an open nbhd $V_z \ni z$ having finite intersection with S .

Family $\{V_z \mid z \in S\}$ is an open cover of S . So there exists a *finite* set $F \leq S$ st. $\{V_z\}_{z \in F}$ covers S . Thus

$$S = S \cap X = S \cap \left[\bigcup_{z \in F} V_z \right] = \bigcup_{z \in F} [S \cap V_z].$$

Being a finite union of finite sets, then, S must be finite. ♦

Pf(d) \Rightarrow (a). Follows from (29). ♦

For us, **Euclidean space** $\mathbb{R}^D = \mathbb{R} \times \dots \times \mathbb{R}$, is finite dimensional and equipped with $\|\cdot\|_2$, the **Euclidean norm**.

35: Product-space Convergence Lemma. In $\Omega := \mathbb{R}^D$, write the n^{th} term in sequence \vec{x} as

$$x_n = (b_n^1, b_n^2, b_n^3, \dots, b_n^D), \quad \text{with each } b_n^k \in \mathbb{R}.$$

Then \vec{x} converges in Ω IFF for each $k = 1, \dots, D$, the seq $n \mapsto b_n^k$ converges in \mathbb{R} . With $\beta^k := \lim_{n \rightarrow \infty} b_n^k$, moreover, $\lim(\vec{x})$ equals $(\beta^1, \dots, \beta^D) \in \Omega$. **Proof.** Exercise. ♦

36: Heine-Borel theorem. In Euclidean space $\Omega := \mathbb{R}^D$, a subset K is compact IFF K is Ω -closed and bounded. ♦

Pf. WELOG, $\Omega = \mathbb{R} \times \mathbb{R}$. Let's show that a closed rectangle

$$S := I \times J, \quad \text{where } I := [a, b] \subset \mathbb{R} \quad \text{and } J := [c, d] \subset \mathbb{R},$$

is sequentially-compact. Consider a seq $\vec{x} \subset S$, with

$$x_n = (\alpha_n, \beta_n) \in I \times J.$$

Courtesy (32), Compact-intervals thm, and (34), our I is seq-cpt. So we can drop to a subseq (and rename) so that, now, $n \mapsto \alpha_n$ converges. Use cptness of J to subsequence again. The new \vec{x} converges, using (35), and this \vec{x} is a subseq of the original.

A closed subset, K , of a compact space is necessarily [Exer.] cpt. Now consider an Ω -closed and bounded set K . Being bnded, there exist closed intervals I and J so that $I \times J \supset K$. Since K is Ω -closed, this K is automatically $I \times J$ -closed; hence K is compact.

The converse. Fix an Ω -compact set K ; necessarily bounded, by (31). Were K not Ω -closed, there there'd be a sequence $\vec{x} \subset K$ which converges to a point $q \in \Omega \setminus K$. So no subseq could K -converge. ♦

Precompactness. In a topological space Ω , a subset $X \subset \Omega$ is **Ω -precompact** if $\text{Cl}_\Omega(X)$ is compact.⁷

The Heine-Borel thm is tantamount to saying that the precompact subsets of Euclidean space are precisely the *bounded* subsets.

Trying to characterize the precompact subsets of a *general* MS (Ω, d) , leads naturally to the following nice problem.

Exer 1. In MS (Ω, d) , suppose a subset $X \subset \Omega$ is totally-bounded. Must its closure $Y := \text{Cl}_\Omega(X)$ automatically be totally-bounded too? □

(YES, as shown by Andy, Michael R., Lindsay, Taylor, and ...)

⁷Recall that *compactness* is an absolute notion. However, *precompactness* depends on the closure operator, and is a relative notion. As an example, the interval $(0, 1)$ is \mathbb{R} -precompact, but is *not* Ω -precompact for $\Omega := [0, 1]$.

Proof. (All balls here are Ω -balls.) Fix $\varepsilon > 0$. The TBness of X hands us a finite set $F \subset X$ such that

†: *The ε -balls $\{\text{Bal}_\varepsilon(c)\}_{c \in F}$ cover X .*

ISTProve that the $[2\varepsilon]$ -balls with centers in $F \subset X \stackrel{\text{note}}{\subset} Y$ indeed cover Y . To this end, fix a point $P \in Y$. Being in the Ω -closure of X , there exists an $x \in X$ with $d(x, P) < \varepsilon$. By (†), there exists a point $c \in F$ with $d(c, x) < \varepsilon$. So

$$d(c, P) \leq d(c, x) + d(x, P) < \varepsilon + \varepsilon,$$

and the cavalry (i.e., Δ nequality) rides up and saves the day.♦

Bufferable pairs of sets. (The following terminology is *provisional*, and may get changed. But the Mathematics will remain...)

In a TS Ω , a disjoint pair of sets E_1 and E_2 is **bufferable** if there exists disjoint open sets $U_j \supset E_j$. Usually just say that “ E_1, E_2 is a *bufferable* pair”.

Suppose that *foo* and *fum* are two properties that a subset of Ω might or might-not have. We'll say that Ω is “*foo:fum-buffered*” if for each disjoint pair of sets, a *foo* E_1 and a *fum* E_2 , the pair (E_1, E_2) is bufferable. Examples are: Ω might be compact:compact-buffered or compact:closed-buffered.

We'll call Ω point:compact-buffered if each point p (technically, each *singleton* $E_1 := \{p\}$) can be buffered from each compact set E_2 that does not own p . In this language, “ Ω is Hausdorff” means that Ω is point:point-buffered.

As an abbreviation, let “*fum-buffered*” mean *fum:fum-buffered*. □

37: Compactness lemma. Consider a TS Ω .

- a: *If Ω is compact, then each Ω -closed subset is compact.*
- b: *Suppose Ω Hausdorff. Then Ω is point:compact-buffered, and each compact subset $Y \subset \Omega$ is Ω -closed. Further, Ω is compact-buffered.*
- c: *Suppose Ω is metrizable. If d is a metric consistent with the topology, then (Ω, d) is complete.* ◇

Proof of (a). (Let “open” mean “ Ω -open”.) Take an Ω -closed $Y \subset \Omega$ and Ω -open cover, \mathcal{C} , of Y . Thus $\{\Omega \setminus Y\} \cup \mathcal{C}$ is an Ω -open cover of Ω . So it has a finite subcover (of Ω), which we can write as $\{\Omega \setminus Y\} \cup \mathcal{F}$, where $\mathcal{F} \subset \mathcal{C}$ is finite. And therefore \mathcal{F} covers Y . ♦

Proof of (b). Fix a point $p \in \Omega \setminus Y$. For each point $z \in Y$, Hausdorffness gives disjoint open sets

$$U_z \ni p \quad \text{and} \quad V_z \ni z.$$

Compactness of Y asserts a *finite* set $Z \subset Y$ such that $\{V_z\}_{z \in Z}$ covers Y . It follows that these disjoint sets,

$$\widehat{U} := \bigcap_{z \in Z} U_z \quad \text{and} \quad \widehat{V} := \bigcup_{z \in Z} V_z,$$

are open. Since $\widehat{U} \ni p$ and $\widehat{V} \supset Y$, we have buffered the p, Y pair.

Renaming \widehat{U} to U_p , we have that

$$\bigcup_{p \in \Omega \setminus Y} U_p \stackrel{\text{note}}{=} \Omega \setminus Y$$

is Ω -open. Thus Y is Ω -closed.

Lastly, fix disjoint compact sets $C, Y \subset \Omega$. For each point $p \in \Omega \setminus Y$, there exist open sets $U_p \ni p$ and $V_p \supset Y$, with $U_p \cap V_p = \emptyset$. Since $\{U_p\}_{p \in C}$ is an open-cover of C , there exists a finite set $F \subset C$ so that $\{U_p\}_{p \in F}$ already covers C . Automatically, these open sets,

$$\widehat{U} := \bigcup_{p \in F} U_p \quad \text{and} \quad \widehat{V} := \bigcap_{p \in F} V_p,$$

are disjoint from each other. Finally, $\widehat{U} \supset C$ and $\widehat{V} \supset Y$. ♦

Pf of (c). Fix a Cauchy sequence \vec{x} . Sequential-compactness says there exists a convergent subseq $\vec{y} \subset \vec{x}$. So (4C) of the MS-sequence Thm tells us that \vec{x} converges. ♦

Continuity

A map $f:(X, d) \rightarrow (\Omega, \mu)$ is “continuous at $q \in X$ ” if:

- $\forall \varepsilon > 0, \exists \delta = \delta(q, \varepsilon) > 0$ such that:
38: $\forall x \in X, \text{ if } d(x, q) < \delta \text{ then } \mu(f(x), f(q)) < \varepsilon.$
I.e, setting $\omega := f(q)$: $\text{Bal}_\delta(q) \subset f^{-1}(\text{Bal}_\varepsilon(\omega))$.

And “ f is **continuous**” if it is cts at each point q of its domain. Notice that the $\delta = \delta(\varepsilon, q)$ depends on both ε and q . In contrast, f is **uniformly continuous** if we can quantify q after δ :

- 39: $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0$ st. for each $q \in X$:
 $\text{Bal}_\delta(q) \subset f^{-1}(\text{Bal}_\varepsilon(f(q)))$.

Equivalently: $\forall \varepsilon > 0, \exists \delta > 0$ st. $\forall x, q \in X, \text{ if } d(x, q) < \delta \text{ then } \mu(f(x), f(q)) < \varepsilon$. **Exer:** Prove this equivalence!

Metricless continuity. Our defn (39) of uniform continuity seems to really *use* a metric. But just “continuity at a point”, (38), can be stated purely in terms of open sets:

- 38': For each Ω -open $\Lambda \ni f(q)$, its inverse-image $f^{-1}(\Lambda)$ is a neighborhood⁸ of q .

(Again equivalently: *Each Ω -nbhd Λ of $f(q)$ has its inverse-image being a nbhd of q .*) Indeed, for a map $f: X \rightarrow \Omega$ between *general TSESes*, we take (38') as our *definition* of

“ f is **continuous** at q ”.

We use $\text{Cty}(f)$ for the **continuity set** of f ; those $q \in X$ at which f is continuous. Use

$$\text{DisCty}(f) := X \setminus \text{Cty}(f)$$

for f 's . **discontinuity set** See examples (45) and (47). \square

In the case where f is continuous *everywhere* we can, in (38'), simplify “neighborhood” to “open set”.

40: Baby continuity Lemma. A map $f: X \rightarrow \Omega$ between topological spaces is continuous IFF $f^{-1}(\Lambda)$ is X -open, for each Ω -open set Λ . **Proof.** Exercise. \diamond

41: Uniform-continuity Theorem. Consider a continuous map $f: (X, d) \rightarrow (\Omega, \mu)$ between MSESes. If X is compact, then f is uniformly continuous. \diamond

⁸Even with f continuous at q , discontinuities at *other* points can ruin $f^{-1}(\Lambda)$ being open; whence the weaker requirement that $f^{-1}(\Lambda)$ have q in its interior.

Proof. FTSOC, suppose we have an $\varepsilon > 0$ for which no δ is small enough. I.e, there are seqs $\vec{a}, \vec{b} \subset X$ such that

$$\dagger: \lim_{n \rightarrow \infty} d(a_n, b_n) = 0. \text{ And } \forall n: \mu(f(a_n), f(b_n)) \geq \varepsilon.$$

Since X is seq-cpt, are indices $N_1 < N_2 < \dots$ so that $\alpha := \lim_{j \rightarrow \infty} a_{N_j}$ exists in X . Rename \vec{a} to this $(a_{N_j})_1^\infty$, by re-indexing \vec{a} and \vec{b} . Now $\lim(\vec{a}) = \alpha$, and (\dagger) still holds.

Use seq-cptness again to drop to a convergent subseq of \vec{b} ; then re-index. So now, $\beta := \lim(\vec{b})$ exists.

Continuity of f at α and β , and (\dagger), implies (**Exer:** do this!) that

$$\ddagger: \mu(f(\alpha), f(\beta)) \geq \varepsilon \stackrel{\text{recall}}{>} 0.$$

OTOH, the Δ inequality and (\dagger) imply (**Exer:** show this!) that $d(\alpha, \beta) = 0$. Hence $\alpha = \beta$. But this contradicts (\ddagger). \spadesuit

2nd proof. Fix $\varepsilon > 0$. Let \mathcal{D} be the set of ε -balls in Ω . So

$$\mathcal{C} := \{f^{-1}(\Lambda) \mid \Lambda \in \mathcal{D}\}$$

is an open-cover of X , courtesy (40). By the Compactness notions theorem, \mathcal{C} has a Lebesgue number $r > 0$.

Consider two points $x, y \in X$ less than r apart. Since $x, y \in \text{Bal}_r(x)$, there exists a \mathcal{C} -patch $P = f^{-1}(\Lambda)$ owning both. Hence $f(x)$ and $f(y)$ lie in a common Ω - ε -ball, Λ . \clubsuit

Defn. Examine map $f: (X, d) \rightarrow (\Omega, \mu)$ between MSESes. The posreal 7 is a **Lipschitz bound** for f if:

$$\forall x, y \in X: \text{Distance } \mu(f(x), f(y)) \leq 7 \cdot d(x, y).$$

A fnc f is **Lipschitz continuous** IFF $\exists \mathcal{U} \in [0, \infty)$ so that:

$$42: \forall x, y \in X: \text{Distance } \mu(f(x), f(y)) \leq \mathcal{U} \cdot d(x, y)$$

Such a \mathcal{U} is called “a Lipschitz bound for f ”. The infimum of such is “the Lipschitz constant of f ”, and is written $\boxed{\text{Lip}(f)}$. Easily,

Lipschitz continuity \implies uniform continuity.

The converse does not hold: The function $\mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto x^{1/3}$ is uniformly –but not Lipschitz– continuous. This also is an example of an invertible uniformly-cts function whose fnc-inverse is *not* uniformly continuous. \clubsuit

43: **Lip-Diff Lemma.** On an interval J , suppose $f:J \rightarrow \mathbb{R}$ is differentiable. Then f is Lipschitz continuous IFF

$$\mathcal{U} := \sup_{x \in J} |f'(x)|$$

is finite; and then \mathcal{U} is $\text{Lip}(f)$, the Lipschitz constant of f . \diamond

Proof of (\Leftarrow). Fix $x \leq y$ in J . The Mean-Value Theorem asserts a point $c \in [x, y]$ such that

$$f(x) - f(y) = f'(c) \cdot [x - y].$$

Consequently, $|f(x) - f(y)| \leq \mathcal{U} \cdot |x - y|$. \diamond

Proof of (\Rightarrow). Exercise. \diamond

Definition. A map $h:(X, d) \rightarrow (\Omega, \mu)$ is **biLipschitz** if h is invertible, and both h^{-1} and h are Lipschitz maps.

Two metrics m and d , on the same space X , are **Lipschitz equivalent** (Lip-equiv) if the identity map

$$x \mapsto x \text{ from } (X, d) \rightarrow (X, \mu)$$

is biLipschitz. We write $m \stackrel{\text{Lip}}{\asymp} d$. \square

44: **Lemma.** If $m \stackrel{\text{Lip}}{\asymp} d$ then $m \stackrel{\text{Cau}}{\asymp} d$. **Proof.** Exercise. \diamond

45: **Indicator functions.** Fix a set Ω . Each subset $S \subset \Omega$ yields a fnc $\mathbf{1}_S: \Omega \rightarrow \{0, 1\}$, the **indicator function**

$$\mathbf{1}_S(x) := \begin{cases} 1 & \text{when } x \in S \\ 0 & \text{when } x \in \Omega \setminus S \end{cases}.$$

Since the notation doesn't show the space (i.e, we don't write $\mathbf{1}_{S, \Omega}$), we sometimes write " $\mathbf{1}_S: \Omega \rightarrow \mathbb{R}$ " to emphasize the domain. For example: What is the discontinuity-set of fnc $\mathbf{1}_{\mathbb{Q}}: \mathbb{R} \rightarrow \mathbb{R}$? Answer: All of \mathbb{R} . But the discontinuity-set of $\mathbf{1}_{\mathbb{Q}}: \mathbb{Q} \rightarrow \mathbb{R}$ is empty; this fnc is constant-1, hence cts.

As another example, let J be the set of positive rationals whose square lies between 4 and 7. Let g mean $\mathbf{1}_J: \mathbb{Q} \rightarrow \mathbb{R}$, and f mean $\mathbf{1}_J: \mathbb{R} \rightarrow \mathbb{R}$. Use h for $\mathbf{1}_{[2, \sqrt{7}]}: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$\text{DisCty}(g) = \{2\} \subset \mathbb{Q}, \text{ and}$$

$$\text{DisCty}(f) = [2, \sqrt{7}] \subset \mathbb{R}.$$

But $\text{DisCty}(h) = \{2\} \cup \{\sqrt{7}\}$, just a doubleton.

46: **Prop'n.** For a subset $E \subset \Omega$ of a topological space, $\text{DisCty}(\mathbf{1}_E) = \partial_\Omega(E)$. **Proof.** Exercise. \diamond

Ruler function. We are born grokking the **dyadic rationals**,

$$\mathbb{D} := \left\{ \frac{n}{2^e} \mid n \in \mathbb{Z} \text{ and } e \in \mathbb{N} \right\}.$$

Say that a fraction " n/d " is in **standard form** (LCTerms?) if $n \in \mathbb{Z}$ and $d \in \mathbb{Z}_+$, with $n \perp d$. (Std.form is unique. As a fraction, the std. form of 0 is 0/1.)

From a subset $S \subset \mathbb{Q}$, define the " S -ruler function" $\mathcal{R}_S: \mathbb{R} \rightarrow \mathbb{R}$ by

$$47: \quad \begin{aligned} \mathcal{R}_S\left(\frac{n}{d}\right) &:= \frac{1}{d}, & \text{for } \frac{n}{d} \in S \text{ in std.form;} \\ \mathcal{R}_S(x) &:= 0, & \text{for } x \in \mathbb{R} \setminus S. \end{aligned}$$

In the special case where $S := \mathbb{D}$, we call this just the **ruler function** $\mathcal{R} := \mathcal{R}_{\mathbb{D}}$. \square

Exer. 47.1: Ruler function \mathcal{R}_S is idempotent IFF the subset $S \subset \mathbb{Q}$ satisfies ... What?

The ruler fnc is interesting in that both its cty and its discty sets are dense in \mathbb{R} , as the next Observation shows.

48: **Obs.** For $S \subset \mathbb{Q}$ arbitrary, $\text{DisCty}(\mathcal{R}_S) = S$. \diamond

Proof of $\text{DisCty}(\mathcal{R}_S) \supset S$. Exercise. \diamond

Proof of $\text{DisCty}(\mathcal{R}_S) \subset S$. FTSOC, suppose a $\lambda \in \mathbb{R} \setminus S$ is a discty-point of \mathcal{R}_S . Then there exists a posint D and sequence $r_n \rightarrow \lambda$ with each $\mathcal{R}_S(r_n) \geq \frac{1}{D}$. So each r_n is in the set Q_D from (49), below. But (49) implies that Q_D has no cluster-points. Thus \vec{r} is eventually-constant, WLOG constant. So each r_n equals λ . Since $\mathcal{R}_S(\lambda) = 0$, this is an outrageous contradiction. \diamond

49: **Lem HW1.** For N a posint, let Q_N be the set of ratios $\frac{k}{\ell}$ with $k \in \mathbb{Z}$ and $\ell \in [1..N]$. Produce a posint P_N so that: For all distinct $x, y \in Q_N$, nec. $|x - y| \geq 1/P_N$. \diamond

Proof. Note that Q_1 is \mathbb{Z} , so $P_1 = 1$. It turns out that the value $P_N := N!$ works, but we can get a better formula when $\boxed{N \geq 2}$, which we henceforth consider.

Firstly, $\frac{1}{N-1} - \frac{1}{N} = \frac{1}{[N-1]N}$. So $P_N \geq [N-1]N$. Let's establish the reverse inequality, thus proving

$$49.1: \quad P_N = [N-1]N, \quad \text{for each } N \in [2.. \infty).$$

Write $x = \frac{\alpha}{k}$ and $y = \frac{\beta}{\ell}$ as ratios of integers, with k and ℓ in $[1..N]$. Setting $\mathbf{L} := \text{LCM}(k, \ell)$, observe that

$$x - y = \frac{m}{\mathbf{L}}, \quad \text{for some integer } m. \text{ This}$$

$m \neq 0$, since $x \neq y$.

Hence $|x - y| \geq \frac{1}{\mathbf{L}}$, so P_N is less-equal the max-value that \mathbf{L} can assume. Thus

$$49.2: \quad P_N \leq \text{Max} \{ \text{LCM}(k, \ell) \mid k, \ell \in [1..N] \}.$$

If $k = \ell$, then $\text{LCM}(k, \ell) \leq N$. Thus $\text{LCM}(k, \ell) \leq [N-1]N$, since $N-1 \geq 1$. Conversely, if $k < \ell$, then $\text{LCM}(k, \ell) \leq k \cdot \ell \leq [N-1]N$. In either case, we get the “reverse inequality”, courtesy (49.2). Hence (49.1). \spadesuit

50: Lem HW2. Consider $\lambda \in \mathbb{R}$ and integers $b_n > 0$ and a_n (not-nec coprime) such that $r_n \rightarrow \lambda$, where $r_n := \frac{a_n}{b_n}$, yet each $r_n \neq \lambda$. Then $b_n \rightarrow \infty$, as $n \nearrow \infty$. \diamond

Piecewise-linear functions. Consider a closed interval $J := [a, b] \subset \mathbb{R}$ and a tuple $\vec{\mathbf{p}}$ of **cutpoints** of J ,

$$a = p_0 < p_1 < p_2 \dots < p_{N-1} < p_N = b.$$

Call the subinterval $B_k := [p_{k-1}, p_k]$ the “ k^{th} block of $\vec{\mathbf{p}}$ ”. A function $g: J \rightarrow \mathbb{R}$ is “**piecewise linear** on J ”

i: if g is continuous and

ii: each restriction $g|_{B_k}$ has a straight-line graph.

Using the heights $h_k := g(p_k)$, here is the formula for $g(x)$ when $x \in B_4$:

$$g(x) := \left[\frac{x-p_4}{p_3-p_4} \cdot h_3 \right] + \left[\frac{x-p_3}{p_4-p_3} \cdot h_4 \right].$$

Turning this around, a cutpoint-tuple $\vec{\mathbf{p}}$ and a “height-tuple” $\vec{\mathbf{h}} = (h_0, h_1, \dots, h_N)$ of reals, engenders a **PL** (piecewise linear) fnc. For $x \in B_k$,

$$51: \quad \text{PL}_{\vec{\mathbf{p}}, \vec{\mathbf{h}}}(x) := \left[\frac{x-p_k}{p_{k-1}-p_k} \cdot h_{k-1} \right] + \left[\frac{x-p_{k-1}}{p_k-p_{k-1}} \cdot h_k \right].$$

More generally, we can have $\text{PL}_{\vec{\mathbf{p}}, \vec{\mathbf{h}}}$ map interval J into a real **vectorspace** \mathbf{W} . Each h_k is a vector in \mathbf{W} , and each ratio, e.g. $\frac{x-p_3}{p_4-p_3}$, is a scalar in \mathbb{R} . \diamond

Continuity and VSes. Given TSes X and Ω , let $\mathbf{C}(X \rightarrow \Omega)$ be the set of *continuous* functions $X \rightarrow \Omega$.

Usually Ω is a MS; suppose μ is its metric. We can define an extended-metric μ_{\sup} on $\mathbf{C}(X \rightarrow \Omega)$ by:

$$52: \quad \mu_{\sup}(f, g) := \sup_{x \in X} \mu(f(x), g(x)).$$

An $f \in \mathbf{C}(X \rightarrow \Omega)$ is **bounded** if $\text{Diam}(\text{Range}(f)) < \infty$. Use $\mathbf{C}_{\text{Bnd}}(X \rightarrow \Omega)$ for these; note that on this set, μ_{\sup} is an actual metric.

When Ω is a real-VS \mathbf{W} , the set $\boxed{\mathbf{V} := \mathbf{C}(X \rightarrow \mathbf{W})}$ becomes a \mathbb{R} -VS under **pointwise operations**

$$[f+g](x) := f(x) + g(x), \text{ and } [5f](x) := 5f(x).$$

Putting a norm $\|\cdot\|$ on \mathbf{W} engenders the supremum-norm

$$\|f\|_{\sup} := \sup_{x \in X} \|f(x)\|, \quad \text{on } \mathbf{V},$$

which is necessarily finite when X is compact, thus making $(\mathbf{V}, \|\cdot\|_{\sup})$ a normed-VS. (When X non-compact, we can use $\mathbf{C}_{\text{Bnd}}(X \rightarrow \mathbf{W})$ as a normed-VS.) \square

53: P.L-approximation thm. Fix $J := [a, b] \subset \mathbb{R}$, normed-VS $(\mathbf{W}, \|\cdot\|)$, and continuous $f: J \rightarrow \mathbf{W}$. Then, given $\varepsilon > 0$, there exists a PL function $g: J \rightarrow \mathbf{W}$ with $\|f - g\|_{\sup} \leq \varepsilon$. \diamond

Proof. For free, f is unif-cts since J is cpt. Pick posint N large enough that, with $\delta := \frac{b-a}{N}$: For all pairs $x, y \in J$,

$$|x - y| \leq \delta \implies \|f(x) - f(y)\| \leq \varepsilon/2.$$

Define cutpoints $p_k := a + k\delta$ and heights $h_k := f(p_k)$, for $k = 0, 1, \dots, N$. Is the $g := \text{PL}_{\vec{\mathbf{p}}, \vec{\mathbf{h}}}$ function ε -close to f ?

WELOG, fix an $x \in B_4$. Since $g|_{B_4}$ is linear,

$$\begin{aligned} \|g(p_4) - g(x)\| &\leq \|g(p_4) - g(p_3)\| \\ &= \|h_4 - h_3\| \stackrel{\text{Why?}}{\leq} \varepsilon/2. \end{aligned}$$

Now $\|x - p_4\| \leq \delta$, so $\|f(x) - f(p_4)\| \leq \varepsilon/2$. By the Δ nequality, difference $\|f(x) - g(x)\|$ is less-equal the sum

$$\begin{aligned} &\|f(x) - f(p_4)\| + \|f(p_4) - g(p_4)\| + \|g(p_4) - g(x)\| \\ &\leq \varepsilon/2 + \|h_4 - h_3\| + \varepsilon/2 = \varepsilon. \end{aligned} \quad \spadesuit$$

Defn. A fnc $h := \text{PL}_{\vec{p}, \vec{h}}$ is a **rational-P.L function** if every cutpoint and height is rational. More generally, given an (open, closed, half-open) interval $I \subset [p_0, p_N]$, its *restriction* $f := h|_I$ is also called “ \mathbb{Q} -piecewise-linear”. This allows us to define “rational-P.L” on intervals whose endpoints are not rational. \square

54: Theorem. On a bounded interval $J \subset \mathbb{R}$, have \mathcal{Q} denote the set of \mathbb{Q} -piecewise-linear functions. Then \mathcal{Q} is countable. Moreover, \mathcal{Q} is $\|\cdot\|_{\sup}$ -dense in the set of all P.L fncs on J .

When J is compact, then \mathcal{Q} is $\|\cdot\|_{\sup}$ -dense in $\mathbf{C}(J \rightarrow \mathbb{R})$. Thus $\mathbf{C}(J \rightarrow \mathbb{R})$ becomes a CSD normed-VS. \diamond

Proof. Exercise. Use the P.L-approximation thm. \diamond

Uniform Convergence

Consider a TSes X and Ω , as well as functions $g, f_n: X \rightarrow \Omega$. Let \vec{f} denote this sequence (f_1, f_2, \dots) . Say that “Sequence \vec{f} converges pointwise to g ” if

$$\forall x \in X: f_n(x) \xrightarrow{n \rightarrow \infty} g(x).$$

Now suppose (Ω, μ) is a MS, and use μ_{\sup} from (52) as a metric on fncs. If we have that

$$* : \mu_{\sup}(f_n, g) \rightarrow 0, \text{ as } n \nearrow \infty,$$

then say that “sequence \vec{f} converges uniformly to g ”.

When Ω is a normed-VS $(\Omega, \|\cdot\|)$ then we can restate $(*)$ as $\|f_n - g\|_{\sup} \rightarrow 0$.

55: Uniform-convergence theorem. With notation from above: If each f_n is continuous, and $f_n \xrightarrow{n \rightarrow \infty, \text{uniformly}} g$, then g is continuous.

Now suppose that (Ω, μ) is a complete metric-space (a CMS). Then $\Lambda := \mathbf{C}_{Bnd}(X \rightarrow \Omega)$ is complete with respect to the μ_{\sup} metric. \diamond

Proof. Let \mathbf{m} denote the metric μ_{\sup} from (52).

Fix a point $P \in X$ and an $\varepsilon > 0$. Pick N large enough that $\mathbf{m}(f_N, g) \leq \varepsilon$; WELOG, suppose $N = 7$.

Since f_7 is continuous at P , there exists an X -open set $U \ni P$ for which: If $x \in U$ then

$$\mu(f_7(x), f_7(P)) < 3\varepsilon.$$

For such an x , note that $\mu(g(x), g(P))$ is dominated by

$$\begin{aligned} \mu(g(x), f_7(x)) + \mu(f_7(x), f_7(P)) + \mu(f_7(P), g(P)) \\ \leq \varepsilon + 3\varepsilon + \varepsilon = 5\varepsilon. \end{aligned}$$

Completeness of Λ . Consider an \mathbf{m} -Cauchy sequence $\vec{f} \subset \Lambda$. Fix a $z \in X$. For each pair of indices j and k ,

$$\mu(f_j(z), f_k(z)) \leq \mathbf{m}(f_j, f_k);$$

so $n \mapsto f_n(z)$ is μ -Cauchy. Call its limit $g(z)$.

This defines a (not-nec cts) fnc $g: X \rightarrow \Omega$, which is the pointwise limit of \vec{f} . **Exer:** Show $f_n \rightarrow g$ uniformly.

To demonstrate that \vec{f} is Λ -convergent, we need to prove that the above g is in Λ , i.e., that g is continuous and bounded. The continuity follows from the uniform convergence. As for boundedness, pick N large enough that $\mathbf{m}(f_N, g) < 17$. The Δ nequality then shows (Exer: exercise) that

$$\text{Diam}(\text{Range}(g)) \leq \text{Diam}(\text{Range}(f_N)) + 34. \quad \diamond$$

56: Weird Appl. of Unif-Conv. Suppose $f_n \xrightarrow{\text{unif.}} g$, for maps $g, f_n: X^{\text{TS}} \rightarrow (\Omega^{\text{MS}}, \mu)$. Consider points $y, z_k \in X$ with $z_k \rightarrow y$. If $y \in \text{Cty}(g)$ then

$$\dagger: \lim_{\substack{n \rightarrow \infty \\ k \rightarrow \infty}} f_n(z_k) = g(y). \quad \diamond$$

Proof. Fix $\varepsilon > 0$. Choose an index N large enough that

$$\mu_{\sup}(f_n, g) \leq 2\varepsilon, \text{ for each } n \geq N.$$

Since g is continuous at y , we can take K so that

$$\mu(g(z_k), g(y)) \leq \varepsilon, \text{ for each } k \geq K.$$

For all $n \geq N$ and $k \geq K$, then,

$$\ddagger: \begin{aligned} \mu(f_n(z_k), g(y)) &\leq \mu(f_n(z_k), g(z_k)) + \mu(g(z_k), g(y)) \\ &\leq 2\varepsilon + \varepsilon = 3\varepsilon. \end{aligned} \quad \diamond$$

Exer 2. Modify the proof of Uniform-convergence thm to show: Suppose $f_n \xrightarrow{\text{unif.}} g$, for maps $g, f_n: (X, d) \rightarrow (\Omega, \mu)$. If each f_n is uniformly continuous, then so is g . \square

57: Unif-conv Composition Lemma. Consider sets Z, Y and MSes X and Ω . For maps $f_n, g: Y \rightarrow X$, suppose $f_n \xrightarrow{\text{unif.}} g$, as $n \rightarrow \infty$. Then the following hold.

i: For an arbitrary fnc $\beta: Z \rightarrow Y$: $[f_n \circ \beta] \xrightarrow{n \rightarrow \infty, \text{unif.}} [g \circ \beta]$.

ii: Suppose map $\alpha: X \rightarrow \Omega$ is uniformly continuous. Then $[\alpha \circ f_n] \xrightarrow{\text{unif.}} [\alpha \circ g]$, as $n \rightarrow \infty$. \diamond

Proof. Exercise 3. \diamond

What does nesting give? Use “ $f_n \searrow g$ ” to mean, for each x , that $n \mapsto f_n(x)$ is decreasing, and decreases to $g(x)$.

58: Nested uniform-convergence thm (Nested UC). *On a metric space X , suppose functions $g, f_n: X \rightarrow \mathbb{R}$ are continuous, and $f_n \searrow g$ pointwise. Then $f_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} g$, if either:*

i: Space X is compact, or

ii: $\forall \varepsilon > 0, \exists$ an index K such that the set

$$\{x \in X \mid [f_K - g](x) \geq \varepsilon\} \text{ is compact.} \quad \diamond$$

Preliminary reduction. Use $\|\cdot\|$ for $\|\cdot\|_{\sup}$. Replace “ f_n ” by $f_n - g$ (which is continuous, since f_n and g are) and replace “ g ” by $\mathbf{0}$, the zero-function. By hypothesis,

$$f_1 \geq f_2 \geq f_3 \geq \dots \geq \mathbf{0}, \text{ pointwise.}$$

So $n \mapsto \|f_n\|$ is decreasing (non-increasing) and thus \vec{f} converges uniformly IFF $\forall \varepsilon, \exists N$ with $\|f_N\| \leq \varepsilon$.

In particular, ISTShow that some subseq of \vec{f} converges uniformly. \square

Proof of (i). FTSOC, suppose $\inf_n \|f_n\|$ dominates, say, 7. So there are points $y_n \in X$ with

$$\dagger: \quad f_n(y_n) \geq 6.$$

Since MS X is cpt, it is seq-cpt, so we can subsequence and renumber so that

$$\ddagger: \quad z := \lim_{n \rightarrow \infty} y_n \quad \text{exists in } X.$$

But $f_n(z) \xrightarrow{n \rightarrow \infty} 0$. WLOG $f_1(z) < 5$. Since f_1 is continuous at z , there is an open set $U \ni z$ on which $f_1|_U < 5$.

But each $f_n \leq f_1$, so $f_1(y_n) \geq f_n(y_n) \geq 6$, by (\dagger) . Thus no y_n point is in U . This is a grave insult to (\ddagger) . \diamond

Pf of (ii). Fix $\varepsilon > 0$. Pick K st. $C := \{x \in X \mid f_K(x) \geq \varepsilon\}$ is compact. Part (i) tells us the restriction $f_n|_C$, as $n \rightarrow \infty$, converges uniformly to $\mathbf{0}|_C$. So we can pick an N large enough that $\|f_N|_C\| \leq \varepsilon$. We can also have taken $N \geq K$. Thus

$$\|f_N|_{[X \setminus C]}\| \leq \|f_K|_{[X \setminus C]}\| \leq \varepsilon.$$

Hence $\|f_N\| \leq \varepsilon$. \diamond

2nd proof of (i). Fix $\varepsilon > 0$. I'll produce an N with $\|f_N\| \leq \varepsilon$.

Fix a $z \in X$. Since $f_n(z) \rightarrow 0$, there exists an index L with $f_L(z) < \varepsilon$; let L_z be the smallest such. Thus

$$U_z := \{x \in X \mid f_{L_z}(x) < \varepsilon\},$$

is an open set owning z .

Since $\{U_z \mid z \in X\}$ is an open cover of X , there exists a finite set $E \subset X$ with $\{U_z \mid z \in E\}$ covering X . I claim that

$$N := \text{Max}\{L_z \mid z \in E\}$$

satisfies $\|f_N\| \leq \varepsilon$. To see this, fix an arbitrary $y \in X$. There exists a $z \in E$ with $U_z \ni y$. Thus

$$0 \leq f_N(y) \leq f_{L_z}(y) \leq \varepsilon,$$

since \vec{f} is nested and $N \geq L_z$. \diamond

CEXes to Nested UC. On $X := \mathbb{R}$, let f_n be zero on $(-\infty, n]$, growing linearly from zero to three on $[n, n+1]$, and three on $[n+1, +\infty)$. So \vec{f} decreases pointwise to $\mathbf{0}$, but each $\|f_n\| = 3$. *Ah!*, but our X is not compact.

On compact $X := [5, 6]$, let f_n be piecewise-linear with cutpoints $(5, 6 - \frac{1}{n}, 6)$ and heights $(0, 0, 3)$. Although \vec{f} decreases pointwise to $g := 3 \cdot \mathbf{1}_{\{6\}}$, this \vec{f} does not converge uniformly. *Oh!*, but g is not continuous.

Keep $X := [5, 6]$. On $[5, 6]$, define h_n to be the above P.L f_n , but define $h_n(6) := 0$. Now \vec{h} decreases pointwise to $\mathbf{0}$. *Alas!*, each h_n is not continuous. \square

Miscellaneous continuity/limit results

There are several elementary properties that we will use without proof, e.g., that a composition of cts fncs is continuous.

Composition notation. Consider fncs $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$. The std notation for their composition is $g \circ f$, where $[g \circ f](a)$ means $g(f(a))$. It is sometimes convenient to have chiral versions of the composition operator. Define

$$59: \quad [f \triangleright g](a) := g(f(a)) \quad \text{and} \quad [g \triangleleft f](a) := g(f(a)).$$

So $g \triangleleft f$ is a synonym of $g \circ f$.

When a fnc maps a space to *itself*, $X \xrightarrow{f} X$, use $f^{\circ n}$ for the composition of n copies of f , the fnc $f \circ \dots \circ f$. \square

60: Prop'n. Suppose $f: X^{\text{TS}} \rightarrow \Omega^{\text{TS}}$ is cts. Let g denote the map f but with $\text{CoDom}(g) = f(X)$. Then g is cts. ^{♦9} ◊

Proof. Fixing an $f(X)$ -open set U , there is an Ω -open set \widehat{U} st. $\widehat{U} \cap f(X) = U$. Now $f^{-1}(\widehat{U})$ is X -open, since f is cts. Thus $g^{-1}(U) = f^{-1}(\widehat{U})$ is X -open. ♦

61: Forward-inheritance Lemma. Consider a continuous map $f: X \rightarrow \Omega$ between TSes. Suppose X is compact or connected or path-connected. Then $f(X)$ has the same property. **Reduction.** WLOG, f is surjective. ◊

Pf of compactness. Let \mathcal{Y} be an open-cover of Ω . Its pull-back $\mathcal{C} := \{f^{-1}(P) \mid P \in \mathcal{Y}\}$ covers X . This is an X -open-cover, since f is cts. Compactness of X implies there exists a *finite* subset $\Phi \subset \mathcal{Y}$ for which $\{f^{-1}(P) \mid P \in \Phi\}$ covers X . Thus Φ covers Ω ; this, since f maps onto Ω . ♦

Pf of connectedness. Consider an Ω -open partition $\Omega = P \sqcup Q$ of Ω . The pull-backs $f^{-1}(P)$ and $f^{-1}(Q)$ form an X -open partition of X . Since X is connected, WLOG $f^{-1}(Q)$ is empty. Hence Q is empty, since f is surjective. ♦

Pf of path-connectedness. Fix points $\beta_0, \beta_1 \in \Omega$. Since f is onto, there exist points $b_i \in f^{-1}(\beta_i)$. And X is path-connected, so there is a cts map (a “path”) $p: [0, 1] \rightarrow X$ with $p(0) = b_0$ and $p(1) = b_1$. Hence $p \triangleright f$ is a path from β_0 to β_1 . ♦

62: General limits. In MS (X, d) , centered at $q \in X$, the **punctured ball** of radius ε is

$$\text{PBal}_\varepsilon(q) := \{x \in X \mid 0 < d(x, q) < \varepsilon\}.$$

Consider a map $f: (X, d) \rightarrow (\Omega, \mu)$, points $q \in X$ and $\omega \in \Omega$. Analogous to (38) on P.12, we define

$$62.1: \quad \lim_{x \rightarrow q} f(x) = \omega.$$

to mean:

For each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$62.2: \quad \text{PBal}_\delta(q) \subset f^{-1}(\text{Bal}_\varepsilon(\omega))$$

Extending this to general TSes X and Ω is routine. In the general case, (62.1) means the following.

For each Ω -open set $\Lambda \ni \omega$ there exists an

$$62.3: \quad X\text{-open set } U \ni q \text{ with} \quad \square$$

$$U \setminus \{q\} \subset f^{-1}(\Lambda).$$

^{♦9}This Prop'n is for convenience. It allows us to start some proofs with: “Our continuous function, WLOG, is surjective”.

Miscellaneous connectedness results

In a TS Ω , the relation of two points being in the same *connected-component* is an equivalence relation. Also, *path-connected* is an equivalence relation.

63: Connected-interval Thm. Each interval J in \mathbb{R} is connected. (The interval can be infinite, or half-open, or....) ◊

Proof. WELOG (exercise), $J = [3, 7]$, and let “open” mean J -open. Suppose we have an open-ptn $J = A \sqcup B$; so we have colored each point either Amber or Blue. WLOG, 3 is amber. To show there is no blue, we let

$$\dagger: \quad \alpha := J \text{- inf}(B) \stackrel{\text{note}}{\in} J.$$

Since 3 is in the interior of amber, there exists $\varepsilon > 0$ so that interval $[3, 3+\varepsilon]$ is amber. Thus $\alpha > 3$.

Could α be blue? If yes, then since B is open there exists a posreal $\varepsilon < \alpha - 3$ so that interval $(\alpha - \varepsilon, \alpha]$ is blue. But this contradicts (\dagger) , so α is amber.

FTSOC, suppose $\alpha < 7$. Since A is open, there would exist an $\varepsilon > 0$ with $[\alpha, \alpha + \varepsilon]$ all amber. But $[\alpha, \alpha + \varepsilon]$ is amber, so this would force $J \text{- inf}(B) \geq \alpha + \varepsilon$, annoying (\dagger) .

The upshot: $\alpha = 7$ and consequently B is empty. ♦

§A Differentiability

Differentiability of a fnc $h: \mathbb{R} \rightarrow \mathbf{E}$, where $(\mathbf{E}, \|\cdot\|)$ is a normed-VS, is our goal. The Reader is to modify the discussion accordingly when the domain is just some (punctured) interval in \mathbb{R} , or when we are taking 1-sided derivatives; or when the domain is some subset of \mathbb{C} , with \mathbf{E} a *complex* normed-VS.

Suppose that h is defined in a nbhd of a point P in $\text{Dom}(h)$. Suppose (using (62)) the following limit exists:

$$64: \quad h'(P) := \lim_{x \rightarrow P} \frac{h(x) - h(P)}{x - P} \stackrel{\text{note}}{\in} \mathbf{E}.$$

Then we say that h is **differentiable** at P , and its derivative is the vector $h'(P)$. So h' is a vector-valued fnc just like h is, but with a possibly smaller domain.

How discontinuous can a derivative be? Extending, by continuity, the function

$$h(x) := x^2 \cdot \exp(-1/x^{57}),$$

is a simple example of an everywhere-differentiable fnc whose derivative is not cts, h' is not cts at the origin.

But certain kinds of discontinuities are ruled out.

65: Deriv-cty Lemma. Suppose $h: (a, c] \rightarrow \mathbb{R}$ is continuous, with h differentiable on (a, c) , and $L := \lim_{x \nearrow c} h'(x)$ exists. Then $h()$, at c , has a lefthand derivative, which equals L . \diamond

Proof. Fixing an $\varepsilon > 0$, ISTE Establish (65'), below. Pick $b \in (a, c)$ close enough to c that, letting $J := [b, c]$, the values of $h' \downarrow J$ lie within ε of L .

For each $x \in J$, the MVT asserts a point $\dot{x} \in (x, c)$ with

$$\frac{h(c) - h(x)}{c - x} \stackrel{\text{MVT}}{=} h'(\dot{x}) \stackrel{\varepsilon}{\approx} L.$$

Consequently,

$$65': \quad \limsup_{x \nearrow c} \left| \frac{h(c) - h(x)}{c - x} - L \right| \leq \varepsilon. \quad \diamond$$

67: Appl. Fnc $h: [0, \infty) \rightarrow \mathbb{R}$ is diff'able on $J := (0, \infty)$.

i: Our h is continuous, with $h(0) = 0$. And...

ii: $\exists M \geq 0$ such that $\forall x \in J: |h'(x)| \leq M \cdot |h(x)|$.

Then h is constant-zero.

Pf. Fnc $g(x) := h(\frac{x}{M})$ fulfills (ii) for $M=1$. So WLOG

$$67: \quad \forall x \in J: |h'(x)| \leq |h(x)|.$$

And $\lim_{x \searrow 0} h(x) = h(0) = 0$, so (67) forces $h'(x) \rightarrow 0$. Thus by (65), h' is diff'able at the origin, and $h'(0) = 0$.

FTSOC, suppose $\{x \in J \mid h(x) \neq 0\}$ is non-void; let B be its infimum. By cty from the left, necessarily $h(B) = 0$. Therefore, replacing h by its translate $x \mapsto h(x - B)$, now

$$67: \quad \text{There are numbers } y > 0, \text{ as small as one pleases, with } h(y) \neq 0.$$

The Bound. I'll henceforth assume that $0 \leq h' \leq h$ on $[0, \infty)$; the hard-working Reader can put in the absolute signs so as to make a complete proof.

Since $h'(0) = 0 < 1$, there exists a number $C > 0$ so, for each $x \in [0, C]$, that $0 \leq h(x) \leq x$. So we've shown exponent 1 to be *good*... where: *A posint N is good if*

$$67: \quad \text{for each } x \in [0, C], \text{ we have } 0 \leq h(x) \leq x^N.$$

Let's show that $[N \text{ good}] \implies [[N+1] \text{ good}]$. Fix an $x \in [0, C]$. Then by the Fund. Thm of Calculus,

$$\begin{aligned} h(x) &= h(x) - h(0) \stackrel{\text{FTC}}{=} \int_0^x h'(t) dt \\ &\leq \int_0^x t^N dt \\ &= \frac{1}{N+1} \cdot [x^{N+1} - 0^{N+1}], \end{aligned}$$

which is less-equal x^{N+1} .

Each posint is good, so (67) tells us that $h(x) = 0$ whenever $0 \leq x < \text{Min}(C, 1)$. But this offends (67). \diamond

End: Potential H-problem.

Weighted averages. Consider a point L in \mathbf{E} , a normed vectorspace. Given two vectors close to L , we seek a condition implying that all appropriate weighted-averages of these vectors are also close to L . For generality, we'll allow our weights, v_j , to be complex numbers. When applying (68'), below, we will typically send $\varepsilon \searrow 0$; hence the particular constant $2[1 + \mathcal{U}]$ is usually irrelevant.

68: Weighted-average lemma. Fix a bound $\mathcal{U} \in \mathbb{R}_+$ and $L \in \mathbf{E}$. Given $\varepsilon > 0$, suppose we have vectors $R_1, R_2 \in \mathbf{E}$

with each $\|R_j - L\| \leq \varepsilon$. Suppose we have (possibly complex) weights $\nu_1 + \nu_2 = 1$. Then

$$68': \quad \|[v_1 R_1 + v_2 R_2] - L\| \leq 2[1+\mathcal{U}] \cdot \varepsilon,$$

if, for at least one value of j , we have $|\nu_j| \leq \mathcal{U}$. \diamond

Proof. WLOG $|\nu_1| \leq \mathcal{U}$. So $|\nu_2| \leq 1+\mathcal{U}$, since $\nu_1 + \nu_2 = 1$. Thus each $|\nu_j| \leq C := 1+\mathcal{U}$.

Note that $L = \nu_1 L + \nu_2 L$. Thus LhS(68') is less-equal

$$|\nu_1| \cdot \|R_1 - L\| + |\nu_2| \cdot \|R_2 - L\| \stackrel{\text{note}}{\leq} C\varepsilon + C\varepsilon. \quad \diamond$$

69: Deriv-sample lemma. Fix a normed-VSE \mathbf{E} , an upper-bound $\mathcal{U} \in \mathbb{R}_+$ and a point $P \in \mathbb{R}$. Suppose $h: \mathbb{R} \rightarrow \mathbf{E}$ is differentiable at P .

Then, given ε there exists δ so that for each pair of distinct “sample points” y and z that are δ -close to P :

$\dagger: \quad \frac{h(y)-h(z)}{y-z}$ is ε -close to $h'(P)$,

as long as $\frac{\text{Min}(|y-P|, |z-P|)}{|y-z|} \leq \mathcal{U}$. \diamond

Pf. Let $L := h'(P)$. WLOG, neither y nor z equals P . In light of (68'), let $\alpha := \frac{\varepsilon}{2[1+\mathcal{U}]}$ and take δ small enough that:

If $x \in \text{PBal}_\delta(P)$ then $\left\| \frac{h(x)-h(P)}{x-P} - L \right\| < \alpha$.

Setting $\nu_1 := \frac{y-P}{y-z}$ and $\nu_2 := \frac{P-z}{y-z}$, POFA¹⁰ informs us that

$$\ddagger: \quad \frac{h(y)-h(z)}{y-z} = \nu_1 \cdot \frac{h(y)-h(P)}{y-P} + \nu_2 \cdot \frac{h(z)-h(P)}{z-P}.$$

Since $\nu_1 + \nu_2 = 1$ and $\text{Min}(|\nu_1|, |\nu_2|) \leq \mathcal{U}$, the Weighted-average lemma applies. It insists that

$$\|\text{RhS}(\ddagger) - L\| \leq 2[1+\mathcal{U}] \cdot \alpha = \varepsilon.$$

Hence $\|\text{LhS}(\ddagger) - L\| \leq \varepsilon$, which is (\dagger). \diamond

¹⁰Plain Old-Fashioned Algebra.

vdW's no-where differentiable fnc. Let $J := [0, 1]$. We will define van der Waerden's fnc $\mathcal{W}: \mathbb{R} \rightarrow J$ and prove that it does not even have a *one-sided* derivative, anywhere.

Let $\varphi(\cdot)$ be the *distance-to-nearest-integer function*,¹¹

$$\varphi(x) := \text{Min}(x - \lfloor x \rfloor, \lceil x \rceil - x).$$

Its graph looks like $\cdots / \backslash \backslash \backslash \backslash \backslash \backslash \backslash \cdots$.

For $n \in \mathbb{N}$, let $f_n(x) := \frac{1}{2^n} \varphi(2^n x)$. Thus

$$\text{SetOfZeros}(f_n) = \frac{1}{2^n} \cdot \mathbb{Z}.$$

Each f_n is continuous, since φ is. Hence each partial sum

$$g_K := \sum_{n=0}^K f_n$$

is cts. Since $\|f_n\|_{\sup} = 1/2^{n+1}$, and seq $n \mapsto 1/2^{n+1}$ is summable, sequence $(g_k)_{k=1}^\infty$ is $\|\cdot\|_{\sup}$ -Cauchy. By the Uniform-convergence thm, then, \vec{g} converges uniformly to a continuous fnc

$$\mathcal{W} := \sum_{n=0}^\infty f_n.$$

To show its nondifferentiability, we will evaluate \mathcal{W} at *dyadic rationals*, elements of the set

$$\mathbb{D} := \left\{ \frac{\ell}{2^n} \mid \ell \in \mathbb{Z} \text{ and } n \in \mathbb{N} \right\}.$$

70: vdW-function thm. At each point $P \in \mathbb{R}$, van der Waerden's fnc \mathcal{W} has no onesided-derivative. \diamond

Proof (Due to Patrick Billingsley). FTSOC, suppose $\mathcal{W}()$ has a righthand derivative at $P \in \mathbb{R}$. Fix posint K . Take the unique integer ℓ st.

$$\ast: \quad \frac{\ell-1}{2^K} \leq P < \frac{\ell}{2^K} < \frac{\ell+1}{2^K}.$$

For each $n \geq K$, note that $f_n(y) = 0 = f_n(z)$. Thus

$$\ast\ast: \quad \frac{\mathcal{W}(z) - \mathcal{W}(y)}{z - y} = \sum_{n=0}^{K-1} \underbrace{\frac{f_n(z) - f_n(y)}{z - y}}_{s_n}.$$

But y and z are *consecutive* order- K dyadic rationals, and $n < K$, so each slope s_n , above, must be ± 1 .

¹¹There doesn't seem to be a std name for this beast. It is related to the *fractional part* fnc, $x - \lfloor x \rfloor$; and *that* name isn't great, since the “fractional part” need not be rational.

In (*), rename the y, z points to y_K, z_K . Equality (**) tells us that ratio

$$r_K := \frac{\mathcal{W}(z_K) - \mathcal{W}(y_K)}{z_K - y_K}$$

is a sum of K many instances of ± 1 . It follows that the difference $r_{K+1} - r_K$ is odd. Therefore sequence \vec{r} is not convergent.

This contradicts the Deriv-sample lemma, (69), which insists that \vec{r} converge to $\mathcal{W}'(P)$. And the lemma indeed applies, with bound $\mathcal{U} := 1$, since (*) forces $\frac{|y-P|}{|y-z|} \leq 1$. \spadesuit

Product rule. Here are several examples of bilinear maps:

Multiplication, $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. **Scalar-vector-mult**, $\mathbb{R} \times \mathbf{V} \rightarrow \mathbf{V}$.

Inner-product, $\mathbf{V} \times \mathbf{V} \rightarrow \mathbb{R}$. **Cross-product**, $\mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$.

Matrix-multiplication, $\text{MAT}(3, 5) \times \text{MAT}(5, 2) \rightarrow \text{MAT}(3, 2)$.

71: Product-rule thm. *On normed Vses we have a bilinear map $\langle\langle \cdot \rangle\rangle: \mathbf{A} \times \mathbf{B} \rightarrow \mathbf{W}$ which is (jointly) continuous. Suppose maps $F: \mathbb{R} \rightarrow \mathbf{A}$ and $G: \mathbb{R} \rightarrow \mathbf{B}$ are differentiable at a point $p \in \mathbb{R}$. Then, for $t \in \mathbb{R}$, the map*

$$\dagger: \quad t \mapsto \langle\langle F(t), G(t) \rangle\rangle: \mathbb{R} \rightarrow \mathbf{W}$$

is differentiable at $t=p$. And its derivative, there, is

$$\ddagger: \quad \langle\langle F'(p), G(p) \rangle\rangle + \langle\langle F(p), G'(p) \rangle\rangle. \quad \diamond$$

Pf. For brevity, use p^F for $F(p)$, etc. So $\langle\langle t^F, t^G \rangle\rangle - \langle\langle p^F, p^G \rangle\rangle$ equals

$$\begin{aligned} & \langle\langle t^F, t^G \rangle\rangle - \langle\langle p^F, t^G \rangle\rangle + \langle\langle p^F, t^G \rangle\rangle - \langle\langle p^F, p^G \rangle\rangle \\ &= \langle\langle t^F - p^F, t^G \rangle\rangle + \langle\langle p^F, t^G - p^G \rangle\rangle. \end{aligned}$$

Dividing both sides by $t - p$ gives

$$\langle\langle \frac{t^F - p^F}{t - p}, t^G \rangle\rangle + \langle\langle p^F, \frac{t^G - p^G}{t - p} \rangle\rangle.$$

Sending $t \rightarrow p$ gives (\ddagger) , using cty of F, G and $\langle\langle \cdot, \cdot \rangle\rangle$. \spadesuit

Total derivative

Consider a map $f: (\mathbf{V}, \|\cdot\|) \rightarrow (\mathbf{E}, \|\cdot\|)$ between normed Vses. Near a point $p \in \mathbf{V}$ we can try to approximate f with a *linear map* $L: \mathbf{V} \rightarrow \mathbf{E}$, by examining the *error term*,

$$72: \quad \text{Err}_L(x) := [f(x + p) - f(p)] - L(x) \stackrel{\text{note}}{=} \mathbf{E}.$$

Unsurprisingly, say that f is “**differentiable** at p ” if there exists such a linear map (evidently unique) for which

$$72': \quad \frac{\text{Err}_L(x)}{\|x\|} \rightarrow \mathbf{0}_{\mathbf{E}}, \quad \text{as } x \rightarrow \mathbf{0}_{\mathbf{V}}.$$

Equivalently, in terms of the two norms,

$$72'': \quad \forall \varepsilon > 0, \exists \delta > 0 \text{ st. } \forall x \in \mathbf{V}, \quad \frac{\|\text{Err}_L(x)\|}{\|x\|} \leq \varepsilon. \quad \text{if } \|x\| \leq \delta \text{ then:}$$

73: Lemma. *(Notation from above.) There is at most one linear map with zero-going error term.* \diamond

Pf. Contemplate two such linear approximators, L and M . Fixing a (WLOG non-zero) vector $\mathbf{v} \in \mathbf{V}$, our goal is to show that the difference vector, $\mathbf{d} := L(\mathbf{v}) - M(\mathbf{v})$, equals $\mathbf{0}_{\mathbf{E}}$.

With $x := \alpha \mathbf{v}$, for a positive scalar α , linearity implies $L(x) - M(x) = \alpha \cdot \mathbf{d}$. Dividing by $\|x\| \stackrel{\text{note}}{=} \alpha \cdot \|\mathbf{v}\|$ yields

$$* \colon \quad \frac{L(\alpha \mathbf{v}) - M(\alpha \mathbf{v})}{\|\alpha \mathbf{v}\|} = \frac{\mathbf{d}}{\|\mathbf{v}\|}.$$

Note $L(x) - M(x) = \text{Err}_M(x) - \text{Err}_L(x)$. Hence (72') implies, as $\alpha \searrow 0$, that LHS(*) $\rightarrow \mathbf{0}_{\mathbf{E}}$. But RHS(*) doesn't change with α . Thus \mathbf{d} has secretly been $\mathbf{0}_{\mathbf{E}}$ all along. \spadesuit

Defn. Courtesy uniqueness, we call the linear L from (72'), “the **total derivative** of f at a point p ”. We write this L either as $\mathbf{D}_{p,f}$ or $\mathbf{D}_p[f]$ or $\mathbf{D}^f(p)$, depending on what we wish to emphasize. To evaluate this linear map at vector \mathbf{v} , we write $\mathbf{D}_{p,f}(\mathbf{v})$ or $\mathbf{D}_p[f](\mathbf{v})$ or $\mathbf{D}^f(p)(\mathbf{v})$.

Henceforth, we use $\|\cdot\|$ for the norm on all of our normed Vses.

Equality (74 \ddagger), stated further below, is written to resemble this “Calc 1” version of the Chain rule:

$$74\dagger: \quad [g \circ f]'(p) = g'(f(p)) \cdot f'(p). \quad \square$$

74: Basic derivative thm. *Consider maps $f, g: \mathbf{V} \rightarrow \mathbf{E}$ and $g: \mathbf{E} \rightarrow \mathbf{W}$ between normed vectorspaces, a scalar α and a point $p \in \mathbf{V}$. Then*

a: Differentiation is linear: $\mathbf{D}_p[f + \tilde{f}] = \mathbf{D}_p[f] + \mathbf{D}_p[\tilde{f}]$ and $\mathbf{D}_p[\alpha f] = \alpha \mathbf{D}_p[f]$.

b: Chain rule:

$$74\ddagger: \mathbf{D}^{g \circ f}(p) = \mathbf{D}^g(f(p)) \circ \mathbf{D}^f(p). \quad \diamond$$

$$\text{In alternate notation: } \mathbf{D}_p[g \circ f] = \mathbf{D}_{f(p)}[g] \circ \mathbf{D}_p[f].$$

Proof. Exer: Exercise. ◆

In finite dim' al spaces. In applications, often \mathbf{V} and \mathbf{E} have finite dimension; say K and N , respectively. Fixing ordered bases, each linear map $\mathbf{V} \rightarrow \mathbf{E}$ is represented by an $N \times K$ matrix. So formula (74 \ddagger) becomes

$$\mathbf{D}^{g \circ f}(p) = \mathbf{D}^g(f(p)) \bullet \mathbf{D}^f(p).$$

where the “ \bullet ” is denoting matrix-multiplication. □

§B Riemann Integration

We employ the word “partition” (abbrev. “ptn”) in the specialized way¹² it is used in RI.

Initially, we’ll discuss the 1-dimensional case, integrating over an interval $J := [a, b]$. A “**partition** \mathbf{P} of J ” will be determined by a tuple of cutpoints

$$a = p_0 < p_1 < p_2 \dots < p_k < \dots < p_N = b.$$

Call the closed subinterval $B_k := [p_{k-1}, p_k]$, the “ k^{th} block” of \mathbf{P} . We’ll use \mathbf{P} to also denote the *set* of \mathbf{P} -blocks, e.g. we might write $\sum_{B \in \mathbf{P}} \text{Diam}(B) < 5$.

The **mesh(size)** of \mathbf{P} is

$$\text{Mesh}(\mathbf{P}) := \text{Max} \{ \text{Diam}(B_k) \mid k \in [1..N] \}.$$

$$75\text{a:} \quad \text{Use } \# \mathbf{P} := \#\{\text{Set of } \mathbf{P}\text{-blocks}\} \stackrel{\text{note}}{=} N \quad \text{and} \\ \text{CutPts}(\mathbf{P}) := (p_0, p_1, \dots, p_N).$$

We say that ptn \mathbf{Q} **refines** \mathbf{P} , written $\mathbf{Q} \geq \mathbf{P}$, if each \mathbf{P} -block is a union of \mathbf{Q} -blocks. Equivalently, in our 1-dim case, $\text{CutPts}(\mathbf{Q}) \supset \text{CutPts}(\mathbf{P})$ [interpreted as sets, not tuples].

A pair of ptms $\{\mathbf{P}, \mathbf{Q}\}$ has a smallest common refinement

$$75\text{b:} \quad \mathbf{R} := \mathbf{P} \vee \mathbf{Q},$$

called “the **join** of \mathbf{P} and \mathbf{Q} ”, whose cutpoint set is $\text{CutPts}(\mathbf{P}) \cup \text{CutPts}(\mathbf{Q})$.

Sample points. A **pointed partition** \mathbf{P} (also called a “tagged ptn”) is a partition together with **tags** (x_1, \dots, x_N) , also called **sample points**, such that each $x_k \in B_k$. Use notation

$$75\text{c:} \quad \text{Tags}(\mathbf{P}) := (x_1, \dots, x_N).$$

Given a function $f: J \rightarrow \mathbb{R}$, our **pppn** (“pointed partition”) gives a **Riemann sum**

$$75\text{d:} \quad \text{RS}^f(\mathbf{P}) := \sum_{k=1}^N [f(x_k) \cdot \text{Size}(B_k)].$$

But wait?! Why a vague word like “size”? Well, in the 1-dim case, “size” will mean *length*, whereas for 2-dim integrals, “size” will mean *area*.

Treating the 1-dimensional integral, below, $\text{Size}(B_k)$ will mean the *unsigned*¹³ length $|p_k - p_{k-1}|$. From now

¹²In set theory, a **partition** of a set Ω is a pairwise-disjoint collection, \mathbf{P} , of Ω -subsets whose union, $\bigcup(\mathbf{P})$, is all of Ω . The elements of \mathbf{P} are called “the **atoms** of \mathbf{P} ”. Usually one assumes that the atoms of \mathbf{P} are non-empty, and that there are only finitely many atoms in a partition.

¹³Later, we will extend to integrating over an oriented interval, and then $\text{Size}(B_k)$ will mean the “signed length” $p_k - p_{k-1}$.

on, I'll use \widehat{B} to abbreviate $\text{Size}(B)$. In the 1-dim' al case, \widehat{B} equals $\text{Diam}(B)$. The general case simply needs

75e: $\forall \varepsilon > 0, \exists \delta > 0$ st. for each set B that can be the block of a ptn: If $\text{Diam}(B) < \delta$, then $\widehat{B} < \varepsilon$.

Analogous to $\text{Mesh}(\mathcal{P})$, define

$$\text{MaxSiz}(\mathcal{P}) := \text{Max} \{ \widehat{B} \mid B \in \mathcal{P} \} \quad \square$$

Standing convention: Henceforth, $J = [a, b]$ is a closed bounded positive-length interval. And $f: J \rightarrow \mathbb{R}$ is a function, not necessarily integrable.

Oscillation/Variation. The ***f*-variation** of a block B , is

75f: $\sup_{x,y \in B} [f(x) - f(y)].$ (Irrelevant whether we use brackets or absolute-values.)

Write this as $\text{Var}^f(B)$ or $\text{Var}(B)$. The quantity that we are really interested in is the ***f*-oscillation**¹⁴ of a block B :

75g: $\text{Osc}(B) = \text{Osc}^f(B) := \widehat{B} \cdot \text{Var}^f(B).$

Define the “***f*-oscillation** of a partition \mathcal{P} ” to be

75h: $\text{Osc}(\mathcal{P}) = \text{Osc}^f(\mathcal{P}) := \sum_{B \in \mathcal{P}} \text{Osc}^f(B).$

Analogously, $\text{Var}^f(\mathcal{P}) := \sum_{B \in \text{Blks}(\mathcal{P})} \text{Var}^f(B).$ □

76: **Osc lemma.** Consider partitions $\mathcal{P}, \mathcal{Q}, \mathcal{R}$:

- ① If $\text{Osc}^f(\mathcal{P}) < \infty$ then $|f|$ is bnded.
- ② For $\mathcal{P} \ll \mathcal{Q}$ ptns: $\text{Osc}^f(\mathcal{P}) \geq |\text{RS}^f(\mathcal{P}) - \text{RS}^f(\mathcal{Q})|.$
- ③ If $\mathcal{Q} \ll \mathcal{R}$ then $\text{Osc}^f(\mathcal{Q}) \geq \text{Osc}^f(\mathcal{R}).$ Exer: Exercise.
- ④ Suppose $U := \sup_{x \in J} |f(x)|$ is finite. Suppose we split one \mathcal{Q} -block C to get a partition \mathcal{R} , i.e $\# \mathcal{R} = 1 + \# \mathcal{Q}$ and $\mathcal{Q} \ll \mathcal{R}.$ Then

$$\text{Osc}^f(\mathcal{Q}) \leq \text{Osc}^f(\mathcal{R}) + 2U \cdot \text{MaxSiz}(\mathcal{Q}).$$

When 1-dim' al, $\text{Osc}^f(\mathcal{Q}) \leq \text{Osc}^f(\mathcal{R}) + 2U \cdot \text{Mesh}(\mathcal{Q}).$ ◊

¹⁴So variation is average oscillation; it is oscillation-per-length.

Pf of ①. Were f unbnded, then there is a \mathcal{P} -block B on which $f|_B$ is unbnded; so $\text{Osc}^f(B)$ is already infinite. ♦

Pf of ②. Focus on some \mathcal{P} -block B and its tag x_B , and let

$$S = S_B := \sup_{x,y \in B} |f(x) - f(y)|.$$

This B equals a union of (consecutive) \mathcal{Q} -blocks, say

$$B = C_5 \cup C_6 \cup C_7 \cup C_8 \cup C_9,$$

which overlap only at their endpoints. Adding sizes,

$$\dagger: \quad \widehat{B} = \sum_{k=5}^9 \widehat{C}_k.$$

Use y_k for the \mathcal{Q} -tag of C_k ; so $|f(x_B) - f(y_k)| \leq S$, since $B \ni x_B, y_k$. Thus

$$-S \cdot \widehat{C}_k \leq f(x_B) \widehat{C}_k - f(y_k) \widehat{C}_k \leq S \cdot \widehat{C}_k.$$

Summing over k ,

$$\ddagger: -S_B \cdot \widehat{B} \leq f(x_B) \widehat{B} - \sum_{k=5}^9 f(y_k) \widehat{C}_k \leq S_B \cdot \widehat{B}.$$

Summing this over all \mathcal{P} -blocks B yields the desired inequality that $-\text{Osc}(\mathcal{P}) \leq \text{RS}(\mathcal{P}) - \text{RS}(\mathcal{Q}) \leq \text{Osc}(\mathcal{P}).$ ♦

Pf of ④. The largest value that $\text{Osc}^f(C)$ can assume is $[U - -U] \cdot \widehat{C}$, which is upper-bnded by $2U \cdot \text{MaxSiz}(\mathcal{Q}).$ ♦

Riemann integral. We define the “proper” Riemann integral, which is only useful for bounded fncs. Later, we’ll extend to “improper” integrals.

A partition \mathcal{P} is “ δ -small” if $\text{Mesh}(\mathcal{P}) \leq \delta$. A function $f: J \rightarrow \mathbb{R}$ is **(Riemann) integrable**¹⁵, with integral $V \in \mathbb{R}$, if:

77a: $\forall \varepsilon > 0, \exists \delta > 0$ st. for each pointed-partition \mathcal{P} which is δ -small: $|\text{RS}^f(\mathcal{P}) - V| \leq \varepsilon.$

Trivially, if such a number V exists then it is unique. We may write this V as

$$\int_J f \quad \text{or} \quad \int_{[a,b]} f \quad \text{or} \quad \int_J f(t) dt.$$

We do not yet use symbol “ \int_a^b ”, since it presupposes an **orientation** of J , allowing us to distinguish \int_a^b from \int_b^a . □

77: Integrability-equivalence Lemma. *Integrability of f is equivalent to each of the following. The first is a kind of “Cauchy condition”.*

- b: For each $\varepsilon > 0$, $\exists \delta > 0$ so that for each two δ -small ptns P and Q : $|\text{RS}^f(P) - \text{RS}^f(Q)| \leq \varepsilon$.
- c: $\forall \varepsilon > 0, \exists \delta > 0$ so for each two ptns $P \leq Q$ with the P partition δ -small: $|\text{RS}^f(P) - \text{RS}^f(Q)| \leq \varepsilon$.
- d: $\forall \varepsilon, \exists \delta$ st. $\forall \delta$ -small partitions P : $\text{Osc}^f(P) \leq \varepsilon$.
- e: $\forall \varepsilon, \exists$ a partition P such that $\text{Osc}^f(P) \leq \varepsilon$.

Pf [$\exists V \in \mathbb{R}$ st. (77a)] \Leftrightarrow (b). Implication (\Rightarrow) is immediate, so we establish (\Leftarrow). To this end, take a sequence $(Q_m)_{m=1}^{\infty}$ of pointed-ptns with $\lim_m \text{Mesh}(Q_m) = 0$.

Condition (b) implies that $m \mapsto \text{RS}^f(Q_m)$ is a Cauchy sequence of reals. Hence this limit exists:

$$V := \lim_{m \rightarrow \infty} \text{RS}^f(Q_m) \in \mathbb{R}.$$

Using (b) again shows that V fulfills (77a). \spadesuit

Pf (b) \Leftrightarrow (c). Exer. 3: Prove (\Leftarrow), the non-trivial direction.

[Hint: Fix $\varepsilon > 0$. Take $\delta = \delta(\varepsilon/2)$ from (c). Given unrelated δ -small ptns P and Q , consider their join, $R := P \vee Q$. Now...]

Pf (c) \Leftrightarrow (d). Dir (\Leftarrow) follows from (76②), Osc lemma.

For (\Rightarrow), let P and Q be the same partition, but let the tags of each vary over all possibilities. The supremum of $|\text{RS}^f(P) - \text{RS}^f(Q)|$ over all tags is precisely $\text{Osc}^f(P)$. \spadesuit

Pf (d) \Leftrightarrow (e). Since *some* partition has finite oscillation, (76①) says that our f is bounded; WELOG $3 \geq |f|$.

To establish the non-trivial (\Leftarrow), fix some ptn P with

$$\text{Osc}^f(P) \leq \frac{\varepsilon}{2}.$$

With $N := \#P$, let δ be $\frac{\varepsilon}{2} / 6N$. Given a δ -small Q , the refinement $R := P \vee Q$ is obtained by splitting *fewer than* N blocks of Q . Applying (76④) at most N times yields

$$\text{Osc}(Q) \leq \text{Osc}(R) + N \cdot [2 \cdot 3 \cdot \delta] \leq \text{Osc}(R) + \frac{\varepsilon}{2}.$$

And (76③) courteously gives $\text{Osc}(R) \leq \text{Osc}(P) \leq \frac{\varepsilon}{2}$. Hence $\text{Osc}(Q) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, as requested. \spadesuit

^⑯When J is not 1-dim' al, there is an extra step. We pick δ small enough that every δ -small partition Q has $\text{MaxSiz}(Q) \leq \frac{\varepsilon}{2} / 6N$.

78: Basic RI Thm. (For improper integrals, this needs to be altered.) Consider interval $J := [a, b]$ and fnc $f: J \rightarrow \mathbb{R}$. Then

- i: If f continuous, then f is integrable.
- ii: If f monotonic, then f is integrable. (For discontinuous R-Stieltjes integrators, this is false.) \heartsuit

Proof of (i). Fix an $\varepsilon > 0$. Since f is uniformly-cts (being continuous on a compact set) there is a $\delta > 0$ such that

$$\forall x, y \in J: |x - y| \leq \delta \implies |f(x) - f(y)| \leq \varepsilon / \sqrt{J}.$$

This implies that $\text{Osc}^f(P) \leq \varepsilon$, whenever P is a δ -small partition. Hence (77d). \spadesuit

Proof of (ii). We use (77e). WLOG $J = [0, 1]$. WLOG, f is increasing (i.e. non-decr). For each subinterval $B := [x, y]$, then, $\text{Var}^f(B) = f(y) - f(x)$.

Given posint N , let partition P_N cut J into N equal-length blocks, with j^{th} -block $B_j := [\frac{j-1}{N}, \frac{j}{N}]$. So

$$\begin{aligned} \text{Osc}^f(P_N) &= \sum_{j=1}^N \frac{1}{N} \cdot \text{Var}^f(B_j) \\ &= \frac{1}{N} \cdot \sum_{j=1}^N \left[f\left(\frac{j}{N}\right) - f\left(\frac{j-1}{N}\right) \right] \\ &= \frac{1}{N} \cdot [f(1) - f(0)]. \end{aligned}$$

And this latter goes to zero, as $N \nearrow \infty$. \spadesuit

Closure properties of RI

Let $\text{RI}(J \rightarrow \mathbb{R})$ denote the set of Riemann-integrable functions $J \rightarrow \mathbb{R}$.

As an example of *non-integrability*, let h be $\mathbf{1}_{\mathbb{Q}}$, but restricted to J . For each partition P , then, $\text{Osc}^h(P) = 1 \cdot \sqrt{J}$. So h is a non-RI fnc with the peculiar property that $h \circ h$ is integrable, since $h \circ h \equiv 1$.

79: Integration-is-Linear lemma. $\mathbf{W} := \text{RI}(J \rightarrow \mathbb{R})$ is an \mathbb{R} -vectorspace. The map $[h \mapsto \int_J h]$, from $\mathbf{W} \rightarrow \mathbb{R}$, is a positive (non-negative) \mathbb{R} -linear-functional. Consequently, for integrable f and g : $[f \geq g] \implies [\int_J f \geq \int_J g]$. \heartsuit

Proof. That \mathbf{W} is a VS follows from observing that

$$\begin{aligned} \text{RS}^{5f}(Q) &= 5 \cdot \text{RS}^f(Q) \quad \text{and} \\ \text{RS}^{f+g}(Q) &= \text{RS}^f(Q) + \text{RS}^g(Q), \end{aligned}$$

for arbitrary fncs $f, g: J \rightarrow \mathbb{R}$, scalar $\lambda \in \mathbb{R}$ and ptn Q . This also shows (exercise) that $[h \mapsto \int_J h]$ is a linear functional.

When $h \in \text{RI}$ is non-negative, then $\text{RS}^h(Q) \geq 0$ for each ptn Q ; so $\int_J h \geq 0$. Now apply this to $h := f - g$. \spadesuit

Pos/Neg parts. We define the positive/negative parts of a function. The “**positive part** of f ” is

80.1: $f^+ := \text{Max}(f, 0)$, ie. $f^+(x) = \text{Max}(f(x), 0)$. And $f^- := -\text{Min}(f, 0)$ is the **negative part** of f .

Easily, each of f^+ and f^- is non-negative, and

$$80.2: \quad \begin{aligned} f^+ + f^- &= |f| \quad \text{and} \\ f^+ - f^- &= f. \end{aligned}$$

For a pair of functions, one verifies that

$$80.3: \quad \begin{aligned} \text{Max}(f, g) &= [f+g + |f-g|]/2 \quad \text{and} \\ \text{Min}(f, g) &= [f+g - |f-g|]/2. \end{aligned} \quad \square$$

80: AbsValue RI Thm. Suppose $f, g: J \rightarrow \mathbb{R}$ are integrable. Then each of $f^+, f^-, |f|, \text{Max}(f, g)$ and $\text{Min}(f, g)$ is integrable. Finally

$$80*: \quad \left| \int_J f \right| \leq \int_J |f|. \quad \diamond$$

Proof. The f^+ -oscillation of each partition P is upper-bnded by its f -oscillation; so f^+ is RI, by (77d). Ditto f^- is RI; hence so is $|f|$, their sum. Consequently, functions (80.3) are integrable.

For (80*), note $\int f = \int f^+ - \int f^-$. By the Δ inequality,

$$\begin{aligned} \left| \int f \right| &\leq \left| \int f^+ \right| + \left| \int f^- \right| \\ &= \int f^+ + \int f^- = \int |f|. \end{aligned} \quad \diamond$$

81: Product-RI Thm. If $f, g \in \text{RI}(J \rightarrow \mathbb{R})$, then $f \cdot g \in \text{RI}$. \diamond

Pf. WLOG $|f| \leq 2$ and $|g| \leq 3$. Let $h := f \cdot g$. ISTE establish

$$\text{Osc}^h(P) \stackrel{?}{\leq} 3 \cdot \text{Osc}^f(P) + 6 \cdot \text{Osc}^g(P)$$

for each partition P . Fixing P and a P -block B , our goal is

$$81a: \quad \text{Osc}^h(B) \stackrel{?}{\leq} 3 \cdot \text{Osc}^f(B) + 6 \cdot \text{Osc}^g(B)$$

Fix pts $x, y \in B$. Define numbers Φ, v, Γ, w by $\Phi := f(x)$, $\Phi + v := f(y)$, $\Gamma := g(x)$ and $\Gamma + w := g(y)$. Subtracting,

$$\begin{aligned} h(y) - h(x) &= [\Phi + v][\Gamma + w] - \Phi\Gamma \\ &= v\Gamma + \Phi w + vw \\ &\leq |v| \cdot 3 + 2|w| + [2 - -2] \cdot |w| \\ &= 3|v| + 6|w| \\ &\leq 3 \cdot \text{Var}^f(B) + 6 \cdot \text{Var}^g(B). \end{aligned}$$

Multiply by \widehat{B} , then take $\sup_{x, y \in B}$ to obtain (81a). \spadesuit

Exer. 7: Prove: Suppose $f \in \text{RI}(J \rightarrow \mathbb{R})$ and $L > 0$, where $L := [\inf_{x \in J} |f(x)|]$. Prove that $1/f$ is integrable.

Exer. 4: Dis/Prove: Suppose $f, g: [0, 1] \rightarrow [0, 1]$ are (Riemann) integrable fncs. Then $h := g \circ f$ is integrable.

False. Let f be the ruler-func \mathcal{R}_Q . So $f(\frac{p}{q}) := \frac{1}{q}$, when $p \perp q$ are integers with $q > 0$. And f (irrational) is 0.

Let $g := \mathbf{1}_{(0,1]}$. Then $g \circ f$ is the indicator-fnc of the rationals; this is not Riemann-integrable.

In contrast, the reverse composition $f \circ g$ is RI, indeed continuous. Indeed, $f \circ g$ is the constant-1 function. \spadesuit

Exer. 5: (Does t.fol hold for R-Stieltjes integration?)

Dis/Prove: On compact sets $K, J \subset \mathbb{R}$, with J an interval, we have an integrable $f: J \rightarrow K$ function and continuous $g: K \rightarrow \mathbb{R}$. Then $h := g \circ f$ is integrable.

True. WLOG $|g| \leq 3$. WLOG $\widehat{J} \leq 2$. I'll use “partition” to mean a partition of J .

Fix $\eta > 0$. I will produce $\delta > 0$ st. for each δ -small ptn P :

$$\text{‡a:} \quad \text{Osc}^{g \circ f}(P) \stackrel{?}{\leq} 8\eta.$$

Bad blocks. The uniform-continuity of g produces an $\varepsilon \leq \eta$ such that

$$\text{‡b:} \quad \forall a, b \in K: |a - b| \leq \varepsilon \implies |g(a) - g(b)| \leq \eta.$$

Since $f \in \text{RI}$, we can take δ so small that each δ -small partition P has

$$\text{‡c:} \quad \text{Osc}^f(P) \leq \varepsilon^2.$$

Define the set of “good” blocks

$$\text{‡d:} \quad \mathcal{G} := \{B \in \text{Blks}(P) \mid \text{Var}^f(B) < \varepsilon\}.$$

Define the “bad” blocks $\mathcal{B} := \text{Blks}(\mathcal{P}) \setminus \mathcal{G}$. From (‡c) and (‡d),

$$\begin{aligned}\varepsilon^2 &\geq \sum_{B \in \mathcal{B}} \text{Osc}^f(B) \\ &\geq \sum_{B \in \mathcal{B}} \varepsilon \cdot \widehat{B} = \varepsilon \cdot \widehat{\mathcal{B}}.\end{aligned}$$

Dividing by ε yields $\boxed{\varepsilon \geq \widehat{\mathcal{B}}}$. For each block B ,

$$\text{Osc}^{g \circ f}(B) \leq [3 - -3] \cdot \widehat{B} = 6 \cdot \widehat{B},$$

by our bound on $|g|$. Summing over the bad blocks,

$$\text{‡e: } \text{Osc}^{g \circ f}(\mathcal{B}) \leq 6 \cdot \widehat{\mathcal{B}} \leq 6\varepsilon \leq 6\eta.$$

Good blocks. Fix $B \in \mathcal{G}$ and $x, y \in B$. By (‡d), then (‡b), the oscillation $\text{Osc}^{g \circ f}(B) \leq \eta \cdot \widehat{B}$. Summing over good blocks,

$$\text{Osc}^{g \circ f}(\mathcal{G}) \leq \eta \cdot \widehat{\mathcal{G}} \leq \eta \cdot \widehat{J} = 2\eta.$$

Adding this to the (‡e) inequality, yields (‡a). \spadesuit

Exer. 6: Dis/Prove: *On compact intervals $K, J \subset \mathbb{R}$, we have a continuous $f: J \rightarrow K$ and an integrable $g: K \rightarrow \mathbb{R}$. Then $h := g \circ f$ is integrable.*

82: Closure-RI Thm. *Fix an integrable $f: J \rightarrow \mathbb{R}$. Then for each closed subinterval $I \subset J$, the restriction $f|_I$ is integrable.*

Conversely, consider a fnc $g: J \rightarrow \mathbb{R}$ and a point $y \in J$. If g is integrable on $[a, y]$ and on $[y, b]$, then g is integrable. \diamond

Proof. Fix $\varepsilon > 0$ and take δ from (77d) applied to f on J . Given a δ -small ptn \mathcal{P} of I , extend this \mathcal{P} to create a δ -small ptn \mathcal{P}' of J . Thus $\text{Osc}^f(\mathcal{P}) \leq \text{Osc}^f(\mathcal{P}') \leq \varepsilon$.

Conversely, fixing ε there exist ptns \mathcal{Q} of $[a, y]$ and \mathcal{R} of $[y, b]$ each with oscillation less than $\frac{\varepsilon}{2}$. Glue them together to get a ptn of J with oscillation less than ε . \spadesuit

Oriented integral. We may write an integral on $J = [a, b]$ as

$$\int_J f \text{ or } \int_{[a,b]} f \text{ or } \int_a^b f \text{ or } \int_a^b f(t) dt.$$

Reversing the “limits of integration”, define

$$\int_b^a f := - \int_{[a,b]} f.$$

So our 1-dim' al integral is an *oriented integral*. \square

83: Lemma. *For $a, b, c \in \mathbb{R}$, and function f :*

$$\int_a^c f = \left[\int_a^b f \right] + \left[\int_b^c f \right],$$

as soon as f is integrable on the interval from $\text{Min}(a, b, c)$ to $\text{Max}(a, b, c)$. **Proof.** Exer: \diamond

The Fundamental Theorem of Calculus

For an integrable (not-necessarily cts) function $f: J \rightarrow \mathbb{R}$, recall that $\mathcal{U} := \sup_{t \in J} |f(t)|$ is finite. And

$$\varphi(x) := \int_{[a,x]} f, \text{ as a map } \varphi: J \rightarrow \mathbb{R},$$

is well-defined, thanks to (82). This φ is sometimes called an *antiderivative* of f .

84: FTC. *With $f()$, \mathcal{U} , $\varphi()$ from above: This φ is Lipschitz continuous, with \mathcal{U} a Lipschitz bound. Moreover, at each f -continuity point $z \in J$, our φ is differentiable and*

$$\text{84a: } \varphi'(z) = f(z).$$

Conversely, each fnc $\psi \in \mathbf{C}^1(J \rightarrow \mathbb{R})$ has $\psi' \in \text{RI}$ and

$$\text{84b: } \int_{[a,b]} \psi' = \psi(b) - \psi(a). \quad \diamond$$

Pf of (84a). For $x < y$ in J , note, $\varphi(y) - \varphi(x) = \int_{[x,y]} f$. So

$$|\varphi(y) - \varphi(x)| = \left| \int_{[x,y]} f \right| \leq \int_{[x,y]} |f| \leq [y - x] \cdot \mathcal{U},$$

by (80*) and (79). Hence φ is \mathcal{U} -Lipschitz.

At an f -continuity-point z . WELOG, z is not an endpoint of J . WLOG $f(z) = 4$. Fixing an $\varepsilon > 0$, the continuity of f at z asserts an open interval $I \ni z$ st.

$$\dagger: \quad 4 - \varepsilon \leq f|_I \leq 4 + \varepsilon.$$

Consider a small non-zero “bump” $\beta \in \mathbb{R}$ with $z + \beta \in I$. WELOG $\beta > 0$; let $B := [z, z + \beta]$. Courtesy (79), integrating (\dagger) over B yields, since \widehat{B} equals β , that

$$\ddagger: \quad [4 - \varepsilon] \cdot \beta \leq \int_B f \leq [4 + \varepsilon] \cdot \beta.$$

But the integral equals $\varphi(z + \beta) - \varphi(z)$. Thus the difference-quotient satisfies

$$4 - \varepsilon \leq \frac{\varphi(z + \beta) - \varphi(z)}{\beta} \leq 4 + \varepsilon.$$

This holds for every small-enough non-zero β . Thus φ is differentiable at z , and $\varphi'(z) = 4 = f(z)$. \spadesuit

Pf of (84b). Firstly, since ψ' is cts, it is RI. Define φ by

$$\varphi(x) := \int_{[a,x]} \psi', \quad \text{as a map } \varphi: J \rightarrow \mathbb{R},$$

Thus $\int_J \psi' \stackrel{\text{def}}{=} \varphi(b) = \varphi(b) - \varphi(a)$, since $\varphi(a) = 0$.

By (84a), $\varphi' = \psi'$. This means (Exer: By what thm?) that $\psi - \varphi$ is a constant-fnc. Thus $\psi(b) - \psi(a)$ equals $\varphi(b) - \varphi(a)$, which equals $\int_J \psi'$. \spadesuit

Measuring the size of sets

Fix a metric space X and a way of measuring the size of open balls; we'll use “ball” to mean “non-empty open ball”. At a “center” $c \in X$, we use $\text{Bal}_r(c)$ for the (open) ball of radius r .

Fix μ , a “measure on open balls”: For each center $c \in X$ and radius $r \in \mathbb{R}_+$, this μ assigns a “mass”

$$85a: \quad \mu(\text{Bal}_r(c)) \in [0, \infty).$$

Henceforth, in this section, let **cover** mean a cover by open balls. For a set $K \subset X$, let “ \mathcal{C} is a K -cover” mean that each $B \in \mathcal{C}$ is an open ball, and $\bigcup(\mathcal{C}) \supset K$. Agree to use $\mu(\mathcal{C})$ to mean

$$\mu(\mathcal{C}) := \sum_{B \in \mathcal{C}} \mu(B).$$

Defining two measures. To measure a set $E \subset X$, we let \mathcal{C} vary over all covers of E ; *finite* covers for **Jordan mass**, $\mathcal{J}()$, and *countable* covers for **Lebesgue mass**, $\lambda()$:

$$85b: \quad \mathcal{J}(E) := \inf_{\mathcal{C} \text{ finite}} \mu(\mathcal{C}), \quad \lambda(E) := \inf_{\mathcal{C} \text{ countable}} \mu(\mathcal{C}).$$

We impose the following requirements on μ .

M1: Each ball B is \mathcal{J} -measurable and λ -measurable, and

$$\mathcal{J}(B) = \lambda(B) = \mu(B).$$

M2: For each $c \in X$: $\lim_{r \searrow 0} \mu(\text{Bal}_r(c)) = 0$.

Occasionally we will want some of these conditions.

M3: The function $r \mapsto \mu(\text{Bal}_r(c))$ is continuous.

M4: The function $r \mapsto \mu(\text{Bal}_r(c))$ is strictly increasing. \square

86: Basic measure lemma. For all sets $A, B, E \in \mathcal{P}(X)$:

i: $\lambda(E) \leq \mathcal{J}(E)$.

ii: If $A \subset B$, then $\mathcal{J}(A) \leq \mathcal{J}(B)$ and $\lambda(A) \leq \lambda(B)$.

iii: $\mathcal{J}(\emptyset) = 0 = \lambda(\emptyset)$.

iv: If $A_1 \cup A_2 \supset B$ then $\mathcal{J}(A_1) + \mathcal{J}(A_2) \geq \mathcal{J}(B)$. Ditto for $\lambda()$.

v: If $[\bigcup_1^\infty A_n] \supset B$ then $[\sum_1^\infty \lambda(A_n)] \geq \lambda(B)$. \spadesuit

Remark. In contrast to λ , Jordan-measure is not countably-subadditive: Enumerate $\mathcal{Q} := \mathbb{Q} \cap [0, 1]$, and let A_n comprise the first n rationals in \mathcal{Q} . Then $\sum_{n=1}^\infty \mathcal{J}(A_n) = 0$, but $\mathcal{J}(\mathcal{Q}) = 1$. \square

87: Prop'n. Consider $E, K \in \mathcal{P}(X)$, with K compact. Then

a: $\mathcal{J}(K) < \infty$. (Exer: .)

b: $\mathcal{J}(K) = \lambda(K)$.

c: Suppose (M3). Then $\mathcal{J}(\text{Cl}(E)) = \mathcal{J}(E)$. (This fails for Jordan-measure replaced by $\lambda()$: Let $X := \mathbb{R}$ and $E := \mathbb{Q}$). \spadesuit

Pf of (b). Fix $\varepsilon > 0$. Since $\lambda(K) < \infty$, we can find a countable K -cover \mathcal{C} with $\mu(\mathcal{C}) \leq \varepsilon + \lambda(K)$. The compactness of K asserts a finite subcover $\mathcal{F} \subset \mathcal{C}$. Thus

$$\mathcal{J}(K) \leq \mu(\mathcal{F}) \leq \mu(\mathcal{C}) \leq \varepsilon + \lambda(K).$$

For each ε this holds, so $\mathcal{J}(K) \leq \lambda(K)$. \spadesuit

Pf of (c). Fix $\varepsilon > 0$. WLOG $\mathcal{J}(E) < \infty$, so there is a finite E -cover $\{\text{Bal}_{r_j}(c_j)\}_{j=1}^N$, with

$$\dagger: \quad \sum_{j=1}^N \mu(\text{Bal}_{r_j}(c_j)) \leq 2\varepsilon + \mathcal{J}(E).$$

Take a posreal δ sufficiently small that for each $j \in [1..N]$,

$$\ddagger: \quad \mu(\text{Bal}_{\delta+r_j}(c_j)) - \mu(\text{Bal}_{r_j}(c_j)) \leq \varepsilon/N;$$

possibly, since there are only *finitely* many balls under consideration, and each map $r \mapsto \mu(\text{Bal}_r(c))$ is cts.

Automatically, collection $\{\text{Bal}_{\delta+r_j}(c_j)\}_{j=1}^N$ covers

$$\ast: \quad \text{Bal}_\delta \left(\bigcup_{j=1}^N \text{Bal}_{r_j}(c_j) \right) \stackrel{\text{note}}{\supset} \text{Bal}_\delta(E) \stackrel{\text{note}}{\supset} \text{Cl}(E).$$

Inequalities (\ddagger) and (\dagger) justify

$$\begin{aligned} \sum_1^N \mu(\text{Bal}_{\delta+r_j}(c_j)) &\leq \varepsilon + \sum_1^N \mu(\text{Bal}_{r_j}(c_j)) \\ &\leq 3\varepsilon + \mathcal{J}(E). \end{aligned}$$

From (\ast) , then, $\mathcal{J}(\text{Cl}(E)) \leq 3\varepsilon + \mathcal{J}(E)$. Now send $\varepsilon \searrow 0$. \spadesuit

A condition for Integrability

Let's examine the discontinuity set of an $f: J \rightarrow \mathbb{R}$.

Fixing $\varepsilon > 0$, define two sets $C, K \subset J$ to comprise those $x \in J$ such that for each posreal δ :

88a: For C : $\exists y \in \text{Bal}_\delta(x)$ with $|f(y) - f(x)| \geq \varepsilon$.

88b: For K : $\exists y_1, y_2 \in \text{Bal}_\delta(x)$ with $|f(y_1) - f(y_2)| \geq \varepsilon$.

Both C and K are ε -approximations to $\text{DisCty}(f)$. While C is simpler to describe, it need not be closed.¹⁷ In contrast, K is closed (Exer:), hence compact.

Rematerializing the ε , easily $C_\varepsilon \subset K_\varepsilon$ and, by the Δ inequality, $K_{2\varepsilon} \subset C_\varepsilon$. Redefining, let C_n denote (88a) where $\varepsilon := \frac{1}{n}$. Make the analogous defn for K_n . Thus

$$C_1 \subset C_2 \subset \dots \quad \text{and} \quad K_1 \subset K_2 \subset \dots$$

88c: $\text{and } C_n \subset K_n \subset C_{2n}$.

$$\text{Thus } \bigcup_{n=1}^{\infty} K_n = \bigcup_{n=1}^{\infty} C_n \stackrel{\text{def}}{=} \text{DisCty}(f).$$

Complexity of sets. We need names for two types of sets. A subset E of X is said to be a “ \mathcal{G}_δ -set” if it can be written as a *countable* intersection of open sets. A subset is an “ \mathcal{F}_σ -set” if it equals some countable union of closed sets.¹⁸ On a topological space X ,

A decomposition $A \sqcup B = X$ has: $A \in \mathcal{F}_\sigma \Leftrightarrow B \in \mathcal{G}_\delta$.

The last line of (88c) shows the following.

For a function $f: X \rightarrow Y$ between two metric spaces, its discontinuity set is always an \mathcal{F}_σ , and $\text{Cty}(f)$ is always a \mathcal{G}_δ .

Staying in metric spaces, here is a nice exercise:

Exer. 8: Suppose $K \subset X^{\text{MS}}$ is closed. Then K is X - \mathcal{G}_δ . More generally, $\mathcal{G}_\delta \cap \mathcal{F}_\sigma \supset \text{Cld}(X) \cup \text{Opn}(X)$.

Alas, this can fail in general topological spaces. \square

¹⁷To make an example, let $S := [3, 5] \cap \mathbb{Q}$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ so that f is the indicator-fnc $\mathbf{1}_S$ except that $f(5) := 1/2$. Then for $\varepsilon := 1$, the corresponding C_ε set is the half-open $[3, 5)$, which is neither open nor closed. Yet $K_\varepsilon = [3, 5]$, which is closed.

This f has closed discty set, since $\text{DisCty}(f) = K_\varepsilon$, for $\varepsilon = 1$. As a contrasting example, $\text{DisCty}(\text{Ruler}_{\mathbb{Q}})$ is \mathbb{Q} , which is neither open nor closed. But \mathbb{Q} is indeed an \mathcal{F}_σ -set.

¹⁸The “F” is from the French word *fermé*, “closed”, and the “ σ ” is from the German word *Summe*, sum, here meaning “union”.

The “G” is from *Gebiet* (German, “area”), here meaning “open set”. And the “ δ ” is from the German *Durchschnitt*, meaning intersection.

89: Integrability Theorem. On interval $J = [a, b]$, consider a subset $S \subset J$.

a: The map $\mathbf{1}_S: J \rightarrow \mathbb{R}$ is Riemann-integrable IFF $\mathcal{J}(\partial_J(S)) = 0$.

[Recall exercise (46P.13) that $\partial(S) = \text{DisCty}(\mathbf{1}_S)$.]

b: A function $f: J \rightarrow \mathbb{R}$ is RI IFF f is bounded and $\lambda(\text{DisCty}(f)) = 0$. \diamond

Pf of (a). The discontinuity set of an indicator-fnc is closed; hence is compact, since J is. Thus its Jordan-mass equals its Lebesgue-mass. So (a) is implied by (b). \diamond

Direct proof of (a) (\Rightarrow). Fix $\varepsilon > 0$. Take a ptn P with $\text{Osc}^{\mathbf{1}_S}(P) \leq \varepsilon$. Let \mathcal{G} comprise those “good” P -blkns B on which $\mathbf{1}_S$ is constant. Use \mathcal{B} be the remaining “bad” blocks. By defn,

$$\varepsilon \geq \text{Osc}^{\mathbf{1}_S}(P) = 0 \cdot \widehat{\mathcal{G}} + 1 \cdot \widehat{\mathcal{B}}.$$

I.e., $\widehat{\mathcal{B}} \leq \varepsilon$. But $\bigcup(\mathcal{B}) \supset \text{DisCty}(\mathbf{1}_S)$; so $\varepsilon \geq \mathcal{J}(\partial(S))$. \diamond

Pf of (b) (\Rightarrow). Earlier work shows that f is bounded.

Write $\Delta := \text{DisCty}(f)$ as $\bigcup_{n=1}^{\infty} C_n$, from (88c): A point x is in C_n IFF there is a seq \vec{y} converging to x , so that each point $y \in \vec{y}$ has $|f(y) - f(x)| \geq \frac{1}{n}$.

ISTShow, for each n , that $\lambda(C_n) = 0$, since then the countable subadditivity of (86v) shows that Δ is a nullset.

Fix n , let $C := C_n$ and $\varepsilon := \frac{1}{n}$. Fix an arbitrary $\delta > 0$ and take a ptn P with $\text{Osc}(P) < \varepsilon\delta$. A P -block B is “bad” if $\text{Var}(B) \geq \varepsilon$. So $\text{Osc}(B) \geq \varepsilon \cdot \widehat{B}$. Summing over the bads,

$$\varepsilon\delta \geq \text{Osc}(P) \geq \sum_{B \text{ bad}} \varepsilon \cdot \widehat{B}.$$

Thus $\delta \geq \lambda(L)$, where $L := \bigcup_{B \text{ bad}} B$.

Consider a point $z \in C$. If z is in the *interior* of a block B , then automatically B is bad, so $z \in L$. Thus

$$C \subset \text{CutPts}(P) \cup L.$$

Hence $\lambda(C) \leq 0 + \delta = \delta$. This holds for all $\delta > 0$, so C is a Lebesgue nullset. \diamond

Brillo's proof of (b)(\Leftarrow). WLOG $|f| \leq \frac{3}{2}$. WLOG $\widehat{J} = 1$. Write $J = \Delta \sqcup \Gamma$, where $\Delta := \text{DisCty}(f)$ and $\Gamma := \text{Cty}(f)$.

Fix $\varepsilon > 0$; we'll produce a partition \mathbf{P} with

$$\text{Y: } \text{Osc}^f(\mathbf{P}) \leq 8\varepsilon.$$

Since $\lambda(\Delta) = 0$, there exists a countable cover \mathcal{D} of Δ with $\mu(\mathcal{D}) \leq \varepsilon$.

For each $z \in \Gamma$, there is an open interval $I_z \ni z$ with $\text{Var}^f(I_z) \leq 5\varepsilon$. Thus $\mathcal{C} := \{I_z\}_{z \in \Gamma}$ covers Γ and so the union $\mathcal{U} := \mathcal{D} \cup \mathcal{C}$ is an open cover of J . Hence \mathcal{U} has a Lebesgue number δ ; this, since J is compact.

Consider a ptn \mathbf{P} with $\text{Mesh}(\mathbf{P}) < \delta$; necessarily, each \mathbf{P} -block lies inside of some \mathcal{U} -patch. Call \mathbf{P} -block B "good" if there exists a patch $I \in \mathcal{C}$ with $I \supset B$. So

$$\sum_{B \text{ good}} \text{Osc}^f(B) \leq 5\varepsilon \cdot \widehat{J} = 5\varepsilon.$$

Each "bad" B is covered by some \mathcal{D} -patch. Thus

$$\sum_{B \text{ bad}} \text{Osc}^f(B) \leq \text{Var}^f(J) \cdot \sum_{U \in \mathcal{D}} \widehat{U} \leq [\frac{3}{2} - \frac{-3}{2}] \cdot \varepsilon = 3\varepsilon.$$

Adding these together yields that $\text{Osc}^f(\mathbf{P}) \leq 8\varepsilon$. \spadesuit

Interchange of limit-operations

An exercise that could have been stated earlier.

90: Obs. Take fncs $g, f_n: X^{\text{Set}} \rightarrow \Omega^{\text{MS}}$ with each f_n bounded. If $f_n \xrightarrow{\text{uniformly}} g$, then g is bounded. **Pf.** Exer: \diamond

More interestingly.

91: Prop'n. Suppose $b, f: J \rightarrow \mathbb{R}$ are bounded functions; set $\varepsilon := \|b\|_{\text{sup}}$. Then for each partition \mathbf{P} ,

$$|\text{Osc}^{f+b}(\mathbf{P}) - \text{Osc}^f(\mathbf{P})| \leq 2\varepsilon \cdot \widehat{J}. \quad (\text{Exer: }) \quad \diamond$$

92: Integral-Convergence Theorem. Consider functions $g, f_n: J \rightarrow \mathbb{R}$, with $f_n \in \text{RI}$. Suppose $f_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} g$. Then g is RI. Moreover, $\int_J f_n \rightarrow \int_J g$, as $n \nearrow \infty$. \diamond

Pf. Take $\varepsilon > 0$ and take n large enough that $\|g - F\|_{\text{sup}} \leq \varepsilon$, where $F := f_n$. Now take a ptn \mathbf{P} st. $\text{Osc}^f(\mathbf{P}) \leq \varepsilon$. By (91),

$$|\text{Osc}^g(\mathbf{P}) - \text{Osc}^F(\mathbf{P})| \leq 2\varepsilon \cdot \widehat{J}.$$

So $\text{Osc}^g(\mathbf{P}) \leq \text{Osc}^F(\mathbf{P}) + 2\varepsilon \cdot \widehat{J} \leq [1 + 2 \cdot \widehat{J}] \varepsilon$. This holds for each ε , so (77e) tells us that g is integrable.

Being integrable, we can replace f_n by $f_n - g$, and replace g by $g - g$, to say WLOG $f_n \xrightarrow[n \rightarrow \infty]{\text{unif}} \mathbf{0}$. But

$$|\int_J f_n| \leq \|f_n\|_{\text{sup}} \cdot \widehat{J},$$

$$\text{so } \left[\int_J f_n \right] \xrightarrow{n \rightarrow \infty} 0. \text{ And, indeed, } 0 = \int_J \mathbf{0}. \quad \diamond$$

93: DUC Thm (Derivative uniform-convergence). We have functions $f_n \in \mathbf{C}^1(J \rightarrow \mathbb{R})$ whose derivative-sequence $(f'_n)_{n=1}^{\infty}$ is sup-norm Cauchy. Thus function

$$93a: \quad \Delta := \text{unif-lim}_{n \rightarrow \infty} f'_n$$

exists. Suppose there is a point $A \in J$ such that

$$93b: \quad \lim_{n \rightarrow \infty} f_n(A) \text{ exists in } \mathbb{R}.$$

Then for each x , the limit $g(x) := \lim_{n \rightarrow \infty} f_n(x)$ exists in \mathbb{R} . Moreover, g is differentiable and $g' = \Delta$. \diamond

Proof. Fix an $x \in J$. Thanks to (92), and FTC applied to each f_n ,

$$\int_A^x \Delta \stackrel{\text{by (92)}}{=} \lim_{n \rightarrow \infty} \int_A^x f'_n = \lim_{n \rightarrow \infty} [f_n(x) - f_n(A)].$$

So (93b) tells us that $\lim_{n \rightarrow \infty} f_n(x)$ exists in \mathbb{R} .

Restating, the map $g: J \rightarrow \mathbb{R}$ is well-defined, and

$$g(x) = g(A) + \int_A^x \Delta().$$

By hypothesis, each f'_n is cts; thus Δ is cts, by (55), P.15. By FTC, P.25, the map $x \mapsto \int_A^x \Delta$ is differentiable, and its derivative equals Δ . So g is differentiable, and $g' = 0 + \Delta$. \diamond

Series and Sequences

In a normed-VS \mathbf{V} , a series $\vec{s} \subset \mathbf{V}$ is convergent if the “sequence \vec{p} of partial sums” converges in \mathbf{V} , where

$$94a: \quad p_k := \sum_{n=1}^k s_n.$$

Series $\vec{s} \subset \mathbf{V}$ is **absolutely convergent** if $\sum_{n=1}^{\infty} \|s_n\|$ is finite.

94b: Lemma. Suppose $\vec{s} \subset \mathbf{V}$, where \mathbf{V} is a complete normed-VS. If \vec{s} is absolutely convergent, then \vec{s} is convergent. \diamond

Proof. Let $p_k := \sum_{n=1}^k s_n$. Our goal is to show \vec{p} Cauchy.

Fix $\varepsilon > 0$. Take K_0 st. for all pairs $L > K$ exceeding K_0 ,

$$* : \quad \sum_{n \in (K..L)} \|s_n\| \leq \varepsilon.$$

By Δ inequality, LhS(*) dominates the norm of

$$\sum_{n \in (K..L)} s_n \stackrel{\text{note}}{=} p_L - p_K.$$

Thus $\varepsilon \geq \|p_L - p_K\|$. \diamond

Exer. 9: Dis/Prove: Even in a *non*-complete normed-VS, abs-convergence implies convergence.

Defn. A sequence $\vec{s} \subset \mathbb{R}$ is a function, so use \vec{s}^+ to mean the corresponding *positive-part* sequence, from (80.1), and use \vec{s}^- for the seq of *negative parts*. These two sequences are non-negative, and satisfy that

$$94c: \quad \begin{aligned} s_n^+ + s_n^- &= |s_n| \quad \text{and} \\ s_n^+ - s_n^- &= s_n. \end{aligned} \quad \square$$

95: Reordering Thm. Suppose sequence $\vec{s} \subset \mathbb{R}$ satisfies

i: Terms $s_k \rightarrow 0$, as $k \nearrow \infty$.

ii: Sum $\sum_{n=1}^{\infty} s_n^+ = \infty$. And $\sum_{n=1}^{\infty} s_n^- = \infty$.

Then for each pair of values $A \leq B$ in $[-\infty, +\infty]$, there exists a reordering, \vec{y} , of \vec{s} for which

$$\left[\limsup_{K \rightarrow \infty} \sum_{n \in [1..K]} y_n \right] = B \quad \text{and} \quad \left[\liminf_{K \rightarrow \infty} \sum_{n \in [1..K]} y_n \right] = A. \quad \diamond$$

Pf (Sketch). Let $b_1 \geq b_2 \geq \dots > 0$ be an enumeration of the positive elts of \vec{s} . Let $a_1 \leq a_2 \leq \dots \leq 0$ be an enumeration of the non-positive elts of \vec{s} . From (i) and (ii),

95①: $b_n \searrow 0$ and $a_n \nearrow 0$, as $n \rightarrow \infty$.

95②: $\sum_{k=1}^{\infty} b_k = +\infty$ and $\sum_{\ell=1}^{\infty} a_{\ell} = -\infty$.

Think of \vec{y} as initially being an empty “stack”, into which we “pop” the elts of \vec{b} and \vec{a} , also viewed as stacks. We leave to the Reader the case where either A or B is $\pm\infty$.

Pop the \vec{b} -stack until the running-sum

$$p_{K_1} := [\sum_{n \in [1..K_1]} s_n] \text{ exceeds } B.$$

Now pop the \vec{a} -stack until the first time $K_2 > K_1$ that the running-sum has $p_{K_2} < A$. Return to popping the \vec{b} -stack, stopping at the first time $K_3 > K_2$ that $p_{K_3} > B$. Etc.

Condition (95②) says that the procedure never stops; so the $\limsup \geq B$ and the $\liminf \leq A$. Condition (95①) implies that $\limsup \leq B$ and $\liminf \geq A$. \diamond

Appendix: *Menagerie of Strange Functions*

(Being revised)

Pf of (ii). The foregoing showed $\text{Range}(\vec{c}) \subset \text{DisCty}(V)$. For the opposite, we fix a $z \in J \setminus \text{Range}(\vec{c})$ and show that $V()$ is left-cts at z .

Unfinished: as of 27Mar2024

Prelims. For a fnc $f: \mathbb{R} \rightarrow \mathbb{R}$ and point $z \in \mathbb{R}$, let

$$\text{A1: } f(z^+) := \lim_{x \searrow z} f(x) \text{ and } f(z^-) := \lim_{x \nearrow z} f(x),$$

when these limits exist. Use “ f is **right-continuous** at z ” to mean that $f(z^+) = f(z)$. Define **left-continuous** analogously.

Strictly increasing fnc, with Cty and DisCty dense.

Let $J := [0, 1]$. Mapping from $J \rightarrow \mathbb{R}$, we define a fnc $V = V_{\vec{c}, \vec{h}}$ determined by a **placement sequence** $\vec{c} \subset J$, and a **height sequence** $\vec{h} \subset \mathbb{R}_+$. The place-seq \vec{c} must be dense in J , and have distinct values. The height-seq must have $\sum(\vec{h})$ finite. We typically

$$\text{A2: } \text{Normalize } \sum_{n=1}^{\infty} h_n = 1, \text{ and have } \vec{c} \not\ni 0.$$

Our definition, for each $x \in J$ is:

$$\text{A3: } V(x) = V_{\vec{c}, \vec{h}}(x) := \sum \left(\left\{ h_k \mid \begin{array}{l} k \in \mathbb{Z}_+ \text{ and} \\ c_k \leq x \end{array} \right\} \right).$$

Courtesy (A2), we have $V(1) = \sum(\vec{h}) = 1$ and $V(0) = \sum(\emptyset) = 0$.

A4: Jag-fnc Thm. Consider a $V = V_{\vec{c}, \vec{h}}$ which is normalized, (A2). Then $V(1) = 1$ and $V(0) = 0$. Further, V is strictly-increasing and maps $J \hookrightarrow J$. Moreover

i: Function V is right-continuous. And for each N :

$$f(c_N) - f(c_N^-) = h_N.$$

ii: $\text{DisCty}(V) = \text{Range}(\vec{c})$.

Sketch of right-cty. Fix $z \in [0, 1]$. For each $x \in (z, 1]$, let R_x be the set of indices k with $c_k \in (z, x]$. Thus

$$V(x) - V(z) = \sum_{k \in R_x} h_k.$$

And R_x decreases to the void-set, as $x \searrow z$, so the sum goes to zero. (Exer: Fill in the details, and for next paragraph too.)

Fix N . For $x \in [0, c_N]$, let L_x comprise those k with $c_k \in (x, c_N]$. So $V(c_N) - V(x)$ equals $\sum_{k \in L_x} h_k$. Sending $x \nearrow z$ makes the L_x sets decrease down to the singleton $\{c_N\}$. ♦

§Index for ADVANCED-CALC NOTES

I use these Notes in my Advanced Calc and Modern Analysis courses.

CLD(metric-OR-space), 6
 OPN(metric-OR-space), 5
 1-point compactification of \mathbb{R} , 5
 2-point compactification of \mathbb{R} , 5

Lip
 \asymp , 13
 Topo Cau
 \asymp , \asymp , 5
 \geq, \leq , refining ptns, 21
 f^+, f^- , positive/negative part, 24
 $\circ, \triangleleft, \triangleright$, *see* composition
 absolutely convergent, 29
 Addition-is-continuous thm, 4
 antiderivative, 25

ball, punctured, 17
 Banach space, 6
 block, 21
 Bolzano, 3
 boundary, 7
 bufferable, 11

circular reasoning, *see* tautology
 closure point, 6
 cluster point, 7
 cluster-pt cpt, 8
 CMS = “complete MS”, 15
 compactness properties, 8
 complete, 3, 15
 composition, 16, 24
 continuity set, Cty(f), 12
 continuous, 12, 14
 uniformly, 12
 $C(X)$, $C_{\text{Bnd}}(X)$, 6
 $C(X \rightarrow \Omega)$, $C_{\text{Bnd}}(X \rightarrow \Omega)$, 14
 convergence
 of \vec{x} , 2, 6
 pointwise, uniform, 15
 countable local-base, 7
 cover, 8, 26
 finite, 8

Lebesgue number, 9, 12
 open, 8
 patch, 8
 CSD = “Countably self-dense”, 15
 cutpoints, 14, 21

D, differentiation, 20
 Discontinuity set, DisCty(f), 12, 13
 approximations, 27
 \mathbb{D} , dyadic rationals, 13, 19

error term, 20
 extended reals, 3, 5

finite cover, *see* cover
 first-countable, *see* space, LCG
 \mathcal{F}_σ -set, 27
 function(al), *see* map

\mathcal{G}_δ -set, 27
 grok, *see* STRANGER IN A STRANGE LAND, 13

HS = “Hausdorff space”, 6, 7

indicator function, $\mathbf{1}_S(\cdot)$, 13
 induced topology, 7
 integrable, 22
 interior point, 7
 IPVS = “inner-product space”, 1

join of a partition, 21
 Jordan mass, 26

Lebesgue mass, 26
 Lebesgue number, 9, 28
 limit-point, 7
 linear functional, 1
 Lip-equiv, 13
 Lipschitz, 13, 25
 $\ell^p, \|\cdot\|_p$, 5
 LUBP, Least upper-bound property, 3

map
 antiderivative, 25
 bilinear, 20
 biLipschitz, 13
 homeomorphism, 7
 isometry, 7
 linear, -functional, 1, 23
 nearest-integer, distance, 19
 ruler function, 13, 24
 van der Waerden, 19
 mesh size, 21
 metric, 5
 arclength, chordal, 5
 arctan, stereographic, 5
 Equivalence
 topologically/Cauchy, 5
 Lipschitz, 13
 Mr. Rogers, *see* neighborhood
 MS = “metric space”, 5
 Multiplication-is-cts thm, 4

neighborhood, nbhd, 7
 norm, 4, 6, 18
 Euclidean, 10
 $\|\cdot\|_p, \|\cdot\|_{\text{sup}}$, 5
 NVS = “normed vectorspace”, 4
 NP = “north pole”, 5

open cover, *see* cover
 oscillation, 22

P.L, *see* piecewise-linear
 panic
 don’t, 6
 partition, 17, 21
 atom, 21
 block, 14, 21
 join, 21
 pointed, 21
 refinement, 21
 piecewise-linear fnc, PL_{p,h}, 14, 16
 rational, 15
 POFA, 19
 pointwise operations, 14

positive/negative part, **24**, 29
 pptn = “pointed partition”, 21
 precompact, **10**
 prejudice, 6
 Proof
 by contradiction, 9, 10, 12
 circular, *see* circular reasoning
 provisional, 11
 ptn, *see* partition

relative topology, **7**
 ruler function, **13**, 24

$\overset{\circ}{\mathbb{S}}$, \mathbb{S} , (punctured) circle, **5**

sample point, tag, **21**

seq-cpt, **8**

sequence

 Cauchy, 2, 5

 tail of, 2

set

 inescapable, **7**

 open, **6**

space/property

 cluster-point compact, **8**

 compact, 6, **8**

 cover-positive, **9**

 Hausdorff, **6**

 LCG, 7

 metric/topological, **6**

 metrizable, **6**

 sequentially compact, **8**

 totally-bounded, TB, **9**

space/property Euclidean, **10**

standard form, **13**

tag, sample point, **21**

$\text{Tail}_N(\vec{\mathbf{x}})$, **2**

tautology, *see* Proof, circular

TB = “totally bounded”, 9

Theorems

 Addition-is-continuous, 4

 Multiplication-is-cts, 4

topo-equiv, **5**

topology, **6**

TOS = “totally-ordered space”, 2

total derivative, **20**

TS = “Topological space”, **6**

unif. convergence, *see* convergence
 uniform continuity, *see* continuous
 upper-bound, 3

van der Waerden function, **19**

variation, **22**

vectorspace, 6

VS = “vector space”, 1

0, $\widehat{\mathbf{0}}$, zero-vector, **1**