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Abbrevs. IVT; Intermediate Value Thm. MVT; Mean Value
Thm. FTC; Fund. Thm of Calculus. Use cts for “continuous”
and cty for “continuity”.

The exponential fnc exp can also be written exp(x) = ex.
(So log ◦ exp = IdR and exp ◦ log = IdR+

.) Use NevZ to mean
“never-zero”; e.g “exp() is NevZ on R”.

Prolegomena. Use R for the extended re-
als [ ∞, ∞]. With DNE denoting “Does Not Exist”,
adjoin a point to R to create

R~ := [ ∞, ∞] t {DNE} .

Use diff’able for “differentiable”. A fnc f :R→R is
ext-diff’able (for extended diff’able) at point 6 if the
limx→6

f(x)−f(6)
x−6 exists in [ ∞, ∞]. Use f ′LH for the

lefthand ext-derivative, from limx↗6. Use f ′RH for
the righthand ext-derivative, limx↘6.

The result below apply to fncs on a closed bounded
interval J . For specificity, I will use J := [4, 6] and
will use J◦ := (4, 6) for its interior.

A fnc h:J→R has a (global) max-point P ∈ J if

∀x ∈ J : h(P ) ≥ h(x) ;

and the number h(P ) is the “max-value of h on J ” .
Weaker, P is a local max-point of h (on J) if there
exists a J-open set U 3 P , so that P is a global max-
point of h�U . Imagine analogous defns formin-point,
min-value and local min-point of h.

1: Tool. A continuous h:J→R has a max-point and a
min-point. Proof. Interval J is compact, etc. ♦

2: Lemma. Suppose continuous h:J→R has a
local-extremum at a point τ ∈ J◦. If h is extended-
differentiable at τ , then

�� ��h′(τ) = 0 . ♦

Proof. WLOG τ is a local-min of h. So for all x > τ
with x suff. close to τ , necessarily h(x) − h(τ) ≥ 0;
thus h′RH(τ) ∈ [0, ∞]. Similarly, h′LH(τ) ∈ [ ∞, 0].
By hypothesis, h′LH(τ) = h′RH(τ). So h

′(τ) is zero. �

3: Rolle’s Thm. Suppose a continuous h:[4, 6]→R
is ext-diff’able on (4, 6). If h(4) = h(6), then there
exists a point τ ∈ (4, 6) such that

�� ��h′(τ) = 0 . ♦

Pf.Courtesy (2), WLOG h() has no global-max in J◦,
so its global-max on J must be the common value
of h(4) = h(6). Thus h has a global-min in J◦; pick
one, and call it τ . Now (2) gives that h′(τ) = 0. �

4: MVThm. Suppose cts f :[4, 6]→R is ext-diff’able
on (4, 6). Then there exists a τ ∈ (4, 6) such that

f ′(τ) = f(6)−f(4)
6−4 . ♦

Pf. With S := f(6)−f(4)
6−4 , the slope of the chord, let

h(x) := f(x) − [x− 4] · S .

Since h(4) = f(4) = h(6), Rolle’s thm applies to assert
a point τ ∈ (4, 6) with 0 = h′(τ)

note
=== f ′(τ)− 1·S. �

E.g: Fnc f(x) := 3
√
x has f ′(0) = ∞. MVT applies

to assert a point τ ∈ ( 8, 27) where f ′(τ) equals 3− 2
27− 8 .

For a beautiful MVT-application due to Liouville,
see Liouville’s Theorem on my TeachingPage. �

5: Prop’n. On an interval H ⊂ R, suppose fnc g is
extended-differentiable. If g′ is NevZ on H, then g is
strictly-monotone on H. (We do not assume that g′ is
continuous.) ♦

Proof. Were g not strictly-monotone then, WLOG,
there are points a<b<c, in H, with g(a) ≤ g(b) yet
g(b) ≥ g(c). WLOG g(a) ≤ g(c). Applying IVT to g
on [a, b] yields point z ∈ [a, b] with g(z) = g(c). Now
Rolle’s thm produces a τ ∈ (z, c) with g′(τ) = 0. �

6: Cauchy MVT. Continuous fncs f, g:[4, 6]→R are
diff’able on (4, 6). Then there exists a τ ∈ (4, 6) st.

f ′(τ) · [g(6)− g(4)] = g′(τ) · [f(6)− f(4)] .6a:

And if g′ is never-zero on (4, 6), then

f ′(τ)

g′(τ)
=

f(6)− f(4)
g(6)− g(4)

.6b: ♦
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Proof of (6a). Apply Rolle’s theorem to

h(x) := f(x) · [g(6)− g(4)] − g(x) · [f(6)− f(4)] ,7:

noting that h(4) = f(4)g(6)− f(6)g(4) = h(6). �

Proof of (6b). Since g′ is NevZ on (4, 6), the MVT
forces g(6) 6= g(4). So we can cross-divide in (6a). �

L’Hôpital’s rule

I’ll usually state the thms for a one-sided limits,
limx↘T or limx↗T , where T ∈ R. I’ll use “Lim(f)”
to mean lim

x↘T
f(x) or lim

x↗T
f(x), as appropriate.

First some cautionary tales :
8: No end. What is limx↘ ∞

√
x2+1
x ? Well, x<0

implies that −
√
x2 = x, so

√
x2+1
x =

√
x2+1

−
√
x2

= −
√
1 + 1

x2
.

Hence the limx↘ ∞ is 1. But applying L’H to
√
x2+1
x

will (after algebra) give x√
x2+1

. Which L’H sends to the

original
√
x2+1
x . �

9: BttDB: Back to the Drawing Board. Certainly

lim
x↘ ∞

x2+sin(x)
x2

= 1 .

L’H examines 2x+cos(x)
2x ; still lim=1. But applying L’H

again gives 2−sin(x)
2 , which has no limit. There is no

error here; if the f ′/g′ limit doesn’t exist in R, then
we can draw no conclusion about the f/g limit. �

10: L’Hôpital’s Thm. Fix a “target” T ∈ [ ∞, ∞) and
consider real-valued fncs f, g defined on part of R.

Suppose there exists a real number B>T for which

On (T,B]: f & g are diff’able, and g′ is NevZ.♥110†:

Recalling that R~ = [ ∞, ∞] t {DNE}, define

L := lim
x↘T

f(x)
g(x) ∈ R~ and

Λ := lim
x↘T

f ′(x)
g′(x) ∈ R~ .

♥1Courtesy (5), our g is zero at most once on (T,B]. Conse-
quently, we can move B closer to T so that g is NevZ on (T,B].

Suppose, as x↘ T , that either

g(x)→ 0 and f(x)→ 0, or100:
g(x)→ ±∞ .10∞:

If Λ 6= DNE, then L = Λ. ♦

Reduction to T finite. If T = ∞, then define

ϕ(x) := f( 1
x ) and

γ(x) := g( 1
x ) .

So lim
x↘0

ϕ
γ (x) = L. But the Chain Rule gives

ϕ′(x) = 1
x2
· f ′( 1

x ) and
γ′(x) = 1

x2
· g′( 1

x ) .

Thus lim
x↘0

ϕ′

γ′ (x) = Λ. Proving L’H for
�� ��ϕ, γ at 0 will

thus establish L’H for
�� ��f, g at ∞ .

In the proofs below, we will take (T,B] = (4, 6]. �

Proof using (100). We may extend f by continuity so
that f is cts on [4, 6]; hence f(4) = 0. Ditto for g.

Each x ∈ (4, 6], gives a point •x ∈ (4, x) with

f ′(
•
x)

g′(
•
x)

Cauchy-MVT
==========

f(x)− f(4)
g(x)− g(4)

note
===

f(x)

g(x)
.

Sending x↘4 forces •x→ 4. �

Proof using (10∞).Assume, say, Λ=7. (The Λ=±∞ case
just changes notation.) Fixing an ε > 0, ISTEstablish
that

limsup
x↘ 4

f
g (x) ≤ 7 + ε .£1:

Inequality liminf fg ≥ 7− ε will follow analogously.
Take B>4 so close to 4 that

∀y ∈ (4, B] :
∣∣∣ f ′g′ (y) − 7

∣∣∣ ≤ ε .£2:

For each x ∈ (4, B], the Cauchy-MVT gives a point
•
x ∈ (x,B) with

f ′(
•
x)

g′(
•
x)

=
f(B)− f(x)
g(B)− g(x)

note
===

f(x)
g(x) −

f(B)
g(x)

1 − g(B)
g(x)

.£3:
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And f(B)
g(x) ,

g(B)
g(x) → 0, by (10∞), as x↘ 4.

Taking limsups in (£3) gives

limsup
x↘4

f ′

g′
(•
x
)

= limsup
x↘4

f
g

(
x
)
.∗:

Now we don’t know that •x → 4. But we do know
that each •x ∈ (4, B]. Thus LhS(∗) ≤ 7 + ε, by (£2).
Hence (£1). �

A remark on the above proof.

11: Can L=1 yet Λ=DNE? Yes. For each sequence
xn↘T , nec. fg (xn)→ 1 and therefore f ′

g′ (
•
xn)→ 1. Yet

there could be a seq. zn↘T where, say,

f ′

g′ (zn)
n→∞−−−→ 927 . (I.e, some number 6=1.)

Yet it might that every
((( •
xn
)))∞
n=1 sequence misses the

dissenting (((zn)))
∞
n=1 sequence. Indeed, this is what hap-

pens in example (BttDB), above. �

12: Nifty application: Does h′→0? Given a differen-
tiable function with finite limit, say lim

x→∞
h(x) = 7,

suppose L := lim
x→∞

h′(x) exists in R. A picture
suggests that L “must” be 0. Can we prove it by
L’Hôpital’s theorem?

Let f := h · exp and g := exp. So Lim(fg ) = 7.

But, f ′ = [h′ + h] · exp. So Lim(f
′

g′ ) = L + 7. Thus
L’H applies to tell us that 7 = L + 7. Hence L = 0.�

13: FTCalculus. The conditions in (100) apply to

lim
x↘0

∫ x
0 sin

(
sin(t)

)
dt

x2
.U:

Since the FTCalculus applies to the numerator, L’H

yields f ′

g′ (x) =
sin
(
sin(x)

)
2x . Applying L’H again gives

f ′′

g′′
(x) =

cos
(
sin(x)

)
· cos(x)

2
.

As f ′′

g′′ (0)=
cos(0)·cos(0)

2 =1
2 , the limit in (13U) is 1

2 . �

Here is the famous example by O. Stolz , published
in 1871, generalized by R.P. Boas, 1986.

Stolz example: (1871). Let

f(x) :=

∫ x

0
cos(t)2 dt

note
=== 1

2 · [x+ cos(x)sin(x)] .

Easily f(x)↗∞ as x↗∞. Evidently

g(x) := f(x) · esin(x)

goes →∞, since esin(x) is bnded-below by 1/e, which
is positive. Now f ′ = cos2. Thus

g′(x) = cos(x)2 · esin(x) + f(x) · esin(x) · cos(x)
= cos(x) · esin(x) ·

[
cos(x) + f(x)

]
.

∗:

Dividing produces the to-zero-going quantity

f ′

g′

(
x
)

=
cos(x)

esin(x) ·
[
cos(x) + f(x)

] ,∗∗: �

since denom→∞ and numer is bnded. Thus Λ = 0.
But L is the limit of f(x)

g(x)
def
== 1/esin(x), which is oscil-

latory, i.e DNE. What went wrong?

Give up? Don’t give up —examine the hy-
potheses of L’H with a finely-toothed comb. If
desperate, read further. . .

In(∗),notethatg′iszeroinfinitelyoften,
duetotheinitialcos()factor.Thiscontra-
venesthe(10†)condition,despitethesnow-
jobthatIperpetratedin(∗∗).

In(∗),notethatg
′iszeroinfinitely

often,

duetotheinitialcos()factor.Thiscontra-

venesthe(10†)condition,despitethesnow-

jobthatIperpetratedin(∗∗).
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In (∗), note that g ′is zero infinitely often,

due to the initial cos() factor. This contra-

venes the (10†) condition, despite the snow-

job that I perpetrated in (∗∗).

In (∗), note that g′ is zero infinitely often,
due to the initial cos() factor. This contra-
venes the (10†) condition, despite the snow-
job that I perpetrated in (∗∗).
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