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Aside. In number_theory.ams.tex there is a bit more
on multiplicative functions also in mult.convolution.ams.tex;
run collect.ams.tex though.

See generating_func.latex for an application of the
Möbius fnc.

Basic
Given two arbitrary♥1 functions f,g:Z+→C, define
their convolution (“Dirichlet convolution”) by[

f ~ g
]
(K) :=

∑
a·b=K

f(a) · g(b) .

Each such sum is to be interpreted as over all ordered
pairs (((a, b))) of positive divisors of K. Easily, convolu-
tion is commutative♥1 and associative.

Let Ĝ be the set of functions f :Z+→C such that
f(1) 6= 0. Inside is G ⊂ Ĝ, the set of good func-
tions, which have f(1) = 1. Say that a good f is
multiplicative if for all posints♥2 K and Γ :

K ⊥ Γ =⇒ f(K·Γ ) = f(K) · f(Γ ) .

Let M ⊂ G be the set of multiplicative♥3 functions.
♥1Indeed, they could map into a general ring. If this ring is

commutative then convolution will be commutative.
♥2Use ≡N to mean “congruent mod N ”. Let n ⊥ k mean

that n and k are co-prime. Use k •| n for “k divides n”. Its
negation k �r| n means “k does not divide n.” Use n |• k and
nr|� k for “n is/is-not a multiple of k.” Finally, for p a prime
and E a natnum: Use double-verticals, pE •|| n, to mean that E
is the highest power of p which divides n. Or write n ||• pE

to emphasize that this is an assertion about n. Use PoT for
Power of Two and PoP for Power of (a) Prime.

For N a posint, use Φ(N) or ΦN for the set
{r ∈ [1 .. N ] | r ⊥ N}. The cardinality ϕ(N) := |ΦN | is the Eu-
ler phi function. [So ϕ(N) is the cardinality of the multiplica-
tive group, ΦN , in the ZN ring.] Easily, ϕ(pL) = [p−1]·pL−1, for
prime p and posint L.
Use EFT for the Euler-Fermat Thm, which says: Suppose

that integers b ⊥ N , with N positive. Then bϕ(N)≡N 1.
♥3An f is totally (or completely) multiplicative if

f(K · Γ ) = f(K) · f(Γ ) always holds, even if K 6⊥ Γ . This
class is less important than M. Indeed, the set of totally multi-
plicative fncs is not sealed under convolution.

Basic functions. Define fncs δ,1, Id ∈M by:

δ(1) := 1 and δ(6=1) := 0 ;

1(n) := 1 and
Id(n) := n .

Evidently δ() is a neutral element for convolution.
Also define, as n varies over the posints, these

MFncs:
τ (n) :=

∑
d:d•|n

1 and

σ(n) :=
∑

d:d•|n
d . Generalizing

σα(n) :=
∑

d:d•|n
dα, for α ∈ C.

This τ is called the divisor-count function,
and σ is called the divisor-sum fnc. E.g,
σ(4) = 1 + 2 + 4 = 7 and τ (4) = 1 + 1 + 1 = 3. Note
that σ0 = τ and σ1 = σ. Also. . .

Each of δ,1, Id, τ ,σα is multiplicative.1:

Exer 1: Use the uniqueness part of FTArithmetic to prove τ mul-
tiplicative. [Same argument applies to σα.]

2: Theorem. For prime p and natnum L:

τ (pL) = L+ 1 .2a:

For α 6=0: σα(pL) =
p[L+1]α − 1

pα − 1
.2b:

Proof. Exercise 2. ♦

Defn and EFT. For N a posint, use Φ(N) or
ΦN for the set {r ∈ [1 .. N ] | r ⊥ N}. The cardinality
ϕ(N) := |ΦN | is the Euler phi function. [So ϕ(N)

is the cardinality of the multiplicative group, ΦN , in the ZN
ring.] Easily, ϕ(pL) = [p−1]·pL−1, for prime p and
posint L.

Use EFT for the Euler-Fermat Thm, which says:
Suppose that integers b ⊥ N , with N positive. Then
bϕ(N)≡N 1.

Euler ϕ is multiplicative; this will follow from (7).�

3: Theorem. (((Ĝ,~, δ))) is a commutative group and
M ⊂ G ⊂ Ĝ are subgroups. ♦
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Pf. To see that δ is a ~-identity-elt on Ĝ, note[
f ~ Id

]
(K) =

∑
a·b=K

f(a)·δ(b) = f(K)·δ(1)
note
==== f(K).

(The below arguments showing G a group apply to show Ĝ
a group. So we only argue for G and M.)

Easily G is sealed under convolution. To show
the same for M, take fncs f, h ∈ M and posints
K ⊥ Γ . Given posints (((x, y))) with x · y equaling the
product KΓ , the FTArithm says that we can factor
uniquely x = aα and y = bβ into posints so that
a, b •| K and α, β •| Γ . Thus[

f ~ h
]
(KΓ ) =

∑
x·y=KΓ

f(x)h(y)

=
∑

a·b=K
α·β=Γ

f(aα)h(bβ) .
3a:

Necessarily a ⊥ α and b ⊥ β, since K ⊥ Γ . Since f
and h are each multiplicative fncs,[

f ~ h
]
(KΓ ) =

∑
a·b=K
α·β=Γ

f(a)f(α)h(b)h(β)

=
[ ∑
a·b=K

f(a)h(b)
]
·
[ ∑
α·β=Γ

f(α)h(β)
]
.

3b:

And this last equals
[
f ~ h

]
(K) times

[
f ~ h

]
(Γ ).

Each good f has a convolution inverse. We
construct an h ∈ G so that f ~ h = δ. For each
posint K, then,

δ(K) = f(1) · h(K) +
∑
a·b=K

(((a,b))) 6=(((1,K)))

f(a) · h(b) .

Since f(1)=1 is not zero, there is a unique value that
we can assign h(K) so as to make the displayed-eqn
hold. Finally note that h(1) will indeed be assigned
the value 1, so h is good. This shows that G is a
group.

M is sealed under convolution-inverse. The
last step –to showing that (((M,~, δ))) is a group– is to
show that when the above f is multiplicative, then
the corresponding h is too.

An inductive proof that h(KΓ ) = h(K)h(Γ ) pro-
ceeds by considering a pair K⊥Γ for which

h(bβ) = h(b)h(β) for each proper divisor
pair (((b, β))) •| (((K,Γ))).3c:

That is, b •| K and β •| Γ with at least one of these
being proper.

Now WLOG (((K,Γ))) 6= (((1, 1))), so δ(KΓ ) = 0, i.e
[f ~ h](KΓ ) is zero. Hence

0 =
∑

a·b=K
α·β=Γ

f(aα)h(bβ)

=
[ ∑
a·b=K,
α·β=Γ ,

(((b,β))) 6=(((K,Γ)))

f(aα)h(bβ)
]

+ f(1·1) · h(KΓ ) .

As f(1·1) equals 1, we can write

−h(KΓ ) =
[ ∑
a·b=K,
α·β=Γ ,

(((b,β))) 6=(((K,Γ)))

f(aα)·h(b)h(β)
]
,∗:

since, by (3c), our h is multiplicative on all the
(((b, β))) pairs on RhS(∗). Adding f(1·1)h(K)h(Γ ) to
each side [again using that f(1·1) = 1], gives

h(K)h(Γ )− h(KΓ ) =
∑

a·b=K,
α·β=Γ

f(aα)·h(b)h(β) .

Since f is multiplicative, this RhS equals[ ∑
a·b=K

f(a)h(b)
]
·
[ ∑
α·β=Γ

f(α)h(β)
]

def
=== [f ~ h](K) · [f ~ h](Γ ) = δ(K)δ(Γ ) .

Putting it all together,

h(K)h(Γ )− h(KΓ ) = δ(K·Γ ) ,∗∗:

since δ() is a MFnc. Finally, RhS(∗∗) is zero,
since K·Γ 6= 1. �

4: Lemma. Suppose that f and g are MFncs. Then
f ·g (pointwise product) is a MFnc. If g is no-where zero,
then ptwise quotient f/g is a MFnc. Proof. Routine.♦

Analogy. Recall that CRThm allows us to convert
polynomial congruences f(x) ≡ 0 modulo a compos-
iteM to just examining f(x) ≡ 0 modulo pL; we only
need consider powers of primes.

In analogy, the MFnc-theory allows us to convert
proving an identity h() = g(), between MFncs, on all
of Z+, to just verifying it on each prime-power pL. �
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Applications

Define the Möbius fnc µ to be the convolution-
inverse of 1. I.e

�� ��µ := 1~ 1 , so µ is characterized
by µ~ 1 = δ. By Thm 3, it is enough to know µ()’s
values on the powers of primes.

5: Lemma.For each prime p and exponent n in [2 ..∞):

µ(p) = 1 and µ(pn) = 0 . ♦

Proof. Well 0 = δ(p) = µ(p) + µ(1) = µ(p) + 1.
For a higher power of p:

0 = δ(pn) = µ(1) + µ(p) + S + µ(pn) ,

where S :=
∑n−1
j=2µ(pj). This S, by induction, is zero.

Thus µ(pn) = −
[
µ(1) + µ(p)

]
, which is zero. �

Before developing further results, note that:

For each good f , necessarily f~0 = δ,

since δ is the neutral element for ~. We now need a
little tool.

6: Bijection Lemma. Fixing a posint N , let g(`) mean
GCD{`,N}. Then there is a bijection

[1 .. N ] ↪�
⊔

d:d •|N
Φ(d)×{d} note

====
{
(((x, d)))

∣∣∣ d •|N
and

x∈Φ(d)

}
a:

realized by the mapping

` 7→ (((x`, d`))) , where x` := `/g(`) and
d` := N/g(`)

b:

The inverse bijection is

(((x, d))) 7→ x · Nd .c: ♦

We now establish a few useful relations.

7: Basic Lemma. Among MFncs 1, τ ,σ, Id,µ and ϕ,
the following relations hold.

i : 1~ 1 = τ . Also Id~ 1 = σ, so Id = σ ~ µ.

ii : µ~ 1 = δ.

iii : ϕ~ 1 = Id.

iv : ϕ~ τ = σ and ϕ~ σ = Id~2. ♦

Proof of iii. Take cardinalities in (6a), which gives
Id = ϕ~ 1. As for (iv), note that

ϕ~ τ = ϕ~ 1~ 1 = Id~ 1 ,

which is σ, by definition. �

7a: Coro. Euler ϕ is multiplicative. ♦

Proof. Courtesy (7iii), ϕ = Id~ 1 is a convolution of
MFncs, hence is an MFnc itself, by (3). �

8: Prop’n. The fnc ϕ/Id is multiplicative. And

limsup
K→∞

ϕ(K)
K = 1 and liminf

K→∞
ϕ(K)
K = 0 .a,b:

Finally, ϕ(K)→∞ as K↗∞ .c: ♦

Pf of (a). On primes, ϕ(p)
p = p−1

p = 1− 1
p . Etc. �

Pf of (b). Let Kn be the product of the first n primes.
Exer 3. Now. . . ? �

Pf of (c).FTSOC, imagine a seq.K1 < K2 < . . . along
which ϕ() stays bounded. Prove there is a bound –say,
100– so that for all primes p and all j: If pL is in the
pop-decomp of Kj , then L 6 100. Exer 4. Now. . . ?�

Convolution powers. Using binomial coefficients
[reviewed in Appendix A, P.6], one can show that

1~n(pL) =

(
L+ n− 1

L

)
,

for each prime p. Furthermore

µ~n(pL) = [ 1]L ·
(
n

L

)
.

These are routinely proved by induction on n.
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Applications of Möbius Inversion

An N th-root ω of unity [in C] is primitive if, for each
k in [1 .. N), this ω is not a kth-root of unity. Use VN
for the set of primitiVe N th-roots. Define the “N th

cyclotomic polynomial ” by

CN (z) :=
∏

ω∈VN
[z − ω] .9a:

Letting FN (z) := zN − 1, note that

FN (x) =
∏

d•|N
Cd(x) .9b:

Used recursively, we compute these cyclo-polys:

Examples:9c:
C1(z) = z − 1; C3(z) = z2 + z + 1; C5(z) = z4 + z3 + z2 + z + 1;

C2(z) = z + 1; C4(z) = z2 + 1; C6(z) = z2 − z + 1 .

10: Prop’n. The sum of all the N th-roots of unity
equals δ(N). And their product is [ 1]N+1.

The sum of all primitive N th-roots equals µ(N).
Their product is 1, except when N = 2 where the
product is 1. ♦

Pf for all roots. Let S be the sum♥4, and P the
product, of the set, A, of all N th-roots. Thus

xN − S·xN−1 + · · ·+ [ 1]N ·P =
∏
Z∈A

[x− Z] = xN − 1. �

Pf for primitive roots. Let S(n) :=
∑

(Vn). Summing
over the (positive) divisors a •| N gives∑

a·b=N
S(a) =

[ Sum of all
Nth roots

]
= δ(N) .

IOWords, S ~ 1 = δ. Thus S = δ ~ µ = µ.
As for the product, non-real primroots come in con-

jugate pairs. Each conjugate pair multiplies to 1. So∑
(VN ) is 1 –unless [ 1] is an N th primroot, which

happens exactly when N = 2. �

Defn. For a poly with non-zero constant term, e.g
g(x) := 9x3 + 8x− 6, its reversal ←−g has the coeffs in
reverse order. So ←−g (x) = 6x3 + 8x2 + 9. �

♥4For the sum, an alternative proof is to fix a primitive N th

root ω. Now SN :=
∑N−1
k=0 ω

k is the sum of all N th roots. So
S1 = 1 = δ(1). For N ∈ [2 ..∞), note ω 6= 1 so SN = ωN−1

ω−1
=

0 = δ(N).

11: Lemma. Each CN is a monic intpoly, of degree
|VN |

note
==== ϕ(N). When N ∈ [2 ..∞), moreover, CN is

palindromic in that
←−−
CN = CN .

Finally, for N > 2 and K := ϕ(N),

CN (x) = xK − µ(N)xK−1 + · · ·+ [ µ(N)]x + 1 .11a: ♦

Proof. Equation (9b) gives

CN = FN
/∏

d•|N
d6=N

Cd .

By induction on N , each of the Cd is a monic intpoly.
And easily: If a monic intpoly divides another, then
the quotient is a monic intpoly.

Reversal. Consider a Z ∈ VN . Algebra gives

x·[ 1
x − Z] = 1·[xZ − 1] = 1·Z·[x− 1

Z ] .

Now
←−−
CN (x) equals xK ·CN ( 1

x) which equals∏
Z∈VN

x · [ 1
x − Z] = [ 1]K ·

[ ∏
Z∈VN

Z
]
·
∏

Z∈VN

[x− 1
Z ] .

Since C2(x)=[x+1] is palindromic, WLOG N>3.
Thus K := ϕ(N) is even. Also, (10) says that[∏

Z∈VN Z
]

= 1. Thus
←−−
CN (x) = 1 · 1 ·

∏
Z∈VN

[x− 1
Z ]

note
==== CN (x) .

Lastly, (11a) follows from (10). �

12: Theorem. Each CN can be described by inclusion-
exclusion as:

CN (z) =
∏

a·b=N
[za − 1]µ(b) note

====
∏

a·b=N
C1(za)µ(b)

note
====

∏
a·b=N , with
b square-free

C1(za)µ(b).13:

Below: P is prime, Γ and N are posints and K a
natnum.

13i: Now suppose P ⊥ Γ. Then

CPK+1Γ(z) = CΓ(zPK+1

)
/
CΓ(zPK ) .

In particular, setting Γ := 1,

CPK+1(z) =
[zPK ]P − 1

[zPK ]− 1
= CP(zPK ) .
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13ii: Consider an N ⊥ Γ. Then

CNΓ(z) =
∏

a·b=N
CΓ(za)µ(b)†N :

This generalizes (13). ♦

Pf of (i). Set L := K+1 and apply (13) to N := PLΓ.
Omitting all pairs a·b=N with b |• P2 means that a
has form either αPL or αPK . So

CN =
[ ∏
αPL·β=N

[FαPL ]µ(β)] · [ ∏
αPK ·Pβ=N

[FαPK ]µ(Pβ)]
=

∏
α·β=Γ

[FαPL ]µ(β)
/ ∏
α·β=Γ

[FαPK ]µ(β) .

I.e CN (z) = CΓ(zPL)/CΓ(zPK ). �

Aside. Letting R := PL, we can restate the above
conclusion as

CRΓ(z) =
∏
i·j=R

CΓ(zi)
µ(j)

.‡: �

Pf of (ii). Whoa! This proof, while correct, should be
rewritten.

Eqn (†1) is a tautology. So, givenM⊥Γ, we’ll estab-
lish (†M ) by induction on the number of PoPs in M .
Write M = NR with R a PoP co-prime to N . Then
CMΓ(z) equals

CNRΓ(z)
by (†N )
======

∏
a·b=N

CRΓ(za)µ(b)

by (‡)
=====

∏
a·b=N

[ ∏
i·j=R

CΓ

(
[za]i

)µ(j)]µ(b)

=
∏

a·b=N
i·j=R

CΓ(zai)
µ(bj)

.

This, since b ⊥ j, because N ⊥ R. Letting x := ai
and y := bj, the co-primeness N ⊥ R again gives

CMΓ(z) =
∏

x·y=NR

CΓ(zx)µ(y) . �
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§A Appendix

A For a natnum n, use “n!” to mean “n factorial ” ;
the product of all posints 6n. So 3! = 3 · 2 · 1 = 6
and 5! = 120. Also 0! = 1 and 1! = 1.

For natnum j and arb. complex number β, define

Jβ ↓ jK := β ·
[
β − 1

]
·
[
β − 2

]
· . . . ·

[
β − [j−1]

]
;

this is read as “β falling factorial j ”. E.g,
r

2
7

y 4
z

=
2

7
· 5

7
· 12

7
· 19

7
and J1 ↓ 3K = 1 · 0 · 1 = 0 .

The binomial coefficient
(7
3

)
, read “7 choose 3”,

means the number of ways of choosing 3 objects from
7 distinguishable objects. If we think of putting these
objects in our left pocket, and putting the remaining
4 objects in our right pocket, then we write the coeffi-
cient as

( 7
3,4

)
. [Read as “7 choose 3-comma-4.”] Evidently(

N

j

)
with k := N − j
============

(
N

j, k

)
=

N !

j! k!
=

JN ↓ jK
j!

.

Note
(7
0

)
=
( 7
0,7

)
= 1. Also,

(N+1
k+1

)
=
(N
k

)
+
( N
k+1

)
.

Finally, the Binomial theorem says

[x+ y]N =
∑

j+k=N

(N
j,k

)
· xjyk ,B1:

where (((j, k))) ranges over all ordered pairs of natural
numbers with sum N .

In general, for natnums N = k1 + . . .+ kP , the
multinomial coefficient

( N
k1, k2, ..., kP

)
is the num-

ber of ways of partitioning N objects, by putting
k1 objects in pocket-one, k2 objects in pocket-two,
. . . putting kP objects in the P th pocket. Easily(

N

k1, k2, . . . , kP

)
=

N !

k1! · k2! · . . . · kP !
.B2:

And [x1 + · · ·+ xP ]N indeed equals the sum of terms( N
k1,...,kP

)
· x1

k1 · x2
k2 · · ·xP kP ,B′1:

taken over all natnum-tuples ~k=(((k1, . . . , kP))) that sum
to N .
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§B Appendix

From NumberTheory/mult-convolution^.latex
There is little here that is not in the earlier pages, so I will

eventually delete most of this.
Note: This appendix uses symbol � to mean

“proper divisor of” .

Entrance. Fix a ring R = (((R, +, 0R, ·, 1R))) which
is not necessarily commutative. Let F be the set of
functions Z+ → R. Let M ⊂ F be the subset of
multiplicative functions. For f, g ∈ F define the con-
volution f ~ g ∈ F by[

f ~ g
]
(n) :=

∑
d•|n

f(d)g(nd ) .

Observe that

[f ~ g](n) :=
∑
e•|n

f(ne )g(e) .14:

Definition. Let M ⊂ F be the set of multiplicative
functions, where f is multiplicative if:

k ⊥ n =⇒ f(k · n) = f(k)f(n) .

Define functions ζ,1, δ ∈ M: ζ is the constant
zero function, 1 is the constant one function, and
δ(1) := 1R and δ(6=1) := 0R. For every f , evidently,

[δ ~ f ](n) =
∑
d•|n

δ(d)f(n/d) = δ(1)f(n/1) = f(n)

and similarly [f ~ δ](n) = f(n). Thus δ is a two-sided
identity for convolution. It is also evident that ζ~f =
ζ = f ~ ζ, so ζ is a zero-element for convolution.

15: Ring Theorem.

a: Ω := (((F, ~, δ, +, ζ))) is a ring.

b: Both α and β are ring-homomorphisms

β : Ω� R

f 7→ f(1)

α : R ↪→ Ω

x 7→ xδ

so that β ◦ α is the identity map on R. Conse-
quently Ω is commutative IFF R is commutative.

c: f is a unit in Ω IFF f(1) is a unit in R.

d: If f is a zero-divisor in Ω then f(1) is a zero-divisor
in R. ♦

Pf of (a,b). Associativity of convolution follows from[
[f ~ g]~ h

]
(n)

=
∑
d•|n

[f ~ g](n/d) · h(d) =
∑
d•|n

∑
e•|n

d

f(e)g
(n/d
e

)
h(d)

=
∑

d,e: d·e•|n
f(e)g

(
n
d·e
)
h(d) =

∑
e•|n

f(e) ·
∑
d•|n

e

g
(n/e
d

)
h(d)

=
∑
e•|n

f(e) ·
[
g ~ h

]
(n/e)

def
===

[
f ~ [g ~ h]

]
(n) .

Automatically, convolution distributes over addition,

[f1 + f2]~ g = f1 ~ g + f2 ~ g and

f ~ [g1 + g2] = f ~ g1 + f ~ g2 ,

since the multiplication inR distributes over addition.
Note that part (b) is a triviality. �

Pf of (c). We wish to define a g ∈ Ω so that g ~ f = δ.
For each n, then, g must satisfy

g(n) · f(1)
note
==== g(n) · f(nn)

= δ(n) −
∑
d:d�n

g(d)f(
n

d
) .16:

Since f(1) is by hypothesis an invertible element of R,
we can divide by f(1) and express g(n) in terms of
g(d) for smaller elements d. Since the �-order is well-
founded, (16) gives a valid recursive definition of g.
Note, by that way, that g(1) will be 1/f(1).

A similar recursion constructs a function g′ such
that f ~ g′ = δ. By associativity, then,

g = g ~ [f ~ g′] = [g ~ f ]~ g′ = g′ . �

Proof of d. Suppose that there is a g 6= ζ such that
g ~ f = ζ. Let n be •|-smallest so that g(n) 6= 0R.
Thus

g(n)f(1) = −
∑
d d�n

g(d)f(nd ) .

= −
∑
d d�n

0R · f(nd ) = 0R .

Thus f(1) is indeed a zero-divisor in R. �

Filename: Problems/NumberTheory/multiplicative_fncs.latex


