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Aside. In number_theory.ams.tex there is a bit more
on multiplicative functions also in mult.convolution.ams. tex;
run collect.ams.tex though.

See generating_func.latex for an application of the

Mobius fnc.

Basic

Given two arbitrary”! functions f,g:Z,—C, define
their convolution (“Dirichlet convolution”) by

[f®g](K) = > fla)-g(b).

a-b=K

Each such sum is to be interpreted as over all ordered
pairs (a,b) of positive divisors of K. Easily, convolu-
tion is commutative”! and associative.

Let G be the set of functions f:7Z,—C such that
f(1) # 0. Inside is G C G, the set of good func-
tions, which have f(1) = 1. Say that a good f is
multiplicative if for all posints“? K and I

KLD — f(K-T) = f(K)- f(I).

Let M C G be the set of multiplicative”® functions.

“!Indeed, they could map into a general ring. If this ring is
commutative then convolution will be commutative.

“2Use =y to mean “congruent mod N”. Let n 1 k mean
that n and k are co-prime. Use k o n for “k divides n”. Its
negation k }n means “k does not divide n.” Use n o k and
n } k for “n is/is-not a multiple of k.” Finally, for p a prime
and E a natnum: Use double-verticals, p” o n, to mean that F
is the highest power of p which divides n. Or write n |o p”
to emphasize that this is an assertion about n. Use PoT for
Power of Two and PoP for Power of (a) Prime.

For N a posint, use ®(N) or ®x for the set
{r € [1.N]|r L N}. The cardinality ¢(N) = |®x]| is the Fu-
ler phi function. [So ¢(N) is the cardinality of the multiplica-
tive group, @y, in the Zy ring.] Easily, ¢(p”) = [p—1]-p*~*, for
prime p and posint L.

Use EFT for the Euler-Fermat Thm, which says: Suppose
that integers b 1. N, with N positive. Then pe) =4 1.

V3An f is totally (or completely) multiplicative if
f(K-T')= f(K)- f(I') always holds, even if K f I'. This
class is less important than M. Indeed, the set of totally multi-
plicative fncs is not sealed under convolution.
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Basic functions. Define fncs 6,1, Id € M by:

0(1) =1 and  0(#1):=0;
1(n):=1 and
Id(n):=n

Evidently 6() is a neutral element for convolution.
Also define, as n varies over the posints, these

MFncs:

T(n) = Zd:d.'nl and

0'(77,) = Zd:dqnd’ Generalizing

Ua(n) = Zd:dqnda’ for a € C.
This 7 1is called the divisor-count function,
and o is called the divisor-sum fnc. E.g,

oc(4)=1+2+4=Tand7(4) =1+1+1=3. Note
that og = 7 and o1 = 0. Also. ..

1:  Each of 6,1, Id, T, o, is multiplicative.

Exer 1: Use the uniqueness part of FTArithmetic to prove 7 mul-

tiplicative. [Samo argument applies to o;,.]

2: Theorem. For prime p and natnum L:

2a: T(pt) = L+1.
[L+1a _ 1
2b: For a#0: Ua(pL) = ppoci_l
Proof. Exercise 2. O

Defn and EFT. For N a posint, use ®(N) or
& for the set {r € [1..N] |r L N}. The cardinality
@(N) = |®y| is the Euler phi function. [So ¢(N)
is the cardinality of the multiplicative group, @y, in the Zx
ring.] Easily, ¢(p’) = [p—1]-p*~!, for prime p and
posint L.

Use EFT for the Euler-Fermat Thm, which says:
Suppose that integers b 1. N, with N positive. Then
b‘P<N) =N 1.

Euler ¢ is multiplicative; this will follow from (7).C]

3: Theorem. (G, ®,6) is a commutative group and
M C G C G are subgroups. O
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Pf. To see that § is a ®-identity-elt on @, note
[f @ H)(K) = 3 f(a)(b) = [(K)d(1) 2= f(K).

(The below arguments showing G a group apply to show G

a group. So we only argue for G and M.)

Easily G is sealed under convolution. To show
the same for M, take fncs f,h € M and posints
K 1 I'. Given posints (z,y) with z -y equaling the
product KI', the FTArithm says that we can factor
uniquely * = aa and y = bf into posints so that
a,b e K and o, 5 ¢ I'. Thus

[f®h](KT) =

Y. fl@)hy)

zy=KI
3a: _ Z f(aa)h
04,3

Necessarily a 1. o and b | 3, since K 1 I'. Since f
and h are each multiplicative fncs,

[f@R(KD) = 3 fla)f(a)h(b)h(B)
- abK
= [ X f@h®)] - | 3 fla)n(s)].
a-b=K a-B=I"

And this last equals [f ® h](K) times [f ® h](I").

Each good f has a convolution inverse. We
construct an h € G so that f ® h = §. For each
posint K, then,

> f(a)-h(b

ab=K
(a,0)#(1,K)
Since f(1)=1 is not zero, there is a unique value that
we can assign h(K) so as to make the displayed-eqn
hold. Finally note that h(1) will indeed be assigned
the value 1, so h is good. This shows that G is a

group.

M is sealed under convolution-inverse. The
last step —to showing that (M, ®, d) is a group- is to
show that when the above f is multiplicative, then
the corresponding h is too.

An inductive proof that h(KI') = h(K)h(I") pro-
ceeds by considering a pair K 1 I" for which

h(bB) = h(b)h(B) for each proper divisor

3¢ pair (b, ) o (K, I).

Basic
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That is, b ¢ K and [ ¢ I" with at least one of these
being proper.

Now WLOG (K, I') # (1,1), so 6(KI') = 0, i.e
[f ® h)(KT) is zero. Hence

Zfaa

0 =

~=

[ )h(b8)] + f(1-1) - H(KT).
ab= K

a-,B:F,
(bB)A(K.T)

As f(1-1) equals 1, we can write

= | X flaa)-h®)h(B)]

abK
=TI,

(b,ﬁ)i(K I)

e —h(KTI

since, by (3c), our h is multiplicative on all the
(b, B) pairs on RhS(x). Adding f(1-1)h(K)h(I") to
each side [again using that f(1-1) = 1|, gives

> flaa)-h(b)h(B).

ab=K,
a-p=1I

h(K)W(D) — h(KT) =

Since f is multiplicative, this RhS equals
[ > F@r®)] - | Y F)hd)]
a-b=K a-B=I"

C @ h)(K)-[f@h)(I) =

Putting it all together,

S(K)S(I).

*k: h(K)h(I') — h(KI') = 0(K-I),

since 0() is a MFnc.  Finally, RhS(*x%) is zero,
since K-I" # 1. ¢
4: Lemma. Suppose that f and g are MFncs. Then

f g (pointwise product) is a MFnc. If g is no-where zero,
then ptwise quotient f /g is a MFnc. Proof. Routine.{

Analogy.  Recall that CRThm allows us to convert
polynomial congruences f(x) = 0 modulo a compos-
ite M to just examining f(z) = 0 modulo p”; we only
need consider powers of primes.

In analogy, the MFnc-theory allows us to convert
proving an identity h() = g(), between MFncs, on all
of Z, to just verifying it on each prime-power p~. (]

Filename: Problems/NumberTheory/multiplicative_fncs.latex
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Applications
Define the Moébius fnc p to be the convolution-

inverse of 1. Le |p = 1971| so p is characterized

by p®1 = §. By Thm 3, it is enough to know p()’s
values on the powers of primes.

5: Lemma. For each prime p and exponent n in [2 .. 00):

p(p) = -1 and p(p") = 0. O

Proof. Well 0 = §(p) = p(p) + p(1)
For a higher power of p:

= p(p) + 1.

0 =4(p") = p()+plp)+S+unp"),

where S := >0~ Zu(pj ). This S, by induction, is zero.
Thus p(p™) = —[p(1) + p(p)], which is zero. ¢

Before developing further results, note that:

For each good f, necessarily f®9 =g,

since J is the neutral element for ®. We now need a
little tool.

6: Bijection Lemma. Fixing a posint N, let g(¢) mean
GCD{¥¢,N}. Then there is a bijection

= | |®(a)

d:d o N

a: [1.N] <

{d} note {( d)‘ and }

zeP(d)

realized by the mapping

zp=4/g(f) and

b: 0~ (x¢,dy), where do = N/g(t)
The inverse bijection is
. N
c: (z,d) — z- 5. O

We now establish a few useful relations.

7: Basic Lemma. Among MFncs 1, 7,0, Id, u and ¢,
the following relations hold.

2 1®1 =7. Alsold®1=0,s01ld=0 ® pu.

W p®1 = 9.
iwi: o ®1 = Id.
w: o®T =0 and p®o = Id*°. O

Applications
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Proof of iii. ~ Take cardinalities in (6a), which gives
Id=¢@®1. Asfor (iv), note that
p®T = p®l®l = d®1,

which is o, by definition. ¢

Ta: Coro. Euler ¢ is multiplicative. %

Proof. Courtesy (7iii), ¢ = Id® 1 is a convolution of

MFncs, hence is an MFnc itself, by (3). ¢
8: Prop'n.  The fnc ¢/Id is multiplicative. And
T eE) _ pE) _
a,b: h}r{nji}p Ve 1 and III(HLI&f Ve 0.
c Finally, @(K)—oc0 as K  oo. O

Pf of (a). On primes, @ =F—==1—-+<.Etc. ¢

Pf of (b). Let K,, be the product of the first n primes.
Exer3. Now... 7 ¢

Pf of (¢).FTSOC, imagine aseq. K1 < K3 < ... along
which () stays bounded. Prove there is a bound —say,
100~ so that for all primes p and all j: If p” is in the
pop-decomp of K, then L < 100. Exer4. Now... 74

Convolution powers. Using binomial coefficients

[reviewed in Appendix A, P.6]7 one can show that

n B L+n—-1
1®(pL)—< I )

for each prime p. Furthermore

u

These are routinely proved by induction on n.

Filename: Problems/NumberTheory/multiplicative_fncs.latex
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Applications of Mo6bius Inversion

An N'%-root w of unity [in C] is primitive if, for each
kin [1..N), this w is not a k'-root of unity. Use Vy
for the set of primitiVe Nt_roots. Define the “Nth
cyclotomic polynomial” by

9a: Cn(z) = HwGVN [z —w].
Letting Fy(z) :== 2" — 1, note that
9b: FN(QZ) = Hdo|N Cd(a:)

Used recursively, we compute these cyclo-polys:

9c: Examples:

Ci(z)=2—-1; C3(2)=224+241; Cs(z)=2"+22+22+241;
Co(z)=2+1; Ca(z) =22 +1; Ce(z) = 22— z241.
10: Prop'n.  The sum of all the N*-roots of unity

equals 6(N). And their product is [-1]V+1,

The sum of all primitive N*M-roots equals u(N).
Their product is 1, except when N = 2 where the
product is —1. O

Pf for all roots. Let S be the sum“*, and P the
product, of the set, A, of all N*"-roots. Thus

+FYP =][lz-21 =" -1 ¢

ZeA

¥ — 8N 4

Pf for primitive roots. Let S(n) = 3.(V,). Summing
over the (positive) divisors a ¢ N gives
> S = [WWoa] =
ab=N
IOWords, S®1 =6. Thus S =0 ® pu = .

As for the product, non-real primroots come in con-
jugate pairs. Each conjugate pair multiplies to 1. So
S (V) is 1 —unless [-1] is an N*® primroot, which
happens exactly when N = 2. ¢

S(N).

Defn. For a poly with non-zero constant term, e.g
g(x) == 923 + 8x — 6, its reversal ‘g has the coeffs in
reverse order. So ‘g (z) = -62% 4 822 + 9. O

“4For the sum, an alternatlve proof is to fix a primitive Nt
root w. Now Sy = Ek o w" is the sum of all N** roots. So
S1=1=46(1). For N € [2..00), note w # 1 so Sy = “’w:ll =
0=0(N).

Applications of Mobius Inversion
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11: Lemma. FEach Cy is a monic intpoly, of degree
V| 22£ o(N). When N € [2..00), moreover, Cy is

palindromic in that F = Cy.
Finally, for N > 2 and K = ¢(N),

1la: Cn(z) = ™ —p(N)2" '+ 4 [-u(N)]z + 1. O

Proof. Equation (9b) gives
Cy = FN/quN Ca.

By induction on N, each of the C, is a monic intpoly.
And easily: If a monic intpoly divides another, then
the quotient is a monic intpoly.

Consider a Z € V. Algebra gives
[l —27] =
Now FN(l') equals 2

Hx-[%—Z] =

Reversal.
12z -1 = 1Z[z—}].

-C N(l) which equals

HZ Hm—f]

ZeVN ZeVy ZeVy
Since Cga(z)=[z+1] is palindromic, WLOG N2>3.
Thus K = ¢(N) is even. Also, (10) says that
[lzevy Z] = 1. Thus
Cn(w) = 1-1-[[lr - 4] 22 Cy(a).
ZeVN
Lastly, (11a) follows from (10). ¢

12: Theorem. Each Cy can be described by inclusion-
exclusion as:

Cn(z) = [[[z* - YH® 2 TT €y (x4
a-b=N a-b=N
13: note H C “(b

a-b=N, W1th
b square—free

Below: P is prime, I' and N are posints and K a
natnum.

13i: Now suppose P 1. T'. Then
Cprsip(z) = Cr(zP ) /Cr(zF").
In particular, setting I' := 1,

K

PP
[Z ] 1 — C,D(ZP )

CPK+1 (Z) = m

Filename: Problems/NumberTheory/multiplicative_fncs.latex
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13ii: Consider an N L I'. Then

e Cnr(z) = [[Cr(=
a-b=N

This generalizes (13). O

Pf of (i). Set L := K+1 and apply (13) to N := PLT.
Omitting all pairs a-b=N with b }e P? means that a
has form either aP* or aP™. So

Cy = [ H[FQPL]M(B)} : [ H [FaPK]lL(PB)]

aPL.g=N aPX.pp=N
= [FaPL / H QPK
a-f=I" a-p=I"
pPL pPK
Le Cy(z) = Cp(z")/Cr(z"). ¢

Aside. Letting R := P*, we can restate the above
conclusion as

i: C RF H Cp . U]
ij=R

Pf of (ii). This proof, while correct, should be

rewritten.

Eqn (f;) is a tautology. So, given M LT, we’'ll estab-
lish (t,,) by induction on the number of PoPs in M.
Write M = NR with R a PoP co-prime to N. Then
Cur(z) equals

H Crr(z

a-b=N

H HC u(y u(b)

a-b=N i-j=R

_ HC (bJ

z]R

Cnrr(z

lon
<
—~
++
=

This, since b L j, because N 1L R. Letting z = ai
and y := bj, the co-primeness N 1 R again gives

Cur(z) = H Cr(z u(y) ¢
zy=NR

Filename: Problems/NumberTheory/multiplicative_fncs.latex
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§A  Appendix

A For a natnum n, use “n!” to mean “n factorial”;
the product of all posints <n. So 3!=3-2-1=6
and 5! =120. Also 0! =1 and 1! =1.

For natnum j and arb. complex number 3, define
[BL7] = B-[B-1]-[8=2]-...-[B—[i—1]];
this is read as “8 falling factorial j”. E.g,

The binomial coefficient (;), read “7 choose 37,
means the number of ways of choosing 3 objects from
7 distinguishable objects. If we think of putting these
objects in our left pocket, and putting the remaining
4 objects in our right pocket, then we write the coeffi-
cient as (?:4). [Read as “7 choose 3-comma-4.”| Evidently

N\ withk=N—j ( N\  N! [N ]j]
i) \4 k) Gk 5

Note (g) = (0?7) =1 Also, (1127:11) = (JIX) + (k]il)
Finally, the Binomial theorem says

B: +yN = > (ﬁg)-x]’yk,
k=N

where (j, k) ranges over all ordered pairs of natural
numbers with sum N.

In general, for natnums N =k; + ...+ kp, the
. . . N .
multinomial coefficient (, , "~ ) is the num-
ber of ways of partitioning N objects, by putting
k1 objects in pocket-one, ks objects in pocket-two,
...putting kp objects in the P™ pocket. Easily

B N B N
Nk koo kp) kel kpl

And [z + --- + zp]" indeed equals the sum of terms

N
Bi; (kl,...,kp) . xlkl . $2k2 .. .:EPkP ’
taken over all natnum-tuples k=(ky, . .., kp) that sum
to V.

Filename: Problems/NumberTheory/multiplicative_fncs.latex
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§B  Appendix

From NumberTheory/mult-convolution~.latex
There is little here that is not in the earlier pages, so I will
eventually delete most of this.
Note: This appendix uses symbol = to mean
“proper divisor of”.

Entrance. Fix a ring R = (R, +,0R, -, 1g) which
is not necessarily commutative. Let F be the set of
functions Z;. — R. Let M C F be the subset of
multiplicative functions. For f, g € I define the con-
volution f ® g € F by

= f(d)g(F).

den

[f®gl(n

Observe that

14: [f ® gl(

= D> ()l
eon

Definition. Let M C F be the set of multiplicative
functions, where f is multiplicative if:

f(R)f(n).

Define functions (,1,6 € M: ( is the constant
zero function, 1 is the constant one function, and
d(1) == 1gr and §(#1) := Or. For every f, evidently,

= Y _dd)f(n/d) = 5(1)f(n/1) = f(n)

den

kln = f(k-n)=

[6® fl(n

and similarly [f ®](n) = f(n). Thus ¢ is a two-sided
identity for convolution. It is also evident that (® f =
(= f®C(, so (is a zero-element for convolution.

15: Ring Theorem.
a: Q:=(F, ®,9, +,() is a ring.
b: Both « and 8 are ring-homomorphisms

B:Q >R
f=f(1)

so that 8 o « is the identity map on R. Conse-
quently ) is commutative IFF R is commutative.

a:R—=Q

T — xd

c: fisaunitinQ IFF f(1) is a unit in R.

B APPENDIX
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d: If f is a zero-divisor in £ then f(1) is a zero-divisor
in R. O

Pf of (a,b). Associativity of convolution follows from
[[f ® gl @ h](n)

=Y [f@gl(n/d)-h(d)=>_Y" fle) h(d)

den deln o
= 3" feg(2)nd) = 3 1)) 9(")h(d)
de: d-eon eo|n del
—%jf [g@h](nfe) & [f®lg®h]](n).
Automatically, convolution distributes over addition,
fitfol®g = fidwg+ fa®g and

f®lgi+g] = feoga + f®g,
since the multiplication in R distributes over addition.

Note that part (b) is a triviality. ¢

Pf of (c). We wish to define a g € Qso that g® f = 4.
For each n, then, g must satisfy

gln) - F(1) 22 g(n) - £(2)
1o = 5n) = X 9(@f(5).

d:dZn

Since f(1) is by hypothesis an invertible element of R,
we can divide by f(1) and express g(n) in terms of
g(d) for smaller elements d. Since the Z-order is well-
founded, (16) gives a valid recursive definition of g.
Note, by that way, that g(1) will be 1/f(1).

A similar recursion constructs a function ¢’ such
that f ® ¢’ = §. By associativity, then,

g=g®[fed] =geflegd = 4. ¢

Proof of d. Suppose that there is a g # ( such that
g® f = (. Let n be o-smallest so that g(n) # Og.
Thus

g()f1) = =3 9@ f(F).
ddzn
=-Y Or-f(%) = Or.
ddzn
Thus f(1) is indeed a zero-divisor in R. ¢
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