

Mean Value Theorem and L'Hôpital's Rule

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 29 August, 2021 (at 17:17)

Abbrevs. IVT; *Intermediate Value Thm.* MVT; *Mean Value Thm.* FTC; *Fund. Thm of Calculus.* Use cts for “continuous” and cty for “continuity”.

The exponential fnc \exp can also be written $\exp(x) = e^x$. (So $\log \circ \exp = \text{Id}_{\mathbb{R}}$ and $\exp \circ \log = \text{Id}_{\mathbb{R}_+}$.) Use *NevZ* to mean “never-zero”; e.g. “ $\exp()$ is *NevZ* on \mathbb{R} ”.

Prolegomena. Use $\bar{\mathbb{R}}$ for the *extended reals* $[-\infty, +\infty]$. With **DNE** denoting “Does Not Exist”, adjoin a point to $\bar{\mathbb{R}}$ to create

$$\mathbb{R}^* := [-\infty, +\infty] \sqcup \{\text{DNE}\}.$$

Use *diff'able* for “differentiable”. A fnc $f: \mathbb{R} \rightarrow \mathbb{R}$ is *ext-diff'able* (for *extended diff'able*) at point 6 if the $\lim_{x \rightarrow 6} \frac{f(x) - f(6)}{x - 6}$ exists in $[-\infty, +\infty]$. Use f'_{LH} for the *left-hand ext-derivative*, from $\lim_{x \nearrow 6}$. Use f'_{RH} for the *right-hand ext-derivative*, $\lim_{x \searrow 6}$.

The result below apply to fncs on a closed bounded interval J . For specificity, I will use $J := [4, 6]$ and will use $J^\circ := (4, 6)$ for its interior.

A fnc $h: J \rightarrow \mathbb{R}$ has a (global) **max-point** $P \in J$ if

$$\forall x \in J: \quad h(P) \geq h(x);$$

and the number $h(P)$ is the “**max-value** of h on J ”. Weaker, P is a **local max-point** of h (on J) if there exists a J -open set $U \ni P$, so that P is a global max-point of $h|_U$. Imagine analogous defns for **min-point**, **min-value** and **local min-point** of h .

1: Tool. A continuous $h: J \rightarrow \mathbb{R}$ has a max-point and a min-point. **Proof.** Interval J is compact, etc. \diamond

2: Lemma. Suppose continuous $h: J \rightarrow \mathbb{R}$ has a local-extremum at a point $\tau \in J^\circ$. If h is extended-differentiable at τ , then $\boxed{h'(\tau) = 0}$. \diamond

Proof. WLOG τ is a local-min of h . So for all $x > \tau$ with x suff. close to τ , necessarily $h(x) - h(\tau) \geq 0$; thus $h'_{RH}(\tau) \in [0, +\infty]$. Similarly, $h'_{LH}(\tau) \in [-\infty, 0]$. By hypothesis, $h'_{LH}(\tau) = h'_{RH}(\tau)$. So $h'(\tau)$ is zero. \diamond

3: Rolle's Thm. Suppose a continuous $h: [4, 6] \rightarrow \mathbb{R}$ is ext-diff'able on $(4, 6)$. If $h(4) = h(6)$, then there exists a point $\tau \in (4, 6)$ such that $\boxed{h'(\tau) = 0}$. \diamond

Pf. Courtesy (2), WLOG $h()$ has no global-max in J° , so its global-max on J must be the common value of $h(4) = h(6)$. Thus h has a global-min in J° ; pick one, and call it τ . Now (2) gives that $h'(\tau) = 0$. \diamond

4: MVThm. Suppose cts $f: [4, 6] \rightarrow \mathbb{R}$ is ext-diff'able on $(4, 6)$. Then there exists a $\tau \in (4, 6)$ such that

$$f'(\tau) = \frac{f(6) - f(4)}{6 - 4}. \quad \diamond$$

Pf. With $S := \frac{f(6) - f(4)}{6 - 4}$, the slope of the chord, let

$$h(x) := f(x) - [x - 4] \cdot S.$$

Since $h(4) = f(4) = h(6)$, Rolle's thm applies to assert a point $\tau \in (4, 6)$ with $0 = h'(\tau) \stackrel{\text{note}}{=} f'(\tau) - 1 \cdot S$. \diamond

E.g: Fnc $f(x) := \sqrt[3]{x}$ has $f'(0) = +\infty$. MVT applies to assert a point $\tau \in (-8, 27)$ where $f'(\tau)$ equals $\frac{3-2}{27-(-8)}$.

For a beautiful MVT-application due to Liouville, see *Liouville's Theorem* on my *TeachingPage*. \square

5: Prop'n. On an interval $H \subset \mathbb{R}$, suppose fnc g is extended-differentiable. If g' is *NevZ* on H , then g is strictly-monotone on H . (We do not assume that g' is continuous.) \diamond

Proof. Were g not strictly-monotone then, WLOG, there are points $a < b < c$, in H , with $g(a) \leq g(b)$ yet $g(b) \geq g(c)$. WLOG $g(a) \leq g(c)$. Applying IVT to g on $[a, b]$ yields point $z \in [a, b]$ with $g(z) = g(c)$. Now Rolle's thm produces a $\tau \in (z, c)$ with $g'(\tau) = 0$. \diamond

6: Cauchy MVT. Continuous fncs $f, g: [4, 6] \rightarrow \mathbb{R}$ are diff'able on $(4, 6)$. Then there exists a $\tau \in (4, 6)$ st.

$$6a: \quad f'(\tau) \cdot [g(6) - g(4)] = g'(\tau) \cdot [f(6) - f(4)].$$

And if g' is never-zero on $(4, 6)$, then

$$6b: \quad \frac{f'(\tau)}{g'(\tau)} = \frac{f(6) - f(4)}{g(6) - g(4)}. \quad \diamond$$

Proof of (6a). Apply Rolle's theorem to

$$7: \quad h(x) := f(x) \cdot [g(6) - g(4)] - g(x) \cdot [f(6) - f(4)],$$

noting that $h(4) = f(4)g(6) - f(6)g(4) = h(6)$. \spadesuit

Proof of (6b). Since g' is *NevZ* on $(4, 6)$, the MVT forces $g(6) \neq g(4)$. So we can cross-divide in (6a). \spadesuit

L'Hôpital's rule

I'll usually state the thms for a one-sided limits, $\lim_{x \searrow T}$ or $\lim_{x \nearrow T}$, where $T \in \overline{\mathbb{R}}$. I'll use “Lim(f)” to mean $\lim_{x \searrow T} f(x)$ or $\lim_{x \nearrow T} f(x)$, as appropriate.

First some *cautionary tales*:

8: *No end.* What is $\lim_{x \searrow -\infty} \frac{\sqrt{x^2+1}}{x}$? Well, $x < 0$ implies that $-\sqrt{x^2} = x$, so

$$\frac{\sqrt{x^2+1}}{x} = \frac{\sqrt{x^2+1}}{-\sqrt{x^2}} = -\sqrt{1 + \frac{1}{x^2}}.$$

Hence the $\lim_{x \searrow -\infty}$ is -1 . But applying L'H to $\frac{\sqrt{x^2+1}}{x}$ will (after algebra) give $\frac{x}{\sqrt{x^2+1}}$. Which L'H sends to the original $\frac{\sqrt{x^2+1}}{x}$. \square

9: *BttDB: Back to the Drawing Board.* Certainly

$$\lim_{x \searrow -\infty} \frac{x^2 + \sin(x)}{x^2} = 1.$$

L'H examines $\frac{2x + \cos(x)}{2x}$; still $\lim = 1$. But applying L'H again gives $\frac{2 - \sin(x)}{2}$, which has *no limit*. There is no error here; if the f'/g' limit doesn't exist in $\overline{\mathbb{R}}$, then we can draw **no conclusion** about the f/g limit. \square

10: **L'Hôpital's Thm.** Fix a “target” $T \in [-\infty, +\infty)$ and consider real-valued fncs f, g defined on part of \mathbb{R} .

Suppose there exists a real number $B > T$ for which

10†: On $(T, B]$: f & g are diff'able, and g' is *NevZ*. \heartsuit

Recalling that $\mathbb{R}^* = [-\infty, +\infty] \cup \{\text{DNE}\}$, define

$$\mathbf{L} := \lim_{x \searrow T} \frac{f(x)}{g(x)} \in \mathbb{R}^* \quad \text{and}$$

$$\mathbf{\Lambda} := \lim_{x \nearrow T} \frac{f(x)}{g(x)} \in \mathbb{R}^*.$$

\heartsuit 1 Courtesy (5), our g is zero at most once on $(T, B]$. Consequently, we can move B closer to T so that g is *NevZ* on $(T, B]$.

Suppose, as $x \searrow T$, that either

$$10_0: \quad g(x) \rightarrow 0 \text{ and } f(x) \rightarrow 0, \quad \text{or}$$

$$10_\infty: \quad g(x) \rightarrow \pm\infty.$$

If $\mathbf{\Lambda} \neq \text{DNE}$, then $\mathbf{L} = \mathbf{\Lambda}$. \diamond

Reduction to T finite. If $T = -\infty$, then define

$$\varphi(x) := f\left(\frac{-1}{x}\right) \quad \text{and}$$

$$\gamma(x) := g\left(\frac{-1}{x}\right).$$

So $\lim_{x \searrow 0} \frac{\varphi}{\gamma}(x) = \mathbf{L}$. But the **Chain Rule** gives

$$\begin{aligned} \varphi'(x) &= \frac{1}{x^2} \cdot f'\left(\frac{-1}{x}\right) \quad \text{and} \\ \gamma'(x) &= \frac{1}{x^2} \cdot g'\left(\frac{-1}{x}\right). \end{aligned}$$

Thus $\lim_{x \searrow 0} \frac{\varphi'}{\gamma'}(x) = \mathbf{\Lambda}$. Proving L'H for $(\varphi, \gamma \text{ at } 0)$ will thus establish L'H for $(f, g \text{ at } -\infty)$.

In the proofs below, we will take $(T, B] = (4, 6]$. \square

Proof using (10₀). We may extend f by continuity so that f is cts on $[4, 6]$; hence $f(4) = 0$. Ditto for g .

Each $x \in (4, 6]$, gives a point $\dot{x} \in (4, x)$ with

$$\frac{f'(\dot{x})}{g'(\dot{x})} \xrightarrow{\text{Cauchy-MVT}} \frac{f(x) - f(4)}{g(x) - g(4)} \xrightarrow{\text{note}} \frac{f(x)}{g(x)}.$$

Sending $x \searrow 4$ forces $\dot{x} \rightarrow 4$. \spadesuit

Proof using (10_∞). Assume, say, $\mathbf{\Lambda} = 7$. (The $\mathbf{\Lambda} = \pm\infty$ case just changes notation.) Fixing an $\varepsilon > 0$, ISTE Establish that

$$\text{f1: } \limsup_{x \searrow 4} \frac{f}{g}(x) \leq 7 + \varepsilon.$$

Inequality $\liminf \frac{f}{g} \geq 7 - \varepsilon$ will follow analogously.

Take $B > 4$ so close to 4 that

$$\text{f2: } \forall y \in (4, B]: \quad \left| \frac{f'}{g'}(y) - 7 \right| \leq \varepsilon.$$

For each $x \in (4, B]$, the **Cauchy-MVT** gives a point $\dot{x} \in (x, B)$ with

$$\text{f3: } \frac{f'(\dot{x})}{g'(\dot{x})} = \frac{f(B) - f(x)}{g(B) - g(x)} \xrightarrow{\text{note}} \frac{\frac{f(x)}{g(x)} - \frac{f(B)}{g(B)}}{1 - \frac{g(B)}{g(x)}}.$$

And $\frac{f(B)}{g(x)}, \frac{g(B)}{g(x)} \rightarrow 0$, by (10 $_{\infty}$), as $x \searrow 4$.

Taking limsups in (£3) gives

$$* : \quad \limsup_{x \searrow 4} \frac{f'(x)}{g'(x)} = \limsup_{x \searrow 4} \frac{f}{g}(x).$$

Now we **don't know** that $\dot{x} \rightarrow 4$. But we do know that each $\dot{x} \in (4, B]$. Thus LhS(*) $\leq 7 + \varepsilon$, by (£2). Hence (£1). \spadesuit

A remark on the above proof.

11: *Can $\mathbf{L=1}$ yet $\mathbf{\Lambda=DNE}$?* Yes. For each sequence $x_n \searrow T$, nec. $\frac{f}{g}(x_n) \rightarrow 1$ and therefore $\frac{f'}{g'}(x_n) \rightarrow 1$. Yet there *could* be a seq. $z_n \searrow T$ where, say,

$$\frac{f'}{g'}(z_n) \xrightarrow{n \rightarrow \infty} 927. \quad (\text{I.e., some number } \neq 1.)$$

Yet it might that *every* $(x_n)_{n=1}^{\infty}$ sequence misses the dissenting $(z_n)_{n=1}^{\infty}$ sequence. Indeed, this is what happens in example (BttDB), above. \square

12: *Nifty application: Does $h' \rightarrow 0$?* Given a differentiable function with finite limit, say $\lim_{x \rightarrow \infty} h(x) = 7$, suppose $\mathbf{L} := \lim_{x \rightarrow \infty} h'(x)$ exists in $\overline{\mathbb{R}}$. A picture suggests that \mathbf{L} "must" be 0. Can we *prove* it by L'Hôpital's theorem?

Let $f := h \cdot \exp$ and $g := \exp$. So $\lim(\frac{f}{g}) = 7$. But, $f' = [h' + h] \cdot \exp$. So $\lim(\frac{f'}{g'}) = \mathbf{L} + 7$. Thus L'H applies to tell us that $7 = \mathbf{L} + 7$. Hence $\mathbf{L} = 0$. \square

13: *FTCalculus.* The conditions in (10₀) apply to

$$\mathbb{Y} : \quad \lim_{x \searrow 0} \frac{\int_0^x \sin(\sin(t)) dt}{x^2}.$$

Since the **FTCalculus** applies to the numerator, L'H yields $\frac{f''}{g''}(x) = \frac{\sin(\sin(x))}{2x}$. Applying L'H again gives

$$\frac{f''}{g''}(x) = \frac{\cos(\sin(x)) \cdot \cos(x)}{2}.$$

As $\frac{f''}{g''}(0) = \frac{\cos(0) \cdot \cos(0)}{2} = \frac{1}{2}$, the limit in (13 \mathbb{Y}) is $\frac{1}{2}$. \square

Here is the famous example by *O. Stolz*, published in 1871, generalized by *R.P. Boas*, 1986.

Stolz example: (1871). Let

$$f(x) := \int_0^x \cos(t)^2 dt \stackrel{\text{note}}{=} \frac{1}{2} \cdot [x + \cos(x)\sin(x)].$$

Easily $f(x) \nearrow \infty$ as $x \nearrow \infty$. Evidently

$$g(x) := f(x) \cdot e^{\sin(x)}$$

goes $\rightarrow \infty$, since $e^{\sin(x)}$ is bnded-below by $1/e$, which is positive. Now $f' = \cos^2$. Thus

$$* : \quad \begin{aligned} g'(x) &= \cos(x)^2 \cdot e^{\sin(x)} + f(x) \cdot e^{\sin(x)} \cdot \cos(x) \\ &= \cos(x) \cdot e^{\sin(x)} \cdot [\cos(x) + f(x)]. \end{aligned}$$

Dividing produces the *to-zero-going* quantity

$$** : \quad \frac{f'}{g'}(x) = \frac{\cos(x)}{e^{\sin(x)} \cdot [\cos(x) + f(x)]}, \quad \square$$

since **denom** $\rightarrow \infty$ and **numer** is bnded. Thus $\mathbf{\Lambda = 0}$. But **L** is the limit of $\frac{f(x)}{g(x)} \stackrel{\text{def}}{=} 1/e^{\sin(x)}$, which is oscillatory, i.e **DNE**. *What went wrong?*

Give up? *Don't give up — examine the hypotheses of L'H with a finely-toothed comb. If desperate, read further...*

In (*), note that g' is zero **infinitely often**, which violates the condition in (**). This contradicts the initial $\cos()$ factor. Despite the snow-job that I perpetrated in (**).

In (*), note that g' is zero **infinitely often**, which violates the condition in (**). This contradicts the initial $\cos()$ factor. Despite the snow-job that I perpetrated in (**).

In (*), note that g' is zero **infinitely** often, due to the initial $\cos()$ factor. This contravenes the (10†) condition, despite the snow-job that I perpetrated in (**).

In (*), note that g' is zero **infinitely** often, due to the initial $\cos()$ factor. This contravenes the (10†) condition, despite the snow-job that I perpetrated in (**).

Filename: Problems/Analysis/Calculus/mvt-hopitals-rule.
latex
As of: Monday 08Dec2008. Typeset: 29Aug2021 at 17:17.