

Hall's Marriage Lemma

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 1 November, 2021 (at 09:53)

Entrance. We start with the classic thm of Philip Hall. We have sets \mathcal{B} and \mathcal{G} [“boys” and “girls”, possibly infinite] and a bipartite graph $\Gamma = ((\mathcal{B}, \mathcal{G}), E)$. We write bEg if boy b and girl g know each other. Let $\varphi(b)$ be the set of girls known by b . And for a set $B \subset \mathcal{B}$, use

$$\varphi(B) := \bigcup_{b \in B} \varphi(b)$$

for the girls known by at least one B -boy. Analogously, use $\sigma(g)$ and $\sigma(G)$ for boys known by girls.

A “marriage for the boys” is an *injection* $f: \mathcal{B} \hookrightarrow \mathcal{G}$ st. for each b , we have $bEf(b)$.

The *Hall condition* on Γ is:

HC: Each $B \subset \mathcal{B}$ has $|\varphi(B)| \geq |B|$.

Evidently HC is a necessary condition for a marriage.

1: Marriage lemma (Philip Hall, 1935). Suppose bipartite graph $\Gamma = ((\mathcal{B}, \mathcal{G}), E)$ has \mathcal{B} finite. Then there is a marriage for the boys IFF Γ satisfies HC. \diamond

1a: Remark. When \mathcal{B} is infinite, HC does not imply a marriage. Consider boys \mathbb{N} and girls \mathbb{Z}_+ . Boy b_0 knows all the girls, and each other b_n knows only g_n . Each proper subset $B \subset \mathbb{N}$ can be married-off: Pick $K \in \mathbb{N} \setminus B$ and marry b_0 to g_K . For the remaining $n \in B$, marry b_n to g_n .

OTOHand, we can't marry-off all the boys; the wife g_K of b_0 leaves poor b_K with no-one to marry.

The below proof uses induction on $|\mathcal{B}|$, doing divorces to marry-in the new boy. The above CEX shows that there cannot be an induction Proof-by-Extension; the divorces are necessary, even with lookahead. \square

Pf of (1). Suppose we have married-off finite set \mathcal{B} into [possibly infinite] \mathcal{G} . We have a new boy $b_0 \notin \mathcal{B}$ whom we wish to marry-off. Our goal is to find a *chain*

$$*: b_0 \rightarrow g_1 \rightarrow b_1 \rightarrow g_2 \rightarrow b_2 \rightarrow \dots \rightarrow g_{K-1} \rightarrow b_{K-1} \rightarrow g_K,$$

where: Girl g_K is unmarried, each other g_n is married to b_n , and each b_{j-1} knows g_j . Divorce these married-girls, then marry each b_{j-1} to g_j . Now all boys in $\mathcal{B} \sqcup \{b_0\}$ are married.

Producing a chain. “Mark” b_0 . Iteratively mark additional girls and boys as follows:

- Mark each girl known by a marked boy.
- Mark each boy married to a marked girl.

This process must eventually stabilize, as \mathcal{B} is finite. At this point, let B and G be the sets of marked boys and girls. By defn $G = \varphi(B)$, so the Hall condition says $|G| \geq |B|$.

Each B -boy *except* b_0 is married; so G has precisely $|B|-1$ wives. Thus *there is some unmarried G -girl*. Pick one. In the marking-process, she was introduced at some stage, K . Hence she is g_K of some $(*)$ -chain. \spadesuit

Distinct-cards Problem

For the cards in a playing-deck, denote the ranks $A, 2, \dots, J, Q, K$ by r_1, r_2, \dots, r_{13} .

2: Distinct-cards thm. Deal a randomized deck into 13 piles of four cards apiece. Now remove some three cards. Then it is always possible to choose one card-per-pile so that all 13 ranks were chosen. \diamond

Proof. Imagine that each pile of cards is on its own little tray. The trays are the “boys”, the ranks are the “girls” and the cards are the $52-3=49$ edges of the bipartite graph. Does this graph satisfy Philip Hall's condition?

In a set, \mathcal{C} , of n many cards, no rank occurs on more than 4 cards, so the number of ranks occurring in \mathcal{C} is at least $\lceil n/4 \rceil$. A collection of K many trays has at least $n := 4K - 3$ many cards, so this collection has at least $\lceil \frac{4K-3}{4} \rceil \stackrel{\text{note}}{=} K$ many ranks. I.e, each set of K boys “knows” at least K many girls. \spadesuit

Land matching

3: The Hunter/Farmer problem. There is an island which, from time immemorial, has been divided into N equal-area farming regions, taking up the whole island. It is also divided into N equal-area hunting tracts, taking up the whole island.

There are N married couples on the island; the wives hunt and the husbands farm. We would like to be able to assign tracts to wives and farms to husbands so that each couple could build a house on territory common to both. Indeed, territory with at least area $\delta_N \cdot \text{Area}(\text{Island})$. Determine the largest $\delta = \delta_N$ which that works for every division of the island into tracts/regions. ◇

Proof. ??