

2003 A6 Putnam Prob and Soln

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://www.math.ufl.edu/~squash/>
 3 July, 2012 (at 21:18)

2003 Putnam

1: A6.2003. For an $S \subset \mathbb{N}$, let $\mathbf{r}_S(n)$ denote the number of ordered pairs (s, t) with $\{s, t\} \subset S$, $s \neq t$, and $s+t = n$. [This (s, t) is an *S-representation* of n .] Is it possible to partition $\mathbb{N} = A \sqcup B$ in such a way that $\mathbf{r}_A(n) = \mathbf{r}_B(n)$ for all natnums n ? \diamond

Soln A6.2003 (JK). Yes; the *Morse minimal sequence* is the unique solution.

Rename the sets from A, B to E, D (for Even and odd), and require that $E \ni 0$.

Uniqueness. Fix a soln $\mathbb{N} = E \sqcup D$. For each posint n , we will show that $E' := E \cap [0..n]$ and $D' := D \cap [0..n]$ determine where n goes. Recall $D \not\ni 0$, so $\mathbf{r}_D(n) = \mathbf{r}_{D'}(n)$. Thus

$$[D \ni n] \iff [\mathbf{r}_{E'}(n) = \mathbf{r}_{D'}(n)].$$

Indeed, inequality in (*), above, necessarily means that $\mathbf{r}_{D'}(n)$ equals $2 + \mathbf{r}_{E'}(n)$. So we give E two more representations, $(0, n)$ and $(n, 0)$, by placing n in E .

Construction. For $n \in \mathbb{N}$, let $\#n$ denote the number of 1-bits in $\text{BinaryNumeral}(n)$. E.g. $\#(23) = 4$, since $23 = 10111$. Define

$$\begin{aligned} 1a: \quad E &:= \{n \in \mathbb{N} \mid \#n \text{ is even}\} \\ &D := \{n \in \mathbb{N} \mid \#n \text{ is odd}\}. \end{aligned}$$

Involution. Each subset $S \subset \mathbb{N}$ engenders

$$\widehat{S} := \{(s, t) \mid s, t \in S \text{ with } s \neq t\}.$$

Given natnums $s \neq t$, write them in binary as

$$\begin{aligned} 1b: \quad s &= b_K b_{K-1} \dots b_4 b_3 b_2 b_1 b_0 \quad \text{and} \\ &t = c_K c_{K-1} \dots c_4 c_3 c_2 c_1 c_0. \end{aligned}$$

(Possibly b_K or c_K is 0.) Let ℓ be the smallest index st. $b_\ell \neq c_\ell$. Now *exchange* these two bits, defining a new pair (s', t') ; for example, if $\ell = 2$ then

$$\begin{aligned} 1c: \quad s' &= b_K b_{K-1} \dots b_4 b_3 c_2 b_1 b_0 \quad \text{and} \\ &t' = c_K c_{K-1} \dots c_4 c_3 b_2 c_1 c_0. \end{aligned}$$

The map $(s, t) \xrightarrow{f} (s', t')$ is an involution on $\widehat{\mathbb{N}}$. Moreover, it bijects \widehat{E} with \widehat{D} . Lastly, f is sum-preserving; $s' + t' = s + t$. Thus $\mathbf{r}_E(n) = \mathbf{r}_D(n)$. \diamond

Post provem. Define a 1-sided-infinite bit-sequence $b_0 b_1 b_2 \dots$, where b_n is the parity of $\#n$. This gives

$$0110\ 1001\ 1001\ 0110\ 1\dots,$$

the *Morse minimal sequence*. \square

Filename: <Texdir/LatexCode/jkdynamics.sty>
 As of: Thursday 12Jul2007. Typeset: 3Jul2012 at 21:18.