

There does not exist $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous exactly on \mathbb{Q} : Topology, BCT

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 23 September, 2017 (at 16:17)

ABSTRACT: Gives various applications of BCT, the Baire Category theorem.

Note. The **ruler function** $\mathcal{R}: \mathbb{R} \rightarrow [0, 1]$,

$$\mathcal{R}(x) := \begin{cases} 0 & \text{if } x \text{ irrational;} \\ \frac{1}{q} & \text{if } x \text{ has form } \frac{p}{q} \text{ in lowest terms} \end{cases}$$

is continuous precisely on the irrationals. The next thm shows that the opposite of this behavior is not possible. \square

1: Theorem. *There does not exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\text{Cty}(f) = \mathbb{Q}$.* \diamond

Pf. The set $\text{Cty}(f)$ is always a \mathcal{G}_δ (exer., or see [notes-AdvCalc.pdf](#)). Were $\text{Cty}(f) = \mathbb{Q}$, it would be a dense \mathcal{G}_δ , hence residual. But \mathbb{Q} , being countable, is meager. \spadesuit

2: Theorem. *Suppose we have sets $A, B \subset \mathbb{R}$, each \mathbb{R} -dense, and continuous functions $f_n: \mathbb{R} \rightarrow \mathbb{R}$ such that*

$$\dagger: f_n|_A \xrightarrow{n \rightarrow \infty} 0|_A \quad \text{and} \quad f_n|_B \xrightarrow{n \rightarrow \infty} 1|_B,$$

where each convergence is pointwise. Then this set

$$\ddagger: D := \left\{ x \in \mathbb{R} \mid \begin{array}{l} \limsup_n f_n(x) \geq 1 \\ \liminf_n f_n(x) \leq 0 \end{array} \right\}$$

is residual in \mathbb{R} . \diamond

Proof. For a value $v \in \mathbb{R}$ and positint K , the set

$$U_{v,K} := \left\{ x \in \mathbb{R} \mid \exists n \geq K \text{ s.t. } |f_n(x) - v| < \frac{1}{K} \right\}$$

is open. Thus $G_v := [\bigcap_{K=1}^{\infty} U_{v,K}]$ is a \mathcal{G}_δ set. And

2a: G_v comprises those x whose sequence $(f_n(x))_{n=0}^{\infty}$ has v as a limit-point.

Since $G_1 \supset B$ and $G_0 \supset A$, each G_i is dense, hence residual. Thus $G_1 \cap G_0$ is residual. And $G_1 \cap G_0 \subset D$. \spadesuit

2b: The proof shows more. Consider denumerably many values $(v_k)_{k=1}^{\infty}$ and sets $(A_k)_{1}^{\infty}$, each dense, s.t for every point $y \in A_k$: $\lim(\vec{f}(y)) = v_k$.

The proof shows that the following set, \widetilde{D} , is residual, where $x \in \widetilde{D}$ IFF each value in $\{v_k\}_1^{\infty}$ is a limit-point of the $(f_n(x))_{n=1}^{\infty}$ sequence. \square

2c: Question. In (\ddagger) , can the “ \geq ” and “ \leq ” each be replaced by “ $=$ ”?

No! We'll make A, B, \vec{f} , as in (2), such that

$$*: x \in \widetilde{D} \implies \limsup_{n \rightarrow \infty} f_n(x) = +\infty.$$

for a particular residual set \widetilde{D} .

Let $A := A_0, B := A_1, A_2, \dots, A_k, \dots$ be pairwise-disjoint sets, each countable and \mathbb{R} -dense. For $k = 0, 1, 2, \dots$, fix an enumeration of A_k .

For each n , we can construct a piecewise-linear f_n which, for each of $k = 0, 1, \dots, n$, takes the value $v_k := k$ on the first n members of A_k .

Apply (2b). This produces a residual set \widetilde{D} s.t for each $x \in \widetilde{D}$: Value $[\limsup_n f_n(x)]$ dominates each positint k . Thus (*). \square

Filename: [Problems/Topology/no_fnc_cts_on_Q.latex](#)
 As of: Friday 24Apr2009. Typeset: 23Sep2017 at 16:17.