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Abstract: Markov chains, neither the 1-step nor the
multi-step, are stable under finite-block codes.

Geometric preliminaries. In a real vectorspaceV, say
that ∑N

j=1
αjvj (with each αj ∈ R)†:

is a linear combination (lin.comb) of vectors (points) v1, . . . ,vN .
If, further, these scalars satisfy

α1 + α2 + · · ·+ αN = 1 ,‡:

then we call (†) a weighted average of the points. Finally, if (‡)
and each αj > 0, then we call (†) a convex average of the points.

Given a set S ⊂ V of points, we define three supersets

Spn(S) ⊃ AffSpn(S) ⊃ Hull(S) .

The span is the set of all lin.combs (†), as {v1, . . . ,vN} ranges
over all finite subsets of S. The affine span is the set of all (†)
satisfying (‡), whereas the hull is the smaller set of all convex aver-
ages. Thus Spn(S) is the smallest subspace (that includes S) whereas
AffSpn(S) is the smallest affine-space and Hull(S) is the smallest
convex set.

A point w ∈ C is an “extreme point of a convex set C ” if:
Whenever we write w = α1v1 + α2v2 as a convex average (of points

v1,v2 ∈ C), then necessarily v1 = v2 = w. A non-void set C ⊂ V is
an N -dimensional simplex (an “N-simplex ”) if we can write it as

C = Hull(w1, . . . ,wN+1)

where no wj is in the affine-span of the others. Equivalently, C has
precisely N+1 extreme-pts, and Dim(C) = N .

Existence of an invariant vector

Fix a posint D. Let P = PD−1 be the simplex of
probability vectors v ∈ RD. Fix a D×D (col-
umn)-stochastic matrix M; each column is a
prob.vec. Let M :P � denote the map v 7→ Mv
for a column-vector v.

1: Perron-Frobenius Theorem (weak version). There
exists a fixpt σ ∈ P, i.e a column vector σ with
Mσ = σ. ♦

Proof (Brouwer fixed-pt). Function M() is cts in,
say, the L1-topology. Since P is homeomorphic
with the [D−1]-disk, Brouwer applies to yield a
fixed-point σ ∈ P. �

Proof (Cesàro averages). Fix a vector v ∈ P. Let

vN := AN(v) := 1
N

∑
j∈[0 .. N)

Mjv .

Since P is cpt there is a σ ∈ P and increasing
seq ~N with vNk

k→∞−→σ. By cty of M(), then,

Mσ = M · lim
k→∞

vNk = lim
k→∞

M · vNk

And observe that

M · vN = 1
N

∑
j∈[1 .. N ]

Mjv

= 1
N
[MNv −M0v] + AN(v) .

Sending k →∞ sendsN →∞, so 1
N
[MNv −M0v]

goes to 0. Thus Mσ = σ. �

Exer.E1. Prove that the original full seq. (((vn)))
∞
1

converges to σ.
Fix ε and use a ≈ b to mean ‖a − b‖ 6 ε.

ISTShow

limsup
n
‖σ − vn‖ 6 3ε .

To this end, WLOG 7 is large enough that
A7(v) ≈ σ. Since M is a contraction and com-
mutes with A7,

A7(M
kv) ≈ Mkσ = σ .

For each posint L, then,

σ ≈ 1
L

∑
`∈[0 .. L)

A7(M
7`v)

note
=== A7L(v) .

(Rest left as exercise.) �

Defn. Let v > 0 mean that each component
vi > 0; ditto for “>”. (Same convention for matrices.)
Use ‖v‖ := ∑D

1 |vi| for the L1-norm. Note that

If v > 0 then ‖Mv‖ = ‖v‖,2:

since M is col-stochastic.
Computing its operator-norm on L1(RD),

‖M‖op = 1 . �
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3: Perron-Frobenius Theorem (stronger). Suppose
that α is positive, where

α := α(M) := Min
i,j∈[1 ..D]

Mi,j .†:

Then M is a [1−α] contraction-mapping on P,
there is a unique fixed-pt σ ∈ P, and Mnv → σ
for each v ∈ P. Indeed, ‖σ−Mnv‖ 6 2 · [1−α]n.♦

Proof. For u,w ∈ P, our objective is

‖Mu−Mw‖
?
6 ‖u−w‖ · [1− α] .

WLOG u 6= w. WLOG u and w have disjoint
supports. (Let v := u−w, decompose into pos/neg parts
v = v+−v−, rename to u−w, having scaled to make these
u and w probability vectors.) So now ‖u − w‖ = 2
and our goal becomes

‖Mu−Mw‖
?
6 2− 2α .‡:

From (†), each of u′ := Mu and w′ := Mw

dominates α ·
[ 1
...
1

]
. So for each index j ∈ [1 ..D],

|u′j −w′j| 6 u′j + w′j − 2α .

Summing over j yields (‡). �

4: Perron-Frobenius Corollary. Suppose, for some
posint K, that MK > 0. Then M has a unique
fixedpt σ ∈ P. Further, ∃β < 1 so that:

∀v ∈ P,∀n > K :
∥∥∥Mnv − σ

∥∥∥ 6 βn . ♦

Proof. Let σ be the fixed-pt under MK . Then
Mσ = limnM · [MK ]nσ = limn [M

K ]n ·Mσ. And
this latter is σ, since every vector converges to σ
under powers of MK . Etc. �

Remark.The transition graph forM has vertices
[1 ..D]. This digraph, G, has an edge from j to i
IFF entry [M]i,j is positive. The meaning of [M3]i,j
is the probability, having started in state j, of
being in state i after exactly 3 steps. (There may
exist several 3-step paths from j to i.)
G is strongly connected IFF ∀i, j ∃k with

[Mk]i,j > 0. I.e, IFF Maxk∈[1 ..D) [M
k]i,j is posi-

tive, for each i, j. �

5: Frobenius Thm. Suppose Gcd(L1, . . . , LN) = 1.
Then there exists K so that

L1N+ L2N+ · · ·+ LNN ⊃ [K ..∞) . ♦

I.e, the non-negative linear combinations include
an infinite interval. Proof. Exercise.

If G is strongly connected and the Gcd of all
G-cycles is 1, then we say that G is tight (std:
irreducible and aperiodic).

A (directed) loop in G is a simple loop if it
repeats no vertex.

6: Theorem. TFAEquivalent.

a: There exists a posint K with MK > 0.

b: G is tight.

c: ∃K so that ∀k > K: Mk > 0. ♦

Proof a⇒b. There is a K-path from each state
to each other, so certainly G is str. connected.
WLOG G has >2 states. Pick a state and a nbr
A → B. By hyp., we have paths B  B and
B  A, each of length K. Concatenating the lat-
ter with A→ B gives a loop of length K+1. And
Gcd(K,K+1) = 1. �

Proof b⇒c. Let L1, . . . , LN denote the simple
loops and also their lengths. Since G is finite,
ISTFix two states A,B and show ∀large k that there
is a k-path from A to B. Let pj be a path from A
to some state Sj in Lj. Let π be a path A B.
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Arbitrary natnums ~n := (((n1, . . . , nN))) give rise
to this path going from A to B: Go from A to S1,
circle the L1 loop n1 times, then return to state A.
Now go to S2, etc. Finally, after returning to A
from SN , follow our path from A B. This total
path has length

T + 2
∑

j
nj · Lj .

where T is Len(π)+2
∑
j Len(pj). Now the Frobe-

nius thm (5) finishes the proof. �

Courtesy (6) and (3), a tight G has a unique
stationary measure (invariant vector); agree to call
it σG or σM.

For a str.conn G, let CycGcd(G) be the Gcd of
the (lengths of) the simple loops in G (hence, of all
the loops in G).

For a posint Q, let G(Q) be the digraph of MQ.

7: Theorem. Take a str. connected digraph G
(use M for its matrix) and let L1, . . . , LN denote the
simple-loop lengths. Let Q := Gcd(L1, . . . , LN).

Then G(Q) has precisely Q many strongly con-
nected components,

G(Q) = H0 t H1 t . . . t HQ−1 .†:

Each H has simple-loop lengths L1

Q
, . . . , LN

Q
(and

possible others) and thus is tight. The compo-
nents (†) can have been numbered so that M car-
ries each Hj to Hj⊕1 (addition mod Q). I.e, each
state in Hj goes, under M, to a Hj⊕1-state.

The original G has a unique invariant measure.
It is

σG = 1
Q
· [σ0 + σ1 + · · ·+ σQ−1] ,8:

where σj denotes the MQ-invariant measure σHj .
Moreover, M carries each measure σj to the next
in circular order. That is, Mσj = σj⊕1, where we
view σj as a col-vector whose non-zero entries are
on the states of Hj. ♦

Proof. WLOG suppose Q = 6. Distinguish
a state S ∈ G. For a state B, suppose π1, π2 are
paths S  B. Concatenate each with a particular
B  S. Now we have two loops, so their lengths
must be be congruent mod 6. Thus

Len(π1) ≡6 Len(π2) .

Thus we can label each state B ∈ G by either
“0”,. . . ,“5” modulo its distance from S. The states
with label j are the vertices of Hj.

Consider a G-loop L and some state A ∈ L;
suppose its label is 4. Going along the loop, then,
the next five states are 4⊕1, 4⊕2, 4⊕3, 4⊕4 and
4⊕5. So all 6 labels occur on L. In H4, then,
our state A lies in a loop of length L

6
. (Note that

a non-simple loop in G might give rise to a simple loop in
H4.)

Lastly, suppose µ is an M-invariant measure
on the states of G. We need to show, for j =
0, 1, . . . , 5, that the restriction

µ�Hj = 1
6
· σj .∗:

But M carries Hj to Hj⊕1, so µ must give mass=1
6

to each H component. And µ is invariant under
M6, whence (∗), since each Hj has a unique M6-
invariant measure. �

Reversibility

Use Inv(G) for the set of M-invariant measures
on G. Let Rev(G) be the set of infinitely reversible
measures; those measures µ0 so that there exists
probability measures µj with Mµj = µj−1.

Evidently Inv(G) and Rev(G) are convex sub-
sets of P.

Defn.A vertex S of a str.conn digraph G is robust
if each of its descendents is an ancestor. If S is not
robust then say it is leaky ; this, since probability
on S can leak-out to a descendent which is not an
ancestor, and thus this probability can never get
back to S.
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Use Core(G) to denote the subgraph of robust
vertices (and the directed-edges between them). De-
composing this into str.connected components

Core(G) = C1 t C2 t . . . t CN+1

we will call the “str.conn decomposition of G’s
core” . �

The next lemma explores a state S which is not
robust.

9: Leakage Lemma. Suppose we have an edge
S → B with

B /∈ A := Ancestor(S)

Then ∃L posint and ε > 0 s.t for each µ ∈ P:

∀n > L : [Mnµ](A) 6 [1− ε]n .

In particular, each reversible µ is supported
on Core(G). ♦

Proof.Fix an edge S λ→S ′ to a non-ancestor S ′. For
eachB ∈ A, let LB be the length of a pathB  S,
and let τB be the product of the transition-probs
along this path. Let N := #A and

L := Max
B

LB and τ := Min
B

τB .

Now consider a measure which puts total-mass m
on A. It must put mass m

N
on at least one state

of A; say B. Thus in τB many steps, mass m
N
· τB

will arrive at S in τB. The upshot?

In each L steps, a mass of δ := m
N
· τ · λ,

leaks from A, never to return. In particular, a
reversible measure µ must have all its support
in Core(G). �

A coded Markov need not
even be a generalized Markov

process
(11Mar2002: I typed this from a printed copy from
29Mar1985. I edited it slightly.) Below, “process”
means “stationary process”. A process is “gener-
alized Markov” if it is n-step Markov for some n.

Goal. I exhibit a three-state ergodic Markov
process, alphabet (((b0, b1, c))), coded by means of
a length-one code to a two-state process. The
code simply lumps the two b-states into a sin-
gle “superstate” S. The coded alphabet is thus(((
{b0, b1}, c

)))
, which I denote as (((S, c))).

Construction. Choose probabilities

0 < p0 < p1 < 1

and let qj := 1− pj. State bj goes to itself with
prob. pj, and goes to c with prob. qj. Finally,
state c goes to each bj with probability 1

2
.

Evidently there is a unique stationary prob-
ability distribution of probabilities Y0, Y1, Yc on
states b0, b1, c. Easily Y0, Y1, Yc> 0.

For a sequence x1x2x3 . . . xN of letters, let
P(x1x2 . . . xN) denote the probability that x1

occurs followed by x2, etc. Let xn abbr.
n consecutive letters x.

Proof. To show that the (((S, c)))-process is not
generalized Markov, we compute the probabil-
ity that the process produces c at the next
step, conditioned on it having just produced
n+1 consecutive letters S.

First note that

P(Sn+1) = P(b0b0
n) + P(b1b1

n) ,

since to go between the b-states one must leave S.
Hence

P(Sn+1) = Y0 · p0
n + Y1 · p1

n .10:
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Similarly,

P(Sn+1c) = Y0 · p0
n·q0 + Y1 · p1

n · q1 .11:

Consequently, the conditional probability equals

P(c | Sn+1) =
P(Sn+1c)

P(Sn+1)

=
Y0 · p0

n · q0 + Y1 · p1
n · q1

Y0 · p0
n + Y1 · p1

n
.

∗:

Now divide top and bottom by p1
n, then send

n↗∞. Since p0/p1 < 1, we conclude that

lim
n→∞

P(c | Sn+1) = q1 .12:

Eventual constancy. Were (((S, c))) some n-
step Markov process, then n 7→ P(c | Sn+1) would
be eventually-constant. But, by cross multiplying
in (∗), an equality P(c | Sn+1) = q1 would imply
that

Y0 · p0
n · q0 = Y0 · p0

n · q1 .

Yet Y0 · p0
n is not zero, so q0 = q1. Hence p1 = p0.

♦
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