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Preface to Second Edition

The mathematics you will learn in this course is part of what every mathematically mature
person should know. The course is designed neither for learning computational skills nor for
learning many “facts” about number systems and polynomials over these number systems.
It is rather to provide you with the opportunity to examine the “structure” of these systems
and to learn the art of careful mathematical reasoning. It is expected that this experience
will help you in the linear algebra (MAS 4105) and abstract algebra (MAS 4301) courses
which most of you will subsequently take.

You are expected to work through the notes, proving the theorems and working the ex-
ercises. Collaboration between class members in this regard is fine, indeed encouraged, but
keep in mind that independent work builds self-confidence. You should work ahead to the
extent that you have worked through the material prior to its discussion in class. In this
way, you can compare your work with that discussed in class and develop a confidence that
you can independently attack a question. This is a do-it-yourself course in which you are
expected to take your turn presenting your work to the class and to actively participate in
class discussion.

To give you this opportunity for independent discovery, the notes contain neither proofs
of the theorems, nor solutions to the exercises. It is important, therefore, for you to keep a
carefully organized record of such obtained from your work as modified after class discussion;
a ring-binder is suggested for this. The process of carefully rewriting your notes after class
discussion is an important part of the learning process in the course. Answers to exercises
marked with an asterisk, ’∗’, are at the end of the notes.

Enjoy yourself!

Kermit Sigmon
Department of Mathematics
University of Florida
(5-96)

0Thanks go to all the instructors of the course whose many suggestions which have improved these notes.
0These notes were typeset using TEX. Thanks go to Jean Larson for creating the figures in Chapter 6

with TEX.
0These notes were revised in 1999.



iii

Introduction

We adopt the viewpoint that the real number system is known. More specifically, we will
assume the existence of a set R, the real numbers, equipped with two binary operations “+”
and “ ·” satisfying certain axioms and an order relation “ < ” satisfying further axioms. You
are to deduce (prove) properties of the real numbers from these axioms — and these axioms
alone.

The natural numbers, integers, rational numbers, and irrational numbers will be defined
as certain distinguished subsets of the real numbers. Their properties will be deduced,
therefore, from properties of the real numbers. The complex numbers will be constructed
from the real numbers and their properties deduced from properties of the real numbers.
Finally, the notion of a polynomial over a number system will be built on properties of the
number system. Thus, all “truth” about these number systems and polynomials over them
ultimately has its source in the algebraic and order axioms for the real numbers which we
will assume.

An alternate approach to the development of these number systems, which we do not adopt,
is to first assume the existence of the natural numbers (or even more primitively, the Peano
axioms). One then constructs successively the integers, rational numbers, real numbers, and
complex numbers. This route presents considerable technical difficulty, especially in building
the reals from the rationals. We choose the first approach because it permits one to focus
on the central properties of the number systems with a minimum of distractions.
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1. Algebraic Properties of the Real Numbers

1.1 Axioms (Algebraic Axioms for the Real Numbers (“Field Axioms”)). We assume that
the real numbers consists of a set R equipped with two binary operations “ + ” and “ · ”
satisfying the following axioms:

AC (Commutativity of Addition)
a+ b = b+ a for all a, b ∈ R.

AA (Associativity of Addition)
a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.

AID (Existence of Additive Identity) There is a number 0 ∈ R satisfying

a+ 0 = a = 0 + a for all a ∈ R.

AIV (Existence of Additive Inverses) Corresponding to each a ∈ R, there is a unique number
−a ∈ R satisfying

a+ (−a) = 0 = (−a) + a.

MC (Commutativity of Multiplication)
ab = ba for all a, b ∈ R.

MA (Associativity of Multiplication)
a(bc) = (ab)c for all a, b, c ∈ R.

MID (Existence of Multiplicative Identity) There is a number 1 (different from 0) in R

satisfying
1a = a = a1 for all a ∈ R.

MIV (Existence of Multiplicative Inverses) Corresponding to each a (except 0) in R, there
is a unique number a−1 ∈ R satisfying

aa−1 = 1 = a−1a.

D (Distributivity)

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

1.2 Remark. Some other basic facts will be used in proofs without being formally stated
here and without citation (except as needed to clarify the exposition). These can be divided
into two categories:
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2 1. Algebraic Properties of the Real Numbers

1. Laws of logic.

2. Laws of equality. First, we have three basic axioms: For all a, b and c we have
(i) a = a, (ii) if a = b then b = a, and (iii) if a = b and b = c then a = c. In addition
there is a general principle which we may call substitution of equals, stating that if
a = b then we may freely substitute the symbol b for a in any expression. Thus, if
a = b and c = d then a + c = b + d and ac = bd. The principle here is that a = b
means that the symbols a and b are names for the same object. All of the properties
with which we are concerned are properties of the underlying object, not of the name,
and hence are unaffected by the name we happen to use for the object.

1.3 Definition/Remark. A binary operation on a set S is a function that assigns to every
ordered pair of elements of S a unique element of S. Familiar examples of binary operations
on R are ordinary addition, subtraction, and multiplication. In particular, if we write a+b =
c, we are assigning the real number c (the “answer”) to the ordered pair (a, b) of real numbers.
One immediate consequence of this definition is the familiar “equals added to equals are

equal”. In other words, if a = b and c = d, then a + c = b + d. The justification for this
is that our binary operation of addition assigns to the ordered pair (a, c) some real number
e, let’s say. But since a = b and c = d, the ordered pair (b, d) is the same ordered pair as
(a, c), and since the operation of addition assigns a unique number e to this ordered pair, we
must have b + d = e. But since a + c = e we have a + c = b + d. In summary, we can say
that the definition of binary operation justifies the implication that if a = b and c = d, then
a+ c = b+ d. Similar considerations apply to subtraction, multiplication, and division.
We will use the familiar rule that multiplication takes precidence over addition, so that

ab+ cd means (ab) + (cd).

1.4 Theorem. Suppose a, b, c, d ∈ R. Then

a). If a+ c = b+ c, then a = b.

b). The additive identity is unique.
That is, if e ∈ R and a+ e = a = e+ a for all a ∈ R, then e = 0.

c). If ac = bc and c 6= 0, then a = b.

d). The multiplicative identity is unique.
That is, if e ∈ R and a · e = a = e · a for all a ∈ R, then e = 1.

e). (a+ b) + (c+ d) = (a + c) + (b+ d) and (ab)(cd) = (ac)(bd).

f). a0 = 0 = 0a.

g). If ab = 0, then a = 0 or b = 0.

h). (−1)a = −a.

i). −(−a) = a and −(a + b) = (−a) + (−b).
Warning: You cannot use the identity “(−1)(−1) = 1” in the proof of clause (i), since
you will not have proved it until clause (j).
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j). a(−b) = −(ab) = (−a)b and (−a)(−b) = ab.

k). If a 6= 0, then a−1 6= 0.

l). If a 6= 0, then (a−1)
−1

= a; also if a 6= 0 and b 6= 0, then (ab)−1 = a−1b−1.

1.5 Theorem. Suppose a, b ∈ R.

a). The equation b+ x = a has one and only one solution.

b). If b 6= 0, then the equation bx = a has one and only one solution.

1.6 Definition. We define subtraction and division as follows.

a). For a, b ∈ R, a− b denotes that number x such that b+ x = a.

b). For a, b ∈ R with b 6= 0,
a

b
denotes that number x such that bx = a.

1.7 Theorem. Suppose a, b, c, d ∈ R.

a). a− b = a+ (−b); also, if b 6= 0, then
a

b
= ab−1.

b). a(b− c) = ab− ac and −(a− b) = b− a.

c). If a 6= 0, then
1

a
is the multiplicative inverse of a .

d).
a

1
= a; also, if a 6= 0, then

a

a
= 1.

e). If b 6= 0, then
−a
b

=
a

−b = −
(a

b

)

and
−a
−b =

a

b
.

f). If b 6= 0 and d 6= 0, then
a

b

c

d
=

ac

bd
.

g). If b 6= 0, c 6= 0 and d 6= 0, then
a
b
c
d

=
ad

bc
.

h). If b 6= 0 and d 6= 0, then
a

b
+

c

d
=

ad+ bc

bd
.

1.8 Exercise. (Limitations on definitions, axioms)

a). Explain why, in Definition 1.6,
a

b
was not given meaning when b = 0.

b). Explain why, in MID, one would wish to require that 1 6= 0 by showing that, if not,
then R = {0}.

c). Explain why, in MIV, one would not wish to require that 0 have a multiplicative
inverse.

1.9 Exercise. (Redundancy of axioms)
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a). Show that Axiom AC is redundant; i.e., it can be proved from the other axioms. [Hint:
Expand (1 + 1)(a+ b) in two ways]

b). Show that the uniqueness of the additive inverse in Axiom AIV is redundant; i.e.,
show from the other axioms that a ∈ R has at most one additive inverse.

c). Show that the uniqueness of the multiplicative inverse in Axiom MIV is redundant;
i.e., show from the other axioms that a non-zero a ∈ R has at most one multiplicative
inverse.

1.10 Exercise. Show that for a, b, c, d ∈ R, one has

a). (a+ b)(c+ d) = (ac + ad) + (bc+ bd)

b). (a+ b)2 = a2+(2ab+b2) and a2−b2 = (a−b)(a+b) (a2 := aa, b2 := bb, 2ab := ab+ab).

1.11 Notation. A := B means that the new symbol “A” is defined by “B”.

1.12 Remark. This illustrates how one deduces a few of the familiar algebraic properties
of R from the axioms. You may henceforth use any other (valid!) ones as long as you can
verify them upon demand. In view of the commutative and associative properties you may
also omit parenthesis; e.g., a2 + (2ab+ b2) = a2 + 2ab+ b2, etc.
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1.13 Axioms (Order Axioms for the Real Numbers). We assume that there is a binary
relation “ < ” on R satisfying the following axioms:

OTC (Trichotomy)
For any a, b ∈ R, exactly one of a < b, a = b, and b < a holds.

OTR (Transitivity)
If a < b and b < c, then a < c.

OA (Compatibility with Addition)
If a < b, then a+ c < b+ c.

OM (Compatibility with Multiplication)
If a < b and 0 < c, then ac < bc.

The axioms above, together with those in 1.1, assert that the reals are an example of what
is known as an ordered field. One more axiom will be presented later as Axiom 4.7. With
this axiom, the least upper bound axiom (LUB), the reals are a complete ordered field.

1.14 Notation. “a > b” means “b < a”, “a ≤ b” means “a < b or a = b”, etc.

1.15 Theorem. Suppose a, b, c ∈ R. Then

a). If a > 0 and b > 0, then a+ b > 0.

b). If a < b, then −a > −b.

c). If a < b and c < 0, then ac > bc.

d). a > 0, b > 0 imply ab > 0; a > 0, b < 0 imply ab < 0; and a < 0, b < 0 imply ab > 0.

e). ab > 0 implies that either a > 0 and b > 0 or else a < 0 and b < 0.

f). 0 < 1.

g). a− 1 < a < a + 1.

h). Suppose a 6= 0. Then a > 0 iff
1

a
> 0.

i). Suppose b 6= 0. Then a
b
> 0 iff either a > 0 and b > 0 or a < 0 and b < 0.

j). Suppose a and b are either both positive or both negative. Then a < b iff
1

a
>

1

b
.

k). If a2 < b2 and a, b ≥ 0, then a < b.

1.16 Exercise. Prove or disprove each of the following.

a). If a < b and c < d, then a + c < b+ d.

b). If a < b and c < d, then ac < bd.

c). Formulate true versions of the statements you disproved.
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1.17 Theorem. Suppose a, b ∈ R. Then

a). If a2 = b2 and a, b ≥ 0, then a = b.

b). If a3 = b3, then a = b (a3 := a2a).

1.18 Exercise. Suppose a, b ∈ R (and 2 := 1 + 1). Show that:

a). If a < b, then a <
a + b

2
< b. (Arithmetic mean)

b). If 0 < a < b, then a <
√
ab < b. (Geometric mean) [You may assume 4.16.]

c). If 0 < a < b, then a <
2

1
a
+ 1

b

< b. (Harmonic mean)

1.19 Definition. The absolute value of a number a in R is:

|a| :=
{

a if a ≥ 0

−a if a < 0.

Geometrically, we can think of the absolute value |a| as giving the length of the line
segment of the number line whose ends are a and 0. The definition by cases given above
enables us to use algebra, e.g. | − 1| := −(−1) by definition, and hence | − 1| = 1 by 1.4i)

1.20 Theorem. Suppose that a, b, c,∈ R. Then

a). |a| ≥ 0.

b). | − a| = |a| and |b− a| = |a− b|.

c). |a|2 = a2 ≥ 0.

d). −|a| ≤ a ≤ |a|.

e). For c ≥ 0, |a| ≤ c iff −c ≤ a ≤ c.

f). |ab| = |a||b|, and if b 6= 0 then
∣
∣
∣
a

b

∣
∣
∣ =
|a|
|b| . [Hint: Consider using clause (c).]

g). |a+ b| ≤ |a|+ |b| (Triangle inequality).

h). |a− b| ≥ ||a| − |b||.

i). |a− c| ≤ |a− b| + |b− c|.

The importance of the notion of absolute value lies in the fact that |a−b| gives the distance
between points a and b on the real number line independent of their order.

1.21 Exercise. Solve the following inequalities, using ordinary arithmetic on real numbers.

a). |x+ 1| > 6.
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b). |1− 4x| = 13.

c). |2x− 9| ≤ 1.

d). |2x+ 1| = x− 4.

e). x2 − x− 6 > 0.

f).
x− 1

x+ 1
< 1.
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2. The Natural Numbers Induction

2.1 Notation. We use the notation a ∈ B to mean that B is a set, and a is a member of
that set. We write A ⊂ B to mean that A is a subset of B, that is, ∀x (x ∈ A =⇒ x ∈ B).
Thus if A and B are two sets then A = B if and only if A ⊂ B and B ⊂ A.

2.2 Definition. We introduce a new symbol N. Intuitively, N will be the set of natural
numbers, N = {0, 1, 2, . . .}. As we all know, every natural number is also a real number,
that is, N is a subset of the real numbers. We will introduce three new axioms for the natural
numbers:

1. Every member of N is a member of R.

2. (a) 0 ∈ N

(b) n+ 1 ∈ N for all numbers n ∈ N.

(c) n− 1 ∈ N for all n ∈ N such that n 6= 0.

3. (The well ordering Principle WO). Every nonempty subset of N has a least member.
That is, if A is a set with at least one member, such that every member of A is in N,
then there is some number n ∈ A such that m /∈ A for all m < n.

2.3 Theorem. 1. If n is any member of N then n ≥ 0. (Hint: N is a nonempty subset
of N, and hence has a least member by WO.)

2. If n is any member of N, and a ∈ R satisfies n < a < n + 1, then a /∈ N.

2.4 Exercise. Suppose that N′ is a subset of the real numbers which also satisfies the axioms
for N. Show that N′ = N.
Hint: Show that every member of N is in N′ by assuming the contrary and applying ax-
iom WO to A = N \ N′ = {n : n ∈ N and n /∈ N′} to get a contradiction. Then use the
same argument, applying WO for N′, to show that every member of N′ is in N.

2.5 Definition. The set of integers Z is defined by Z := N ∪ {−n | n ∈ N }. (Intuitively
Z = { . . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.)

2.6 Theorem. (Connections between N and Z)

a). A number n is in N if and only if n ∈ Z and n ≥ 0.

b). If z ∈ Z, then |z| ∈ N.

9



10 2. The Natural Numbers Induction

Since N ⊂ R, all of the operations defined on members of R are automatically defined on
members of N. However they are not all defined as operations on N, since the result of the
operation may not be in N. Thus, for example, 1 − 2 /∈ N even though 1 and 2 are in N,
and 1/2 is not even in Z. Hence some of the “Field Axioms” from 1.1 are not true in N: for
example, MIV is not true in N, since there is no number 2−1 in N such that 2 · 2−1 = 1. On
the other hand, many of the Field axioms automatically hold in N because they hold in R:
for example, AC is true because if n and m are any two members of N then definition 2.2(1)
implies that n and m are also members of R. Since we have already assumed that AC holds
for R, it follows that n+m = m+ n.
The following theorem states which operations, and which axioms, can be transfered from

R to N and to Z.

2.7 Theorem. (Field and order axioms)

a). N is closed under addition and multiplication, that is, if n and m are any two members
of N then n+m ∈ N and nm ∈ N.
Hint: Assume by way of contradiction that there are n,m ∈ N such that n +m /∈ N.
Then the set A = { r ∈ N : n + r /∈ N } ⊂ N is nonempty, since m ∈ A. It follows by
WO that A has a least member. Call this least member r0, and reach a contradiction
by showing that r0 cannot satisfy axiom 2.2(2c).

b). Each of the “Field Axioms” (see 1.1) holds in N, except AIV and MIV; and
each of the “Order Axioms” OTC, OTR, OA and OM (see 1.13) holds in N.
[Hint: They hold in R, so they hold in N as long as the relevant quantities are in N].

c). Z is closed under addition and multiplication. In addition, Z is closed under additive
inverse and subtraction.
[Hint: We know the desired sums and products exist in R. Use Definition 2.5, a case
analysis, 2.5a, and algebra to show that they must also be in Z.]

d). Each of the “Field Axioms” holds in Z except MIV; and
each of the “Order Axioms” OTC, OTR, OA and OM (see 1.13) holds in Z.

The following proposition lists a few more of the familiar algebraic properties of N and
Z. You may want to prove some of them as intermediate results in the course of proving
clauses (c) and (d) of theorem 2.7.

2.8 Theorem. 1. If a ∈ Z then a− 1 ∈ Z.

2. If a, b ∈ Z then a− b ∈ Z.

3. If z ∈ Z, a ∈ R and z < a < z + 1, then a 6∈ Z.

4. The following holds in each of N and Z: ab = 0 implies a = 0 or b = 0.
(Thus neither N nor Z has “divisors of zero.”)

You may henceforth use any other of the familiar (valid!) algebraic properties of N and
Z, as long as you can verify them upon demand using algebra and order properties learned
in the previous chapter.
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Mathematical induction. You may have noticed that almost all proofs using the ax-
iom WO are proofs by contradiction. Mathematical induction can be viewed as a positive
way of giving essentially the same proof.

2.9 Lemma. Suppose that a ∈ N and that B is a subset of N which satisfies the following
two properties:

a) a ∈ B, and

b) k + 1 ∈ B whenever k ∈ B and k ≥ a.

Then x ∈ B for all natural numbers x ≥ a.

Hint: Try indirect proof (i.e., proof by contradiction) using WO.

2.10 Theorem (First Principle of Mathematical Induction (MI1)). Suppose that a ∈ N and
that, for each natural number n ≥ a, Φn is a statement associated with n. Suppose further
that the statements Φn satisfy the following two properties:

a) Φa is true.

b) If k is any natural number with k ≥ a, and Φk is true, then Φk+1 is also true.

Then Φn holds for each natural number n ≥ a.

2.11 Theorem (Second Principle of Mathematical Induction (MI2)). Suppose for each
natural number n, Φn is a statement associated with n and the statements Φn have the
following property:

a) If Φk is true whenever Φj holds for all natural numbers j < k, then Φn holds for all
natural numbers n.

Hint: One way to prove this is to let Ψk be the statement that “Φj is true for all j < k”,
and apply MI1 to the statements Ψk.
Notice that, although MI2 does not have an explicit base case, it does have an implicit

one which will often—but not always—need to be treated as a special case. If k = 0 then
the condition “Φj holds for all natural numbers j < k” is true for the trivial reason that
there are no natural numbers j < k. Hence proving clause 2.11(a) for given statements Φn

will always require proving Φ0, without any (nontrivial) assumptions.

Sample proofs using MI1.

2.12 Theorem. If x is any real number greater than −1 and n is any natural number greater
than 0 then (1 + x)n ≥ 1 + nx.

Proof. Fix an arbitrary real number x > −1. Let Φk be the statement

(1 + x)k ≥ 1 + kx. (Φk)

We use MI1 (with a = 1) to prove by induction on k that Φk holds for all k ∈ N with k ≥ 1.
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1. For k = 1 we have (1 + x)k = 1 + x = 1 + kx so (1 + x)k ≥ 1 + kx. Hence Φ1 holds.
2. Suppose that Φk is true. Then (1 + x)k+1 = (1 + x)(1 + x)k. But 1 + x > 0 since

x > −1, and (1 + x)k ≥ 1 + kx by Φk. Thus by OM we have (1 + x)k+1 = (1 + x)(1 +
x)k ≥ (1 + x)(1 + kx) = 1 + (k + 1)x + kx2. But kx2 > 0 since k > 0 and x > 0, so
(1 + x)k+1 ≥ 1 + (k + 1)x. This is just Φk+1 so, we have shown that Φk implies Φk+1.
By MI1, (1) and (2) implies that Φk holds for all natural numbers k > 0. ⊣

What about the following proof by mathematical induction?

2.13 Theorem(?). All horses have the same color.

Proof. Let Φk, for k ≥ 1 a natural number, be the statement that in any herd H of exactly
k horses, every horse in H has the same color. We will apply MI1 with a = 1 to show that
Φk holds for all k ≥ 1.
1. If a herd H has only one horse, then H can’t have horses of different colors. Thus Φ1

holds.
2. Suppose Φk holds. Since k + 1 ≥ 2 we can choose two horses h1 and h2 from H .

Consider the two herds H1, obtained by removing h2 from H , and H2 obtained by removing
h1 from H . Each of these herds has k members, so by the induction hypothesis Φk any
two horses, both from H1 or both from H2, have the same color. Thus any two horses in

H1

Mistyh2 h1

H2

H , with the possible exception of the pair (h1, h2), have the same color. Thus we will have
finished the induction step if we can show that h1 and h2 have the same color. To this end,
pick any horse in the herd other than h1 and h2. Call this horse Misty. Then Misty has the
same color as h1 because both h1 and Misty are members of H1. Similarly, Misty has the
same color as h2 because they are both members of H2. But then h1 and h2 both have the
same color as Misty. Since H was arbitrary, we have shown that Φk implies Φk+1.
By (1), (2) and MI1 we conclude that Φk holds for all natural numbers k ≥ 1. Hence all

horses have the same color.1 ⊣
2.14 Exercise. Use mathematical induction to show that, for each positive integer n,

a). If 0 ≤ a < b, then an < bn.

b). 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

c). 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

1Here is the rest of the story:
THEOREM: All horses have an infinite number of legs. Proof (by intimidation) Everyone would agree

that all horses have an even number of legs. It is also well-known that horses have fore-legs in front and
two legs in back. But 4 + 2 = 6 legs is certainly an odd number of legs for a horse to have! Now the only
number that is both even and odd is infinity; therefore all horses have an infinite number of legs. However,
suppose that there is a horse somewhere that does not have an infinite number of legs. Well, that would be
a horse of a different color; and by the Lemma, it doesn’t exist. QED
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d). 1 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

e). 1 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

f). (a) 1 · 2 + 2 · 3 + · · ·+ n(n + 1) = n(n+ 1)(n+ 2)/3

(b) 1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n(n+ 1)(n+ 2) = n(n + 1)(n+ 2)(n+ 3)/4

(c) Find and prove the next statement in the series above.

(d) Find and prove the kth statement in the series above, for any natural number k.

g). if n ≥ 4, then 2n < n!. (n! := 1 · 2 · 3 · · · · · n).

2.15 Exercise. 1. Let F0 := 1, F1 := 1, F2 := 1 + 1 = 2, F3 := 1 + 2 = 3, . . . ;
in general, let Fn+1 := Fn−1 + Fn. This sequence lists the Fibonacci numbers.
Show that for all natural numbers n, Fn ≤ 2n.

2. Define by recursion a sequence bn as follows:

b0 = 0;
b1 = 3;
bn = 7bn−1 − 10bn−2 for n > 1.

Use MI2 to prove that for all natural numbers n, bn = 5n − 2n.

2.16 Exercise. Use mathematical induction to show that, for each natural number n,

a). n ≤ 1 or n has a prime factor.
You may use the following facts, which will be proved later: a natural number n > 1 is
prime iff it has no factors other that itself and 1; if d is any factor of n (other than 1
or n) then d < n; and if d′ is a factor of d, and d is a factor of n, then d′ is a factor
of n.

b). n has a binary expansion,

n =

∞∑

i=0

ai2
i,

where each ai is either 0 or 1 and ai = 0 for all but finitely many i ∈ N .
Hint: One way to do this is by MI2: if n is odd then you can get an expansion of n
from an expansion of n− 1, while if n is even you can get an expansion of n from that
of n/2. You may assume without proof that every natural number n is either even or
odd.

c). n has a ternary expansion,

n =

∞∑

i=0

ai3
i,

where each ai is either 0, 1 or 2, and ai = 0 for all but finitely many i ∈ N .
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d).
(1− r)(1 + r1 + · · ·+ rn) = 1− rn+1.

(Recall that r0 = 1.)

e). the nth partial sum of the geometric series is

Sn :=

n∑

i=0

ari =
a(1− rn+1)

(1− r)
.



3. Elementary Number Theory

3.1 Definition. For a, b ∈ Z, we say a divides b (in symbols; a|b) if there exists a
c ∈ Z such that b = ac. In this case, we say that a is a divisor of b, that a is a factor of b
and that b is a multiple of a.

3.2 Theorem. Suppose a, b, c ∈ Z.

a). 1|a and a|0 for all a ∈ Z.

b). If a|b, then ac|bc.
c). If a|b and a|c, then a|(b+ c).

d). If a|b, then a|bc.
e). If a|b and a|c, then a|(mb+ nc) for all m,n ∈ Z.

f). If a|b and b|c, then a|c.
g). If a 6= 0, then a|b if and only if a−1b ∈ Z.

h). If a|b and b 6= 0, then |a| ≤ |b|.
3.3 Theorem (Division Algorithm). For a, b ∈ N with b > 0, there exist unique natural
numbers q and r satisfying a = bq + r and 0 ≤ r < b.

Hint: Set R := { s ∈ N : ∃ q ∈ N such that a = qb+ s }, show R 6= ∅, and apply WO to get
a least element r.

I. Ideals, gcd’s and the Euclidean Algorithm

3.4 Definition. A non-empty subset J of Z is called an ideal of Z if it satisfies:

(i). x ∈ J, y ∈ J implies x+ y ∈ J , and

(ii). x ∈ J, n ∈ Z implies nx ∈ J .

(What is the smallest possible ideal? The largest?)

3.5 Lemma. If J is an ideal of Z, then

a). x ∈ J implies −x ∈ J ;

b). 0 ∈ J ; and

c). for all x ∈ Z, x ∈ J if and only |x| ∈ J .

15
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3.6 Theorem. For any a ∈ N, define the set Ja by Ja := {ka | k ∈ Z}.

a). For any a ∈ N, the set Ja is an ideal of Z.

b). J0 = {0} and J1 = Z.

c). Suppose J is an ideal of Z and a ∈ J ∩ N. Then Ja ⊆ J .

d). Suppose J is an ideal of Z. Then there exists some b ∈ N, such that J = Jb.

Hint for d): For J 6= {0}, let A := { x ∈ J | x > 0 }. Show A ⊆ N and A 6= ∅; apply WO to
get b. Then for x ∈ J , use the Division Algorithm to show |x| ∈ Jb, and use this claim to
show J ⊆ Jb.

3.7 Definition. If a, b ∈ N, then an integer c is called a common divisor of a and b if c|a
and c|b. If d is a common divisor of a and b such that d ≥ c for every common divisor of a
and b, then d is called the greatest common divisor of a and b, and one writes d = gcd(a, b).

3.8 Theorem. Suppose a, b ∈ N with not both a and b zero. Then there is a unique integer
d such that d is the greatest common divisor of a and b.

[Hint: Set A := { a/c : c ∈ N, c|a and c|b }. Show that A ⊂ N and A 6= ∅, and then apply
WO to A.]

3.9 Exercise. a). Show that gcd(0, 0) does not exist.

b). Show that gcd(0, a) = |a|, for all a 6= 0.

c). Show that if c = gcd(a, b), then gcd
(
a
c
, b
c

)
= 1.

3.10 Theorem. Suppose a, b ∈ N, not both zero, and set

Ja,b := {ka + ℓb | k ∈ Z, ℓ ∈ Z}.

a). Ja,b is an ideal of Z, and

b). Ja,b = Jd where d := gcd(a, b).

[Hint (for b)): We know Ja,b = Je := {ke | k ∈ Z} for some e ∈ N by Theorem 3.6(d). Show
e = d.]

3.11 Corollary. If a, b ∈ N, not both zero, and d = gcd(a, b), then there exist integers x and
y such that ax+ by = d.

3.12 Exercise. Prove or disprove:

a). a|bc implies a|b or a|c.

b). a|c and b|c imply ab|c.

3.13 Definition. Natural numbers a and b are called relatively prime if gcd(a, b) = 1.
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3.14 Theorem. Suppose a, b, c ∈ N.

a). a and b are relatively prime iff there exist integers x and y such that ax+ by = 1.

b). If a|bc and a and b are relatively prime, then a|c.

c). If a and b are relatively prime and a|c and b|c, then ab|c.

d). If each of a and b is relatively prime to c, then so is ab.

e). If e|a and e|b, then e| gcd(a, b).

f). If c, d, q, r ∈ N (d 6= 0) satisfy c = dq + r, then gcd(c, d) = gcd(d, r).

3.15 Exercise (Reduction to lowest terms). Prove that every fraction whose numerator and
denominator are positive integers can be reduced to lowest terms. That is, suppose m and
n are positive integers. Prove that there are positive integers k and ℓ so that k and ℓ are

relatively prime and
m

n
=

k

ℓ
.

3.16 Theorem (Euclidean Algorithm). Suppose a, b ∈ N with b > 0. Then gcd(a, b) is the
last non-zero remainder rk obtained from the following applications of the division algorithm,
unless b|a, in which case gcd(a, b) = b. [Hint: 3.14f)]

a = bq1 + r1; 0 ≤ r1 < b

b = r1q2 + r2; 0 ≤ r2 < r1

r1 = r2q3 + r3; 0 ≤ r3 < r2
...

...
rk−2 = rk−1qk + rk; 0 ≤ rk < rk−1

rk−1 = rkqk+1.

[[wjm 8/23/01 — Is this clearer?]]
Consider the following algorithm, which defines a function GCD:

GCD(a, b) =

{

a if b = 0.

GCD(b, r) if a = bq + r with 0 ≤ r < |b|.

Thus, for example

GCD(55, 15) = GCD(15, 10) since 55 = 3 · 45 + 10

= GCD(10, 5) since 15 = 1 · 10 + 5

= GCD(5, 0) since 10 = 2 · 5 + 0

= 5 since b = 0.

Show that this algorithm computes gcd(a, b). That is, show that if a, b are any two
members of N with a 6= 0 then the computation of GCD(a, b) will eventually stop, and that
the value of GCD(a, b) so obtained is gcd(a, b).
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3.17 Exercise. Use the Euclidean algorithm to compute the gcd of the following pairs of
numbers.

a). 1001, 1815

b). 391, 403

c). 4960, 9200

d). 8316, 26208

e). If you have access to a microcomputer or programmable calculator, construct a program
to compute gcd(a, b) for any positive integers a and b.

f). Extend the algorithm GCD above to obtain a function xGCD such that whenever a, b
are in N and a 6= 0 then xGCD(a, b) = (x, y, d) where d = gcd(a, b) and d = xa + by.

II. Prime and Composite Numbers

3.18 Definition. A natural number greater than 1 is called

(i). prime if its only positive divisors are 1 and itself.

(ii). composite if it is not prime.

3.19 Theorem. Suppose a, b ∈ N. Then

a). If p is prime and p|ab, then p|a or p|b.

b). If p, q1, q2, . . . , qk are prime and p|q1q2 . . . qk, then p = qi for some i.

3.20 Definition. For a natural number n > 1, a product of primes p1p2 . . . pk is a
prime factorization of n if

(i). n = p1p2 . . . pk and

(ii). p1 ≤ p2 ≤ · · · ≤ pk.

3.21 Example. 21 = 3 · 7, 252 = 2 · 2 · 3 · 3 · 7, 104 = 2 · 2 · 2 · 13.]
One often groups equal primes: 252 = 22 · 32 · 7, 104 = 23 · 13.
So n = q1

e1q2
e2 . . . ql

el, where q1 < q2 < · · · < ql with ei ≥ 0.

3.22 Theorem (Fundamental Theorem of Arithmetic). Every natural number greater than
1 has exactly one prime factorization.

3.23 Corollary. Every natural number greater than 1 has a prime factor.

3.24 Theorem. (Primes and perfect squares)

a). If a, b, and n are positive integers with n = ab, then either
a2 ≤ n or b2 ≤ n.
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b). A natural number n > 1 is prime iff it has no prime divisor p with p2 ≤ n.

3.25 Exercise. (Prime factorizations and lists of primes)

a). Determine the prime factorization of the following natural numbers: 391, 403, 1815,
8316, 26208, 997.

b). Describe a method for finding all prime numbers up to a fixed natural number k.
Apply your method for k = 150, k = 500. [Sieve of Eratosthenes]

3.26 Theorem. (Distribution of primes)

a). There are arbitrarily large gaps in the primes. That is, for any natural number k > 1,
there exist k consecutive composite integers.
[Hint: 6! + 2, 6! + 3, 6! + 4, 6! + 5, 6! + 6 are each composite.]

b). There are infinitely many prime numbers.
[Hint: Suppose not; consider N := p1p2 . . . pk + 1.]

3.27 Theorem. Let a = p1
e1p2

e2 . . . pk
ek and b = p1

f1p2
f2 . . . pk

fk where p1, . . . , pk are dis-
tinct primes and ei, fi ∈ N for 1 ≤ i ≤ k. (Allowing ei = 0 or fi = 0 permits the use of the
same pi’s for each of a and b). Then

a). a|b iff ei ≤ fi for each i.

b). gcd(a, b) = p1
m1p2

m2 . . . pk
mk , where mi = min{ei, fi}.

c). lcm(a, b) = p1
M1p2

M2 . . . pk
Mk , where Mi = max{ei, fi}.

In Clause c, lcm(a, b) is the least positive common multiple of a and b.

3.28 Exercise. Use the method of Theorem 3.27 to compute the gcd and lcm of the pairs
of integers in Exercise 3.17. The results from Exercise 3.25 may help.

3.29 Remark. Although there is no known local pattern to the occurrence of the primes, it
is known that they become rarer among large integers - as one would expect since more prime

divisors become available. In fact, the function
n

ln(n)
is a global model for the distribution

of the primes as the following theorem shows (we will not prove it).

3.30 Theorem (The Prime Number Theorem). For a positive integer n, let P (n) denote
the number of primes not greater than n. Then

lim
n→∞

P (n)
n

ln(n)

= 1.
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4. Rational and Irrational Numbers

4.1 Definition. a). The set of rational numbers is the set Q := {m
n
|m,n ∈ Z, n 6= 0}.

b). A real number which is not rational is called irrational.

4.2 Theorem. The rational numbers Q are closed under addition and multiplication and
satisfy all the “Field Axioms” (See 1.1) and the order axioms given in 1.13.

I. Algebraic Irrationals

In 4.3 through 4.17, we assume temporarily that for each positive integer n and each a ∈ R

with a ≥ 0, there is exactly one b ≥ 0 such that bn = a; this b is denoted by n
√
a. This fact

rests on the axiom LUB (4.7) and is proved for the case n = 2 in 4.16.

4.3 Theorem. (Irrational square roots)

a).
√
2 is irrational.

[Hint: Suppose not, and apply Exercise 3.15.]

b).
√
12 is irrational.

c). 3
√
2 is irrational.

d). 4
√
8 is irrational.

e). Suppose that 0 < n, k ∈ N and that k
√
n is rational. Then there is some m ∈ N so that

n = mk.

f).
√
2
√
3 and

√
2 +
√
3 are irrational.

4.4 Exercise. Suppose a, b ∈ R.

a). Suppose that a 6= 0 is rational and b is irrational. Can you tell whether a+b is rational
or irrational? What about ab?

b). Suppose that a and b are both irrational. Can you tell whether a + b is rational or
irrational? What about ab?

4.5 Theorem. a). There are no a, b ∈ Q such that 3
√
2 = a

√
2 + b.

b). If a( 3
√
2)2 + b 3

√
2 + c = 0 with a, b, c ∈ Q, then a = b = c = 0

21
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II. More order properties of real numbers

4.6 Definition. A number b ∈ R is an upper bound for a subset A of R if b ≥ x for all
x ∈ A. A lower bound for A is defined analogously. Note that b is not an upper bound for
A iff there is some x ∈ A with b < x.

We now supply the missing order axiom for R which was promised in 1.13:

4.7 Axiom (Least Upper Bound Axiom (LUB)). Each non-empty subset A of R which has
an upper bound has a least upper bound u. (Notation: u = lub A)

4.8 Example. The least upper bound of a set may be an element of that set but it need
not be: for example, lub[0, 1) = lub[0, 1] = lub{1− 1

n
|n = 1, 2, 3, . . . } = 1.

Here is the property for the natural numbers corresponding to LUB.

4.9 Theorem. (DWO, the Order Dual of WO) If a non-empty subset A ⊆ N has an upper
bound v ∈ N, then it has a greatest element t (t ∈ A and a ≤ t for all a ∈ A).
Hint: apply WO to U = { u ∈ N : u is an upper bound of A } to find t.

We note that the LUB axiom does not hold in Q. (See 4.17)

Warning! Do not confuse LUB and DWO!
While they may at first glance appear similar, LUB is quite different from the DWO.

The DWO is based on the WO and addresses the ordering of N. It implies, among other
things that the ordering of of N: is “discrete”, that is, for each natural number n there must
be a next greatest one (namely the least element of {k ∈ N | k > n}, whose existence is
guaranteed by WO).
The LUB, on the other hand, addresses the ordering of R, and implies (as noted below

in 4.18) that there are no gaps (not even infinitely small ones) in the ordering of R. Hence,
LUB assures that the ordering of R is a continuum, just the opposite of the discrete ordering
of N assured by WO.

4.10 Theorem. For every real number b, there is some n ∈ N so that b < n. Indeed, for
every real number b ≥ 0 there is a natural number k so that k ≤ b < k + 1.
Hint: For the first sentence, assume the sentence is false and apply LUB to the set N ⊂ R.

4.11 Corollary (Archimedian Property). For each a, b ∈ R with a > 0, there exists an
integer n such that na > b.

4.12 Theorem (Order Dual of LUB). Each non-empty subset A of R which has a lower
bound has a greatest lower bound v. [Notation: v = glb(A)]

Hint: Let B be the set of lower bounds of A; apply LUB to B.

4.13 Exercise. Show that

a). limn→∞
1
n
= 0; i.e., for each ǫ > 0, there is an integer M such that if n ≥M ,

then 0 < 1
n
< ǫ. (See a calculus book for a definition of limit of a sequence.)
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b). If 0 < a < 1, then limn→∞ an = 0.

Hint for b): Write 1
a
= 1 + x (x > 0) and use 2.12.

4.14 Theorem. Between any two distinct real numbers there is both a rational number and
an irrational number – and hence infinitely many of each type.

Hint: Consider multiples of 1
n
and

√
2
n

for suitable n. Assume (though it has not yet been

proven) that
√
2 exists.

4.15 Exercise. Use the technique of the proof of 4.14 to exhibit a rational number and an
irrational number between:

a).
√
11 and

√
13.

b).
4

7
and

5

7
.

c). 3 and
√
11.

Finally we show that
√
2 exists:

4.16 Theorem. For each a ∈ R, a ≥ 0, there exists exactly one b ≥ 0 such that b2 = a.
(This b is denoted by

√
a.)

Hint: Set u := lub(A), where A := {x ∈ R | 0 ≤ x2 ≤ a}, and show u2 = a, using an indirect
proof.
If u2 < a, exhibit ǫ > 0 such that (u+ ǫ)2 < a, etc.

4.17 Theorem. The LUB axiom does not hold in Q.
Hint: Consider the set A ∩Q (for a = 2) from theorem 4.16.

4.18 Remark. The set A from the hint for Theorem 4.17, paired with B = { y ∈ Q : y ≥
0 and y2 > 2 }, gives one example of a “Dedekind cut”. With Dedekind cuts one can more
clearly see the role of LUB and how the rational and irrational numbers intermix. Suppose
A and B are disjoint subsets of Q whose union is Q and for which x < y for each x ∈ A and
y ∈ B. Such a pair (A,B) of sets is called a Dedekind cut. Each such pair corresponds to a
real number: if either A has a greatest element r or B has a least element r, the pair (A,B)
corresponds to the rational number r; a pair in which A has no greatest element and B has
no least element corresponds to an irrational number. The irrational numbers can, therefore,
be viewed as those numbers created to “plug the holes” between pairs of sets in Dedekind
cuts of the second type. Note that LUB asserts the existence of numbers to “plug” all such
“holes.”

This is what we meant earlier when we said that LUB asserted that there are no gaps in
the ordering of R.
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III. Decimal Expansions of Real Numbers

4.19 Remark. In 4.20 through 4.32 we explore the decimal expansion of a non-negative
real number less than one – in particular the form of the expansion for a positive rational
number that can be represented as a proper fraction. Since, by Corollary 4.10, every non-
negative real number can be expressed as the sum of a natural number and a non-negative
real number less than one, this exploration yields a lot of information about the entire set
of real numbers.
In this section, formal proofs of the theorems are not expected. One should, however, be

able to illustrate why Theorems 4.26, 4.27, 4.29, and 4.31 hold through an analysis of general
examples.

4.20 Theorem. If |r| < 1, then the geometric series a+ar+ar2+ · · ·+arn+ . . . converges
to a

1−r
.

[Recall that “c1 + c2 + c3 + . . . converges to b” means limn→∞(c1 + c2 + · · · + cn) = b; in
this case we write b = c1 + c2 + c3 + . . . . You may wish to consult a calculus book for the
definition of the sequence of partial sums and the definition of convergence of a series.]

4.21 Definition. A decimal expansion of a non-negative real number b < 1 is a series

a1
10

+
a2
102

+ · · ·+ ak

10k
+ · · ·

which converges to b, where ai ∈ {0, 1, 2, . . . , 8, 9} for each i, and not all ai’s are 9 from some
point on. One usually writes b = 0.a1a2a3 . . . .

4.22 Example. By 4.20, 1
3
= 0.333 . . . since 3

10
+ 3

102
+ · · · converges to

3
10

1− 1
10

= 1
3
;

0.25000 . . . is a decimal expansion for 1
4
but 0.24999 . . . is not.

4.23 Theorem. (Convergence, existence and uniqueness of decimal expansions)

a). Each series a1
10

+ a2
102

+ . . . , as described in 4.21, must converge to some non-negative
real number less than one. That is, each decimal expansion represents a non-negative
real number less than one.
[Hint: Compare with 1 = 9

10
+ 9

102
+ 9

103
+ . . . ; see a calculus book for a suitable

Comparison Theorem.]

b). Conversely, each non-negative real number less than one has a decimal expansion.

c). The decimal expansion of a non-negative real number less than one is unique.

Hint for c): Suppose r = 0.a1a2a3 . . . = 0.b1b2b3 . . . . Multiply by 10 to obtain 10r =
a1.a2a3 . . . = b1.b2b3 . . . . Use Theorem 4.10 to argue that a1 = b1. Note that .a2a3 . . . =
10r − a1 = 10r − b1 = .b2b3 . . .. Continue by induction.
We now explore the decimal expansion of a positive rational number which can be repre-

sented by a proper fraction.
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4.24 Exercise. Compute, via long division, the decimal representations of

5

8
,

5

11
,

13

88
,

201

444
,

3

7
,

5

7
, and

5

13
.

Examine the form of these decimal expansions: length of repeating blocks and delay before
such begins. Do you see any connection between this form and the denominators of the
rational numbers?

4.25 Definition. A decimal expansion 0.a1a2a3 . . . is

a). Periodic if, after some point, a block of digits repeats itself indefinitely:

0.a1a2 . . . asas+1 . . . as+tas+1 . . . as+t . . . .

In this case we write 0.a1a2 . . . asas+1 . . . as+t.
For example, 7

22
= 0.3181818 · · · = 0.318. [The smallest such s is called the pre-period

and the smallest such t the period of the expansion.]

b). Terminating if all ai from some point on are zero:

0.a1a2 . . . as000 . . . .

Observe that every terminating decimal expansion is periodic of period 1.

4.26 Theorem. (Normal forms of decimal expansions of rationals)

a). The decimal expansion of each positive rational number q < 1 is periodic.

b). Conversely, each non-zero periodic decimal expansion of a non-negative real number
b < 1 represents a positive rational number.

Hint for a): What are the possible remainders in each step of performing the long division
n m ?
Hint for b): Generalize this computation: b = 0.12345 implies 103b = 123.45 and 105b =
12345.45. Hence 105b− 103b = 12345− 123 so that

b =
12222

105 − 103
=

12222

99000
=

1358

11000
.

Call a fraction m
n

a proper, reduced rational number if m < n are positive integers with
gcd(m,n) = 1. [Recall that in Exercise 3.15 we showed fractions could be reduced.]

4.27 Theorem. The decimal expansion of the proper, reduced rational number m
n
is termi-

nating exactly when n = 2α5β for some α, β ≥ 0. In this case the length of the terminating
decimal expansion is max{α, β}.

Hint:
11

40
= 11

235
= 11·52

2353
= 275

103
= 0.275.

4.28 Exercise. Express as a reduced quotient of integers.
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a) ∗ 0.21522

b) ∗ 0.4441332

c) ∗ 0.34612

d) Exhibit explicitly a decimal expansion of an irrational number.

4.29 Theorem. Assume m
n
is proper and reduced with no 2 or 5 in the prime factorization of

n. Then the pre-period of its decimal expansion is zero and the period is the smallest integer
t so that n|(10t−1); i.e., t is the number of digits in the smallest of 9, 99, 999, 9999, . . . which
n divides.

Hint: b = 0.393 implies 103b = 393.393. Then (103 − 1)b = 393, so that

b =
393

103 − 1
=

393

999
=

131

333
.

4.30 Remark. It can be shown that for any such n, a t exists such that n|(10t − 1).

4.31 Theorem. Suppose m
n

is proper and reduced and n = 2α5βn′, where n′ has no 2 or 5
in its prime factorization. Then the pre-period of the decimal expansion of m

n
is max{α, β}

and the period is the smallest t such that n′|(10t − 1).

4.32 Exercise. Determine, without dividing out, the form of the decimal expansion of the
following.

a)∗
27

56
b)∗

7

13
c)∗

154

1680
d)∗

111

148



5. Countable and Uncountable Sets

We now explore briefly “how many” natural numbers, integers, rational numbers, irrational
numbers, and real numbers there are.

5.1 Definition. 1. If A and B are sets, then a function f from A to B is an object which
specifies, for each element a ∈ A, an element f(a) ∈ B. We use the notation f : A→ B
to say that f is a function from A to B.

We will not attempt here to say what sort of an “object” a function is, or precisely
what we mean by the word “specifies”.

2. A function f : A→ B is onto B if for each b ∈ B there is at least one a ∈ A such that
b = f(a).

3. A function f : A→ B is one-to-one (frequently written 1–1) if for each b ∈ B there is
at most one a ∈ A such that b = f(a).

Note that this definition can be equivalently stated as “f : A → B is 1–1 if for every
a, a′ ∈ A such that a 6= a′ we have f(a) 6= f(a′).”

For an example of a function, consider a shepherd who has made a list of the names of
the sheep in his herd. Assuming that no two sheep have the same name, the shepherd has
defined a function S which assigns to each name n on the list the sheep S(n) having that
name. The function is one to one provided that no sheep has more than one name: if the
list includes nicknames along with the official names, then it would not be one to one. It is
onto if every sheep has a name: during lambing season the function would not be onto until
all of the newborn lambs had been given names.
We say that there is a one-to-one correspondence between two sets A and B if there if

is a one-to-one function from A onto B. In the case of the sheep there is (assuming no
nicknames) a one-to-one correspondence between the set of names on the list and the set of
named sheep. Clearly, this correspondence shows (assuming no nicknames) that there are
at least as many sheep as names. If every sheep has a name then it shows that the sets have
the same size, but if this is lambing season then the set of named sheep may be a proper
subset of the set of all sheep, so we could conclude that there are fewer names than there
are sheep.

5.2 Definition. a). Two sets A and B have the same cardinal number, written A ≡ B,
if there is a one-to-one correspondence between A and B. [Example: The one-to-one
correspondence n↔ 2n shows that the set of all natural numbers has the same cardinal
number as the set of even natural numbers.]
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b). We say that A has at most as many members as B, written A � B, if there is a one-
to-one correspondence between A and a subset of B. [Example: the identity function,
defined by id(n) = n for each n ∈ N, shows that N � N, N � Q and N � R. The
function f : N→ Q defined by f(n) = 1/(n+ 1) is another map showing that N � Q.]

c). A has fewer elements than B (written A ≺ B) if A � B but A 6≡ B.

d). A set is countable if it is either finite or has the same cardinal number as N, the set of
natural numbers. Otherwise, it is said to be uncountable.

e). A set is countably infinite if it is countable but not infinite.

5.3 Remark. Notice that the function D(n) = 2n of clause (a) is a 1–1 function from N

to the set of even numbers, which is a proper subset of N. This is an important difference
between finite and infinite sets. The set of sheep is (presumably) finite, so if there are sheep
without names then the set of named sheep must be strictly smaller than the set of all sheep.
In the case of the infinite set N, however, the function D shows that the set of even numbers
has the same size as the full set N.

5.4 Remark. Mathematicians often write |A| for the cardinal number of A, the “number of
elements of A”. Thus A � B could be written |A| ≤ |B|. However, you should not use the
concept of “the cardinal number of A” in the proofs below. In the first place, we really have
no idea what the “cardinal number” of an infinite set would be: clearly the cardinal number
of the set {Buttercup, Silvy,Misty} is the natural number 3, but what sort of an object is
|R|, the cardinal number of the set of reals? In the second place, Remark 5.3 shows that in
at least one important aspect the cardinal numbers of infinite sets behave quite differently
from finite numbers. It seems that we should be careful not to trust the analogy too far until
we have a better understanding of the properties of the cardinal numbers.

5.5 Theorem. The relation A ≡ B is an equivalence relation. That is, for all sets A, B
and C:

a). (Reflexivity) A ≡ A.

b). (Symmetry) If A ≡ B then B ≡ A.

c). (Transitivity) If A ≡ B and B ≡ C then A ≡ C.

5.6 Theorem. N ≡ {1, 3, 5, 7, . . .} ≡ Z ≡ Q.
That is, each of N, {1, 3, 5, . . . }, Z, and Q is countably infinite.

5.7 Theorem. N ≺ R. That is, R is uncountable.

Hint: Let A := {x ∈ R : 0 < x < 1} and show N ≺ A indirectly. Suppose to the contrary
N ≡ A with a one-to-one correspondence between N and A given by

0 ←→ 0.a0,0 a0,1 a0,2 a0,3 a0,4 . . .

1 ←→ 0.a1,0 a1,1 a1,2 a1,3 a1,4 . . .

2 ←→ 0.a2,0 a2,1 a2,2 a2,3 a2,4 . . .

...
...



29

where 0.ak,0 ak,1 ak,2 . . . is the decimal expansion of the real number rk corresponding to the
natural number k.

Now let b := 0.b0 b1 b2 b3 . . . , where bi :=

{

1 if ai,i 6= 1

2 if ai,i = 1.

To what natural number can b correspond?
This argument is called the Cantor Diagonalization Process.

5.8 Theorem.

a). The union of two disjoint, countably infinite sets is countably infinite.

b). There are uncountably many irrational numbers.

5.9 Theorem. For any set A, A ≺ P(A), where P(A) denotes the set of all subsets of A,
called the power set of A.

Hint: Indirect proof! Suppose to the contrary that f : A→ P(A) is a one-to-one correspon-
dence between A and P(A), and consider the set B := {x ∈ A : x /∈ f(x)}. Then B ∈ P (A),
so it must correspond to some element b ∈ A. Is b ∈ B?

5.10 Exercise. Give examples of infinitely many infinite sets no two of which have the same
cardinal number.

Theorem 5.5, stating that≡ is (like =) an equivalence relation, suggests asking the question
whether the relation � is an order relation. In fact it is, as the following theorem asserts.
We will not prove parts (b) and (c).

5.11 Theorem. a). For all sets A, B and C, if A � B and B � C then A � C.

b). For all sets A and B, if A � B and B � A then A ≡ B.

c). For all sets A and B, either A � B or B � A.

The proof of the first clause is essentially the same as clause (c) of theorem 5.5. The
proof of the second, which is known as the Cantor-Bernstein theorem, is somewhat more
challenging. The proof of the third requires a new axiom: the Axiom of Choice.
To get a start on the theory of arithmetic for infinite cardinal numbers, notice that if O is

the set of odd natural numbers and E is the set of even natural numbers, then N = O∪E and
hence we must have |N| = |O|+ |E|. But |O| = |E| = |N|, so it follows that |N | = |N |+ |N |.
In fact one can prove, using the axiom of choice, that for any infinite cardinal number κ we
have κ+ κ = κ and κ · κ = κ.
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6. Fields and Subfields

6.1 Definition. A field is a set F equipped with binary operations + and · satisfying the
“field axioms” given in 1.1: AC, AA, AID, AIV, MC, MA, MID, MIV, and D. A subset
K of a field F is a subfield of F if K itself forms a field under the operations defined on F .

Recall that the closure of a set under an operation follows from the meaning of a binary
operation on the set (see 1.3)]

6.2 Example. (Revisiting R and Q)

a). We began by assuming that the real numbers R form a field.

b). The rational numbers Q form a field (see 4.2), and Q is a subfield of R.

I. Subfields, Surd Fields, and Ordered Fields

6.3 Theorem. Suppose that F is a field. If a subset K of F satisfies the hypotheses

(i) K is closed under addition and multiplication;

(ii) 0, 1 ∈ K;

(iii) a ∈ K implies −a ∈ K; and

(iv) 0 6= a ∈ K implies a−1 ∈ K;

then K is a subfield of F .

6.4 Exercise. (Sample surd fields)

a). Any subfield of R must contain Q as a subset.

b). Show that Q[
√
2] := {a + b

√
2 | a, b ∈ Q} is a proper subfield of R which properly

contains Q.
Notice that Q[

√
2] is the smallest subfield of R which contains Q and

√
2. That is, if

F is any subfield of R such that Q ⊂ F and
√
2 ∈ F then Q[

√
2] ⊂ F .

c). Show the same for Q[
√
3] := {a+ b

√
3 | a, b ∈ Q}.

d). Neither of Q[
√
2] and Q[

√
3] is a subset of the other.
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32 6. Fields and Subfields

e). Show that Q[ 3
√
2] := {a+ b 3

√
2 + c( 3

√
2)

2 | a, b, c ∈ Q} is a subfield of R.

[Hint: Compute [a+ b 3
√
2 + c( 3

√
2)

2
][d+ e 3

√
2 + f( 3

√
2)

2
],

where d := a2 − 2bc, e := 2c2 − ab, and f := b2 − ac. To show that the product is
nonzero, use 1.4g).

f). Give examples of infinitely many proper subfields K of R which properly
contain Q.

[Note: A is a proper subset of B if A ⊂ B but A 6= B.]

6.5 Definition. A field F is an ordered field if it satisfies the order axioms OTC, OTR, OA,
and OM given in 1.13. An ordered field is called completely ordered if, in addition, it satisfies
the least upper bound axiom (4.7). (We have assumed that the real numbers R form a
completely ordered field.)

6.6 Theorem. (Ordered fields and subfields)

a). A subfield of an ordered field is an ordered field.

b). Q, Q[
√
2], Q[

√
3], and Q[ 3

√
2] are ordered fields.

c). Q is not completely ordered. [See theorem 4.17.]

II. Modular Arithmetic

6.7 Definition. For each positive integer n ≥ 2, we set Zn := {0, 1, 2, 3, . . . , n − 1} and
definite operations + and · on Zn by:

a+ b := remainder after division of the usual sum by n.

ab := remainder after division of the usual product by n.

For example, in Z7, 3 + 6 = 2, 3 · 6 = 4 and 62 = 1.

6.8 Remark. One can show (and we will assume) that, for each n, all of the field axioms
hold in Zn, except possibly MIV.

Note that for n = 12, the operations defined above form the arithmetic of a clock.

6.9 Exercise. (Sample computations)

a). Compute in Z8: 5 + 7∗, 5 · 7, 72 ∗.

b). Compute in Z5: −2∗, 2− 4, 2−1 ∗, 2
∗

3
.

c). Which elements of Z10 have a multiplicative inverse? Compute those that exist∗.

6.10 Theorem. Let n ≥ 2.
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a). The set of those elements of Zn which are relatively prime to n is closed under multi-
plication.
Hint: See 3.14(d), 3.14(f).

b). An element a in Zn has a multiplicative inverse iff a and n are relatively prime. Hint:
See 3.14(a) and 6.11 below.

c). Zn is a field iff n is a prime.

d). No order relation can be placed on Zn so that Zn becomes an ordered field.

6.11 Exercise. If a ∈ Zn with a relatively prime to n, then, using the Euclidean algorithm
one can find integers r and k such that ar + nk = 1. If r is then reduced via the division
algorithm, r = nq+ b, 0 ≤ b < n, then b is the multiplicative inverse of a in Zn. Show that
this is indeed true and then use this method to compute:

a). The multiplicative inverse of 7 in Z31
∗.

b). The multiplicative inverse of 11 in Z125
∗.
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7. Complex Numbers

7.1 Definition. The complex numbers is the set

C := {a+ bi | a, b ∈ R}

on which equality, multiplication, and addition are defined as follows:

Equality: a + bi = c+ di means a = c and b = d.

Addition: (a+ bi) + (c+ di) := (a+ c) + (b+ d)i.

Multiplication: (a+ bi)(c + di) := (ac− bd) + (ad+ bc)i.

For a complex number z = a+ bi, a is called the real part of z and b is called the imaginary
part of z. The complex numbers are represented geometrically by the Cartesian coordinate
plane: z = a + bi is paired with the point having coordinates (a, b) as indicated below.

6

-

. . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

imaginary axis

real
axis

•

i

−i

b
a+ bi

a−1 1

7.2 Exercise. (Complex arithmetic)

a). Show that the sum and product of complex numbers defined above is the same as if
one treated the numbers as polynomials in i and let i 2 = −1. Hence by an abuse of
notation, we write, for example, 2− 3i for 2 + (−3)i.

b). Find the sum, product and quotient (See 7.5d) of:
(i) 2 + 3i and −2− 5i ∗ (ii) 5 and −2 + i (iii) 4i and 6i.

c). Locate in the complex plane: 3− i, −4 + 3i, −2i, 2.
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36 7. Complex Numbers

d). Compute (−1
2
+ 1

2

√
3 i)

3 ∗.

e). Interpret complex number addition geometrically in the plane.

7.3 Definition. For z = a + bi in C,

a). z̄ := a− bi, the conjugate of z.

b). |z| :=
√
a2 + b2, the absolute value of z.

7.4 Exercise. (Geometric interpretations of conjugate and absolute value)

a). What are the relative positions of z, −z, z̄, and −z̄ in the complex plane?

b). Interpret |z| geometrically.

7.5 Theorem. If z, z1, and z2, are in C, then

a). z1 + z2 = z1 + z2.

b). z1z2 = z1z2.

c). z is real iff z = z̄.

d). zz̄ = |z|2. Hence
z1
z2

=
z1
z2

z̄2
z̄2

=
z1z̄2
|z2|2

.

[Use definition 1.6 for division of complex numbers: that is, z1
z2

is the unique number
w such that z1 = z2w.]

e). |z| = | − z| = |z̄|.

f). |z1z2| = |z1||z2| and
∣
∣
∣
∣

z1
z2

∣
∣
∣
∣
=
|z1|
|z2|

. [Hint: Consider using d) above.]

g). |z1 + z2| ≤ |z1|+ |z2|. (triangle inequality)
[Hint: First show the Schwarz inequality: (ac+ bd)2 ≤ (a2 + b2)(c2 + d2).]

7.6 Theorem. C forms a field.

7.7 Theorem (Complex subfields). a). There exists no subfield K of C with R ⊂ K ⊂ C

and R 6= K 6= C.

b). There is, however, a proper subfield of C that is not a subset of R.
(Give an example of such.)

c). No order relation can be placed on C so that C becomes an ordered field.
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7.8 Remark. In doing arithmetic with complex numbers it is useful to have the exponential
function ez (for real and complex numbers) and the trigonometric functions sin(x) and cos(x)
for real numbers.
In the following, assume that these functions have been defined for real numbers and

assume (without proof) that they have their familiar properties for real numbers. We will
use this assumption in order to extend the definition of ez to complex numbers z and to
prove that it still satisfies the familiar properties for complex numbers z.

7.9 Definition. For z = a+ bi ∈ C, one can write a = r cos θ and b = r sin θ , where r and
θ are as shown below. Hence z = r(cos θ + i sin θ), the polar form of z. Notice that r = |z|
and θ = tan−1( b

a
) (or, if a < 0, then θ = π + tan−1( b

a
)). The angle θ is called the argument

of z.
The exponential function can be extended from R to C by defining eiθ := cos(θ)+ i sin(θ).

Thus can write z = r(cos(θ) + i sin(θ)) = reiθ.

�����������
. . . . . . . . . . . . . . . . . . . . .
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6
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•
r

r (cos θ + i sin θ) = re i θ = a+ bi

x θ

Examples:
2− 2i = 2

√
2(cos(−π

4
) + i sin(−π

4
))

−1 +
√
3i = 2(cos 2π

3
+ i sin 2π

3
)

i = 1(cos π
2
+ i sin π

2
).

7.10 Theorem. If z1 = r(cos θ + i sin θ) and z2 = s(cosφ+ i sin φ), then

a). z1z2 = rs(cos(θ + φ) + i sin(θ + φ)) = rsei(θ+φ) and

b).
z1
z2

=
r

s
(cos(θ − φ) + i sin(θ − φ)) = r

s
ei(θ−φ).

c). e(z1+z2) = ez1ez2.

7.11 Exercise. (Polar form and geometric interpretation of multiplication)

a). Write in polar form: 2 + 2i ∗, −1
2
+

√
3
2
i, −2i ∗, −3.

b). Interpret complex number multiplication geometrically in the plane.

7.12 Theorem (DeMoivre’s Theorem). If z = r(cos θ + i sin θ) and n is a positive integer,
then zn = rn(cos nθ + i sinnθ).

7.13 Theorem. Let z = r(cos θ + i sin θ) be a nonzero complex number.
Then z has exactly n n-th roots; namely:

wk :=
n
√
r

(

cos

(
θ

n
+

2π

n
k

)

+ i sin

(
θ

n
+

2π

n
k

))

, for k = 0, 1, 2, ..., n− 1.
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7.14 Example. (Some complex roots in Cartesian and polar form)

a). The square roots of 1 are:
w0 = 1 = cos 0 + i sin 0
w1 = −1 = cosπ + i sin π.

b). The cube roots of 1 are (see figure at left below):
w0 = 1 = cos 0 + i sin 0
w1 = −1

2
+

√
3
2
i = cos 2π

3
+ i sin 2π

3

w2 = −1
2
−

√
3
2
i = cos 4π

3
+ i sin 4π

3
.

c). The square roots of 4i are (see figure at right below):
w0 = 2(cos π

4
+ i sin π

4
)

w1 = 2(cos 5π
4
+ i sin 5π

4
).

w1

•
A

�•
w2

'$
&%•1 = w0

•
�

�•
w1

'$
&%2
−4i
2i w0

7.15 Exercise. Determine and graph in the complex plane all

a). 4th roots of -1 ∗

b). 5th roots of i

c). Cube roots of -8

d). 4th roots of 16i ∗

e). Square roots of 1 +
√
3 i ∗

f). 4th roots of −1 −
√
3 i.

7.16 Exercise. Determine all solutions in C of

a). x4 − 16 = 0 d) x3 − 64i = 0 ∗

b). x6 + 64 = 0 ∗ e) x4 + 81 = 0

c). x3 + 8i = 0 f) x5 − 243 = 0.



8. Polynomials

8.1 Definition. (Polynomials and their arithmetic)

a). A polynomial P (x) over a field F (or over Z) is a symbol

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + . . .

in which ai ∈ F (or ai ∈ Z) for each i and ai = 0 for all i from some point on. The
set of all polynomials over F (or over Z) is denoted by F [x] (or Z[x]) and is called the
polynomial ring over F .

Examples: 2 +
√
2x+ x2 is in R[x] and C[x] but not in Q[x] or Z[x];

1 + x+ 2x2 + 3x3 + · · ·+ nxn + . . . is not a polynomial (why?).

b). The degree of a non-zero polynomial P (x) = a0 + a1x+ · · ·+ anx
n + . . . is the largest

n such that an 6= 0 (Notation: degP (x) := n).
The zero polynomial (all ai = 0) is not assigned a degree.

Examples: 4 + 3x2 + 5x4 has degree 4;
nonzero constant polynomials P (x) = a0 (a0 6= 0) have degree zero.

c). Addition and multiplication of polynomials are defined as follows:
For P (x) = a0+a1x+a2x

2+· · ·+anx
n+. . . and Q(x) = b0+b1x+b2x

2+· · ·+bnx
n+· · · ,

(i) P (x) + Q(x) := (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n + . . .

(ii) P (x)Q(x) := c0 + c1x+ c2x
2 + · · ·+ cnx

n + . . . , where for each n,

cn :=
∑

i+j=n

aibj = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0.

8.2 Exercise. If P (x) = 1 + 4x+ 2x2 and Q(x) = 4 − x+ x2 + 3x3, compute P (x) + Q(x)
and P (x)Q(x)

a). Using the formal definitions given in 8.1c).

b). As you did in high school algebra.

[Compare the computations, not just the results.]

8.3 Theorem (Closure under + and ×). The sum and product of two polynomials over a
field F (or over Z) are polynomials (rather than just power series). Moreover, if P (x) and
Q(x) are nonzero polynomials over a field F (or over Z), then

39



40 8. Polynomials

a). deg(P (x) +Q(x)) ≤ max{degP (x), degQ(x)}, provided P (x) +Q(x) 6= 0.
[Give an example to show that strict inequality can hold.]

b). degP (x)Q(x) = deg P (x) + degQ(x).

8.4 Theorem. For any field F , F [x] (and Z[x])

a). Satisfies all the field axioms except MIV.

b). Has no divisors of zero. That is,
P (x)Q(x) = 0 implies P (x) = 0 or Q(x) = 0.

c). P (x)Q(x) = P (x)R(x) (P (x) 6= 0) implies Q(x) = R(x).

8.5 Theorem (Division Algorithm). Let P (x) and D(x) be polynomials over a field F with
D(x) 6= 0. Then there exist unique polynomials Q(x) and R(x) such that
P (x) = D(x)Q(x) +R(x) with either degR(x) < degD(x) or R(x) = 0.

8.6 Exercise. Compute via long division Q(x) and R(x) in the division algorithm if

a). P (x) = x4 − 3x2 + x+ 3 and D(x) = 2x2 − 1. ∗

b). P (x) = 5x4 − 2x3 + 12x− 6 and D(x) = x2 + 4.

c). P (x) = 2x4 + 2x3 + 3x2 + x+ 1 and D(x) = 2x2 + 1.

8.7 Definition. Suppose that P (x) = a0 + a1x + a2x
2 + · · ·+ anx

n is a polynomial over a
field F and c ∈ F .

a). The value of P (x) at c is defined to be
P (c) := a0 + a1c+ a2c

2 + · · ·+ anc
n ∈ F .

b). c is called a zero of P (x) (or a root of P (x) = 0) if P (c) = 0.

8.8 Theorem (Remainder Theorem). If the polynomial P (x) over a field F is divided by
x−c (c ∈ F ) to give P (x) = (x−c)Q(x)+R, then R = P (c). [R = R(x) is constant. Why?]

8.9 Notation (Synthetic Division/Substitution). The computations involved in dividing a
polynomial P (x) by x − c can be placed in a convenient format (synthetic division). For
example, to divide 3x4 − x2 + 5x+ 2 by x− 2 one can write:

c −→

coefficients of P (x)
︷ ︸︸ ︷

2 3 0 −1 5 2
6 12 22 54ր ր ր ր

3 6 11 27 56
︸ ︷︷ ︸

quotient =
3x3 + 6x2 + 11x+ 27

}
←− add

= remainder = P (c)

middle =
bottom × c

}

Notice that this process computes the remainder R, which by theorem 8.8 is equal to P (c).
Hence the process of synthetic division is also a convenient method for computing P (c).
When used in this way, it can be called synthetic substitution.
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8.10 Exercise. (Practice with synthetic division/substitution)

a). Use synthetic division to divide 4x5 − 3x4 + 5x2 + 9 by x+ 2.

b). Use synthetic substitution to compute P (3) if P (x) = 7x4 − 6x3 + 2x2 − 12.

c). Use synthetic substitution to compute P (1
3
) if P (x) = 3x4 − x3 − 3x2 + 4x− 1.

8.11 Definition. Suppose P (x), Q(x) are in F [x] (or Z[x]). One says that P (x) divides
Q(x) in F [x] (or Z[x]) (written P (x)|Q(x)) if there is a polynomial R(x) in F [x] (or Z[x])
such that Q(x) = P (x)R(x).

8.12 Example. (x−
√
2)|(x2 − 2) in R[x] but not in Q[x].

3|(2x+ 5) in Q[x] but not in Z[x].

8.13 Theorem (Factor Theorem). Suppose P (x) is in F [x] and c ∈ F .
Then (x− c)|P (x) iff P (c) = 0.

8.14 Corollary. A polynomial of degree n over a field can have at most n distinct zeros in
the field.

8.15 Theorem (Rational Root Theorem). Let P (x) = a0 + a1x+ · · ·+ anx
n (an 6= 0) be a

polynomial over Z. If p

q
is a reduced rational zero of P (x), then p|a0 and q|an.

[When searching for zeros of a polynomial over Z, this narrows the search for rational zeros
to finitely many possibilities.]

8.16 Example. Any rational zeros of P (x) = 2x3−x2−4x+2 must occur among 1, -1, 2, -2,
1
2
, −1

2
(why?). Evaluating P (x) at these numbers reveals that P (1

2
) = 0; hence (x− 1

2
)|P (x).

Synthetic division then yields P (x) = (x− 1
2
)(2x2 − 4). What are the other zeros of P (x)?]

8.17 Exercise. (Applications of the Rational Root Theorem)

a). Find all rational zeros of P (x) and a factorization in Q[x] of P (x) if P (x) =

(i) x5 − 3x4 − 3x3 + 9x2 − 4x+ 12

(ii) 3x4 − 11x3 + 10x− 4

(iii) x4 + 2x3 + 2x2 − 4x− 8 ∗

b). Use the rational root theorem to show that

(i)
√
2 is irrational.

(ii) 3
√
4 is irrational.

8.18 Theorem (Quadratic Formula). The zeros in C of the quadratic polynomial ax2+bx+c
(a 6= 0) over R are

−b+
√
b2 − 4ac

2a
and

−b−
√
b2 − 4ac

2a
, if b2 − 4ac ≥ 0, and

−b
2a

+

√
4ac− b2

2a
i and

−b
2a
−
√
4ac− b2

2a
i, if b2 − 4ac < 0.
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[Hint: Divide by a, then complete the square to get

(

x+
b

2a

)2

=
b2 − 4ac

4a2
.]

8.19 Exercise. (Zeros of polynomials in C[x])

a). Find all zeros in C of

(i) x2 + 4x+ 13 ∗

(ii) x2 − 6x+ 4

(iii) 2x3 + x2 + x− 1 ∗

b). Use the method suggested by the hint in 8.18 to find all zeros in C of the following
polynomials over C.

(i) x2 + 4x+ (4 + 9i)

(ii) x2 − 4ix− 13 ∗.

8.20 Theorem (Fundamental Theorem of Algebra). Every polynomial over C of positive
degree has at least one zero in C.

[We will assume this important theorem. Its proof involves concepts well beyond the scope
of this course. It tells us that in order to ensure that all polynomial equations have roots,
there is no need to extend our number system beyond C.]

8.21 Corollary. Every polynomial P (x) over C of positive degree can be factored in C[x]
into a product of linear (= first degree) factors:

P (x) = an(x− r1)(x− r2) · · · (x− rn).

8.22 Definition. A polynomial over a field F of positive degree is called irreducible over F
if it is not the product of two polynomials in F [x] of lesser degree.

8.23 Example. x2− 2 is irreducible over Q but not over R. x2 +1 is irreducible over R but
not over C.

8.24 Theorem. (Irreducible polynomials)

a). Every linear polynomial is irreducible.

b). The only irreducible polynomials over C[x] are the linear ones.

c). A quadratic polynomial ax2 + bx + c (a 6= 0) over R is irreducible over R[x]
iff b2 − 4ac < 0.

d). There exist irreducible polynomials in Q[x] of degree three.

8.25 Lemma. Suppose P (x) is in R[x] and z ∈ C. If z is a zero of P (x), then so is z̄.
Thus, the nonreal zeros of a polynomial over R must occur in complex conjugate pairs.

[Hint: First show P (z) = P (z̄).]
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8.26 Theorem. Every polynomial over R is the product of polynomials over R of degree at
most 2. [Hint: First factor in C[x]; (x− z)(x− z̄) =?]

8.27 Exercise. (Irreducible polynomials)

a). Describe all irreducible polynomials over C. Over R.

b). Write the following polynomials as a product of irreducible polynomials over C. Over
R.

(i) x4 − 2x3 + 9x2 + 2x− 10

(ii) x5 − 3x4 + 8x3 − 8x2 + 7x− 5 ∗

(iii) 3x5 − 13x4 + 22x3 − 30x2 + 32x− 8

(iv) x4 + 1 ∗

c). Are the following irreducible over Q? Explain.

(i) x3 + x2 − x+ 1 ∗

(ii) x4 − x2 − 2 ∗

(iii) x4 + 1 ∗

(iv) x6 − 2 ∗

d). Are there irreducible polynomials in Q[x] of arbitrarily large degree?

e). Can you describe all irreducible polynomials in Q[x] of degree 2?
Of degree 3? Of any degree?
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9. Answers to selected exercises

1.21 a) x < −7 or x > 5 c) 4 ≤ x ≤ 5 d) no real number f) x > −1
3.17 a) 11 b) 1 c) 80 d) 252

3.25 a) 403 = 13 · 31, 1815 = 3 · 5 · 112, 26208 = 25 · 32 · 7 · 13

4.24
5

11
= 0.45,

3

7
= 0.428571, 13

88
= 0.14772, 5

13
= 0.384615

4.28 a
2389

11100
b

61679

138875
c

8653

25000
4.28 4.32 s = 3, t = 6 4.32 s = 0, t = 6 4.32 s = 3, t = 1 4.32 x = 2, t = 0

6.9

a) 5 · 7 = 3, 72 = 1

b) −2 = 3, 2
3
= 4, 2−1 = 3

c) 1, 3, 7, 9; 3−1 = 7, 9−1 = 9

6.11 a) 9 b) 91

7.2 b) (2 + 3i)(−2 − 5i) = 11− 16i d) 1

7.11 a) 2 + 2i = 2
√
2(cos π

4
+ i sin π

4
), −2i = 2(cos 3π

2
+ i sin 3π

2
)

7.15

a) |w| = 1; θ = π
4
, 3π

4
, 5π

4
, 7π

4

d) |w| = 2; θ = π
8
, 5π

8
, 9π

8
, 13π

8

e) |w| = 2; θ = π
6
, 7π

6

7.16

b) |x| = 2; θ = π
6
, π

2
, 5π

6
, 7π

6
, 3π

2
, 11π

6

a) |x| = 4; θ = π
6
, 5π

6
, 3π

2

8.6 a) Q(x) = 1
2
x2 − 5

4
, R(x) = x+ 5

4
.

8.17 (a)iii. No rational zeros, yet reducible over Q .

45
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8.19

a)i −2 + 3i, −2− 3i a)iii 1
2
is a zero

b)ii 3 + 2i, −3 + 2i

8.27

b)ii three irreducible factors over Q. b)iv reducible over R.

c)i yes c)ii no c)iii yes c)iv yes


