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Abbrevs. IVT: Intermediate Value Thm. MVT; Mean Value
Thm. FTC; Fund. Thm of Calculus. Use cts for “continuous”
and cty for “continuity”.

The exponential fnc exp can also be written exp(z) = e”.
(So logoexp = Idg and expolog = IdRJrA) Use NevZ to mean
“never-zero”; e.g “exp() is NevZ on R”.

Prolegomena. Use R for the extended re-
als [-00,+oc]. With DNE denoting “Does Not Exist”,
adjoin a point to R to create

R® := [-00,+00] LI {D\E} .

Use diff’able for “differentiable”. A fnc f:R—R is
ext-diff ’able (for extended diff’able) at point 6 if the
limy_6 % exists in [-oo,+00]. Use f]y for the
lefthand ext-derivative, from lim, »¢. Use fp,, for
the righthand ext-derivative, lim,\ 6.

The result below apply to fncs on a closed bounded
interval J. For specificity, I will use J := [4,6] and
will use J° := (4, 6) for its interior.

A fnc h: J—R has a (global) maz-point P € J if

Vo € J: h(P) > h(x);
and the number h(P) is the “maz-value of h on J”.
Weaker, P is a local max-point of h (on J) if there
exists a J-open set U 3 P, so that P is a global max-
point of h|;;. Imagine analogous defns for min-point,
min-value and local min-point of h.

1: Tool. A continuous h: J—R has a max-point and a
min-point.  Proof. Interval J is compact, etc. O

2: Lemma. Suppose continuous h:J—R has a
local-extremum at a point 7 € J°. If h is extended-

differentiable at 7, then | h'(1) = 0| O

Proof. WLOG 7 is a local-min of h. So for all z > 7
with « suff. close to 7, necessarily h(x) — h(1) > 0;
thus hpy(7) € [0,+00]. Similarly, A ,(7) € [-o0,0].
By hypothesis, b} ,(7) = hipy (7). So k(1) is zero. ¢
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3: Rolle's Thm.  Suppose a continuous h:[4,6]—R
is ext-diff’able on (4,6). If h(4) = h(6), then there

exists a point T € (4,6) such that |h/(7) =0|. O

Pf. Courtesy (2), WLOG h() has no global-max in J°,
so its global-max on J must be the common value
of h(4) = h(6). Thus h has a global-min in J°; pick
one, and call it 7. Now (2) gives that A/(7) =0. ¢

4: MVThm.  Suppose cts f:[4,6]—=R is ext-diff ‘able
on (4,6). Then there exists a 7 € (4,6) such that

fl(r) = 8= 0

Pf. With S := %, the slope of the chord, let

h(z) = f(x) — [x—4]-S.

Since h(4) = f(4) = h(6), Rolle's thm applies to assert
a point 7 € (4,6) with 0 = I/(7) 22 f/(r) — 1-S. ¢

E.g: Fnc f(x) == ¥z has f’(0) = +oo. MVT applies
to assert a point T € (-8,27) where f'(7) equals ==
For a beautiful MV T-application due to Liouville,

see Liouville’s Theorem on my TeachingPage. O

5: Prop'n.  On an interval H C R, suppose fnc g is
extended-differentiable. If ¢' is NevZ on H, then g is
strictly-monotone on H. (We do not assume that g’ is

continuous.) O

Proof. Were g not strictly-monotone then, WLOG,
there are points a<b<c, in H, with g(a) < g(b) yet
g(b) > g(c). WLOG g(a) < g(c). Applying IVT to g
on [a,b] yields point z € [a,b] with g(z) = g(c). Now
Rolle’s thm produces a 7 € (z,¢) with ¢'(7) =0. ¢

6: Cauchy MVT.  Continuous fucs f, g:[4,6]—=R are
diff’able on (4,6). Then there exists a T € (4,6) st.

Ga:  f'(7)-[9(6) — g(4)] = g'(v) - [£(6) — f(4)].
And if ¢’ is never-zero on (4,6), then

6b: J'(7) =
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Proof of (6a). Apply Rolle's theorem to
72 h(z) = f(z)[9(6) —g(4)] — g(z) - [f(6) — f(4)],
noting that h(4) = f(4)g(6) — f(6)g(4) = h(6). ¢

Proof of (6b).  Since ¢’ is NevZ on (4,6), the MVT
forces ¢g(6) # g(4). So we can cross-divide in (6a). 4

L’Hopital’s rule

I’ll usually state the thms for a one-sided limits,
lim,\ 7 or lim, »7, where T' € R. I'll use “Lim(f)”
t li li 3 iate.
0 mean xl\n% f(x) or II/I‘I% f(x), as appropriate

First some cautionary tales:
8: No end.  What is limg oo Y217 Well, 2<0
implies that —Vz2 = x, so

241 V2?41 / 1
xx I ];2 - —y/ 1+ z2Z -
Hence the lim,\ -~ is 1. But applying L'H to ¥ xi"'l
will (after algebra) give \/x"gﬁ Which L'H sends to the
V241 ]
S

original

9: BttDB: Back to the Drawing Board. Certainly

lim x2+4sin(z) - 1

2\ ~00 z? '
L'H examines 2x+267;s(:c); still lim=1. But applying L'H
again gives 2_%11(@, which has no limit. There is no

error here; if the f’/¢’ limit doesn’t exist in R, then
we can draw no conclusion about the f/g limit. [

10: L'Hépital's Thm. Fix a “target” T' € [-00, +o0) and
consider real-valued fncs f, g defined on part of R.
Suppose there exists a real number B>T" for which

10f: On (T, B]: f &g are diff’able, and ¢' is NevZ."*
Recalling that R® = [-o00, +oo] LI { D\E}, define
€ R®

L = lim [(z) and

i (@) ®
A = g}l\%g'(:p) c R¥.

“ICourtesy (5), our g is zero at most once on (T, B]. Conse-
quently, we can move B closer to T so that g is NevZ on (T, B].

L’Hopital’s rule
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Suppose, as x \, T, that either

10¢: g(z) = 0 and f(x) -0, or
1000t g(z) = +oo.
If A # D\E, then L = A. 0

Reduction to T finite. If T = -oo, then define

p(@) = f(2) and
(@) = 9(3)-
So lin% £(z) = L. But the Chain Rule gives

¢ (x) = and

1 -1

z2 T
V(@) = =-9(3)
Proving L'H for [, at 0] will

thus establish L'H for .
In the proofs below, we will take (T, B] = (4, 6]. ]

Thus lim ‘L,/(a:) = A.
N0 7

Proof using (10y). We may extend f by continuity so
that f is cts on [4, 6]; hence f(4) = 0. Ditto for g.
Each = € (4, 6], gives a point € (4, z) with
F1(%) couchy-mvT f(z) = f(4) note f(x)
g'(z)

g(z)
Sending x\4 forces T =4 ¢

g9(x) —g(4)

Proof using (10, ). Assume, say, A=7. (The A=o0 case
just changes notation.) Fixing an € > 0, ISTEstablish
that

£1: limsup £ ()

< T+e.
N\ 4 g

Inequality liminf 5 > 7 — ¢ will follow analogously.
Take B>4 so close to 4 that

£2: Yy € (4,B] :

Fw) -1 <<

For each = € (4, B], the Cauchy-MVT gives a point
z € (z, B) with

e IE B = @) we 50 90
g@ 9B -gw) 1 L8]
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At 5.5 0. 100)

Takmg limsups in (£3) gives

s limsup fl( ) = hmsupf( ).
o\ 4 g o\ 4

Now we don’t know that + — 4. But we do know
that each & € (4, B]. Thus LhS(x) < 7 +¢, by (£2).
Hence (£1). ¢

L’Hopital’s rule

A remark on the above proof.

11: Can L=1 yet A=DNE?  Yes. For each sequence
o\, nec. g(m‘n) — 1 and therefore §($.n) — 1. Yet
there could be a seq. z,\/[I where, say,

n—oo

L,( n) 2225 927

(I.e, some number #1)

Yet it might that every (x’n)go 1 sequence misses the
dissenting (z,),-; sequence. Indeed, this is what hap-
pens in example (BttDB), above. O

12: Nifty application: Does h'—0? Given a differen-
tiable function with finite limit, say mlggo h(z) =7,
suppose L = leh’(x) exists in R. A picture
x [e.e]
suggests that L “must” be 0. Can we prove it by
L'Hépital’s theorem?

Let f = h-exp and g := exp. So Lim(g) =T.
But, f’ = [h/ + h] - exp. So Lim(Jgif) = L+ 7. Thus
L'H applies to tell us that 7 = L + 7. Hence L = 0.[J

13: FTCalculus. The conditions in (10¢) apply to

v lim I sin(si;a(t)) dt .

0 z
Since the FTCalculus applies to the numerator, L'H
yields g—,/(x) = Sm(zlin(z)) Applying L'H again gives

1 _ cos(sin(x)) - cos(x)
g//( ) - 9 :

£ () — €0s(0)-cos(0)
As o7 (0)=

cosl0) 1 the limit in (13¥) is 1. O
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Here is the famous example by O. Stolz, published
in 1871, generalized by R.P. Boas, 1986.

Stolz example: (1871). Let

f(z) = /xcos(t)2dt fote 3

0
Easily f(z) "cc as x co. Evidently
g(x) = f(x) )

goes —»00, since (%) is bnded-below by 1 /e, which
is positive. Now f/ = cos®. Thus

@

[z + cos(x)sin(z)] .

g(x) = cos(x)? &M@ 4 fz). M) . cos(x)
*:
= cos(x) - @ . [cos(x) + f(z)].
Dividing produces the to-zero-going quantity
Vil cos(x)
: = = — O
k% g/ (x) esm(m) . [COS(JI) + f(l')} s

since denom—o0 and numer is bnded Thus A = 0.
But L is the limit of f(( 5 = ) 1/e5(*) which is oscil-
latory, i.e DNE. What went wrong?

Give up? Don't give up —examine the hy-
potheses of L'H with a finely-toothed comb. If
desperate, read further. . .
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In (*), note that ¢’ is zero infinitely often,
due to the initial cos() factor. This contra-
venes the (101) condition, despite the snow-
job that I perpetrated in ().
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