

Markov chains

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

5 June, 2018 (at 03:21)

ABSTRACT: Markov chains, neither the 1-step nor the multi-step, are stable under finite-block codes.

Geometric preliminaries. In a real vectorspace \mathbf{V} , say that

$$\dagger: \quad \sum_{j=1}^N \alpha_j \mathbf{v}_j \quad (\text{with each } \alpha_j \in \mathbb{R})$$

is a *linear combination* (*lin.comb*) of vectors (points) $\mathbf{v}_1, \dots, \mathbf{v}_N$. If, further, these scalars satisfy

$$\ddagger: \quad \alpha_1 + \alpha_2 + \dots + \alpha_N = 1,$$

then we call (\dagger) a *weighted average* of the points. Finally, if (\ddagger) and each $\alpha_j \geq 0$, then we call (\dagger) a *convex average* of the points.

Given a set $S \subset \mathbf{V}$ of points, we define three supersets

$$\text{Spn}(S) \supset \text{AffSpn}(S) \supset \text{Hull}(S).$$

The *span* is the set of all lin.combs (\dagger) , as $\{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ ranges over all finite subsets of S . The *affine span* is the set of all (\dagger) satisfying (\ddagger) , whereas the *hull* is the smaller set of all convex averages. Thus $\text{Spn}(S)$ is the smallest *subspace* (that includes S) whereas $\text{AffSpn}(S)$ is the smallest *affine-space* and $\text{Hull}(S)$ is the smallest *convex set*.

A point $\mathbf{w} \in C$ is an “*extreme point* of a convex set C ” if: Whenever we write $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ as a *convex average* (of points $\mathbf{v}_1, \mathbf{v}_2 \in C$), then necessarily $\mathbf{v}_1 = \mathbf{v}_2 = \mathbf{w}$. A non-void set $C \subset \mathbf{V}$ is an N -dimensional *simplex* (an “ N -simplex”) if we can write it as

$$C = \text{Hull}(\mathbf{w}_1, \dots, \mathbf{w}_{N+1})$$

where no \mathbf{w}_j is in the affine-span of the others. Equivalently, C has precisely $N+1$ extreme-pts, and $\text{Dim}(C) = N$.

Existence of an invariant vector

Fix a posint \mathfrak{D} . Let $\mathbb{P} = \mathbb{P}^{\mathfrak{D}-1}$ be the simplex of probability vectors $\mathbf{v} \in \mathbb{R}^{\mathfrak{D}}$. Fix a $\mathfrak{D} \times \mathfrak{D}$ (*column*)-*stochastic* matrix \mathbf{M} ; each column is a prob.vec. Let $M: \mathbb{P} \rightarrow \mathbb{P}$ denote the map $\mathbf{v} \mapsto \mathbf{M}\mathbf{v}$ for a column-vector \mathbf{v} .

1: Perron-Frobenius Theorem (weak version). *There exists a fixpt $\boldsymbol{\sigma} \in \mathbb{P}$, i.e a column vector $\boldsymbol{\sigma}$ with $\mathbf{M}\boldsymbol{\sigma} = \boldsymbol{\sigma}$.* \diamond

Proof (Brouwer fixed-pt). Function $M()$ is cts in, say, the \mathbb{L}^1 -topology. Since \mathbb{P} is homeomorphic with the $[\mathfrak{D}-1]$ -disk, Brouwer applies to yield a fixed-point $\boldsymbol{\sigma} \in \mathbb{P}$. \diamond

Proof (Cesàro averages). Fix a vector $\mathbf{v} \in \mathbb{P}$. Let

$$\mathbf{v}_N := \mathbb{A}_N(\mathbf{v}) := \frac{1}{N} \sum_{j \in [0..N]} \mathbf{M}^j \mathbf{v}.$$

Since \mathbb{P} is cpt there is a $\boldsymbol{\sigma} \in \mathbb{P}$ and increasing seq \vec{N} with $\mathbf{v}_{N_k} \xrightarrow{k \rightarrow \infty} \boldsymbol{\sigma}$. By cty of $M()$, then,

$$\mathbf{M}\boldsymbol{\sigma} = \mathbf{M} \cdot \lim_{k \rightarrow \infty} \mathbf{v}_{N_k} = \lim_{k \rightarrow \infty} \mathbf{M} \cdot \mathbf{v}_{N_k}$$

And observe that

$$\begin{aligned} \mathbf{M} \cdot \mathbf{v}_N &= \frac{1}{N} \sum_{j \in [1..N]} \mathbf{M}^j \mathbf{v} \\ &= \frac{1}{N} [\mathbf{M}^N \mathbf{v} - \mathbf{M}^0 \mathbf{v}] + \mathbb{A}_N(\mathbf{v}). \end{aligned}$$

Sending $k \rightarrow \infty$ sends $N \rightarrow \infty$, so $\frac{1}{N} [\mathbf{M}^N \mathbf{v} - \mathbf{M}^0 \mathbf{v}]$ goes to $\mathbf{0}$. Thus $\mathbf{M}\boldsymbol{\sigma} = \boldsymbol{\sigma}$. \spadesuit

Exer. E1. Prove that the original full seq. $(\mathbf{v}_n)_1^\infty$ converges to $\boldsymbol{\sigma}$.

Fix ε and use $\mathbf{a} \approx \mathbf{b}$ to mean $\|\mathbf{a} - \mathbf{b}\| \leq \varepsilon$.
ISTShow

$$\limsup_n \|\boldsymbol{\sigma} - \mathbf{v}_n\| \leq 3\varepsilon.$$

To this end, WLOG 7 is large enough that $\mathbb{A}_7(\mathbf{v}) \approx \boldsymbol{\sigma}$. Since \mathbf{M} is a contraction and commutes with \mathbb{A}_7 ,

$$\mathbb{A}_7(\mathbf{M}^k \mathbf{v}) \approx \mathbf{M}^k \boldsymbol{\sigma} = \boldsymbol{\sigma}.$$

For each positint L , then,

$$\boldsymbol{\sigma} \approx \frac{1}{L} \sum_{\ell \in [0..L]} \mathbb{A}_7(\mathbf{M}^{7\ell} \mathbf{v}) \stackrel{\text{note}}{=} \mathbb{A}_{7L}(\mathbf{v}).$$

(Rest left as exercise.) \square

Defn. Let $\mathbf{v} \geq 0$ mean that each component $v_i \geq 0$; ditto for “ $>$ ”. (Same convention for matrices.) Use $\|\mathbf{v}\| := \sum_1^{\mathfrak{D}} |v_i|$ for the \mathbb{L}^1 -norm. Note that

2: If $\mathbf{v} \geq 0$ then $\|\mathbf{M}\mathbf{v}\| = \|\mathbf{v}\|$,

since \mathbf{M} is col-stochastic.

Computing its operator-norm on $\mathbb{L}^1(\mathbb{R}^{\mathfrak{D}})$,

$$\|\mathbf{M}\|_{\text{op}} = 1.$$

3: **Perron-Frobenius Theorem (stronger).** Suppose that α is positive, where

$$\dagger: \quad \alpha := \alpha(M) := \min_{i,j \in [1..D]} M_{i,j}.$$

Then M is a $[1-\alpha]$ contraction-mapping on \mathbb{P} , there is a unique fixed-pt $\sigma \in \mathbb{P}$, and $M^n v \rightarrow \sigma$ for each $v \in \mathbb{P}$. Indeed, $\|\sigma - M^n v\| \leq 2 \cdot [1-\alpha]^n$. \diamond

Proof. For $u, w \in \mathbb{P}$, our objective is

$$\|Mu - Mw\| \stackrel{?}{\leq} \|u - w\| \cdot [1 - \alpha].$$

WLOG $u \neq w$. WLOG u and w have *disjoint supports*. (Let $v := u-w$, decompose into pos/neg parts $v = v^+ - v^-$, rename to $u-w$, having scaled to make these u and w probability vectors.) So now $\|u - w\| = 2$ and our goal becomes

$$\ddagger: \quad \|Mu - Mw\| \stackrel{?}{\leq} 2 - 2\alpha.$$

From (\dagger) , each of $u' := Mu$ and $w' := Mw$ dominates $\alpha \cdot \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$. So for each index $j \in [1..D]$,

$$|u'_j - w'_j| \leq u'_j + w'_j - 2\alpha.$$

Summing over j yields (\ddagger) . \diamond

4: **Perron-Frobenius Corollary.** Suppose, for some posint K , that $M^K > 0$. Then M has a unique fixedpt $\sigma \in \mathbb{P}$. Further, $\exists \beta < 1$ so that:

$$\forall v \in \mathbb{P}, \forall n \geq K: \|M^n v - \sigma\| \leq \beta^n. \quad \diamond$$

Proof. Let σ be the fixed-pt under M^K . Then $M\sigma = \lim_n M \cdot [M^K]^n \sigma = \lim_n [M^K]^n \cdot M\sigma$. And this latter is σ , since *every* vector converges to σ under powers of M^K . Etc. \diamond

Remark. The *transition graph* for M has vertices $[1..D]$. This digraph, G , has an edge from j to i IFF entry $[M]_{i,j}$ is positive. The meaning of $[M^3]_{i,j}$ is the probability, having started in state j , of being in state i after *exactly* 3 steps. (There may exist several 3-step paths from j to i .)

G is strongly connected IFF $\forall i, j \exists k$ with $[M^k]_{i,j} > 0$. I.e, IFF $\max_{k \in [1..D]} [M^k]_{i,j}$ is positive, for each i, j . \square

5: **Frobenius Thm.** Suppose $\text{Gcd}(L_1, \dots, L_N) = 1$. Then there exists K so that

$$L_1 \mathbb{N} + L_2 \mathbb{N} + \dots + L_N \mathbb{N} \supset [K.. \infty). \quad \diamond$$

I.e, the non-negative linear combinations include an infinite interval. **Proof.** Exercise.

If G is strongly connected and the Gcd of all G -cycles is 1, then we say that G is *tight* (std: irreducible and aperiodic).

A (directed) loop in G is a *simple loop* if it repeats no vertex.

6: **Theorem.** TFAE Equivalent.

a: There exists a posint K with $M^K > 0$.

b: G is tight.

c: $\exists K$ so that $\forall k \geq K: M^k > 0$. \diamond

Proof a \Rightarrow b. There is a K -path from each state to each other, so certainly G is str. connected. WLOG G has ≥ 2 states. Pick a state and a nbr $A \rightarrow B$. By hyp., we have paths $B \rightsquigarrow B$ and $B \rightsquigarrow A$, each of length K . Concatenating the latter with $A \rightarrow B$ gives a loop of length $K+1$. And $\text{Gcd}(K, K+1) = 1$. \diamond

Proof b \Rightarrow c. Let L_1, \dots, L_N denote the simple loops and also their lengths. Since G is finite, ISTFix two states A, B and show $\forall_{\text{large } k}$ that there is a k -path from A to B . Let p_j be a path from A to some state S_j in L_j . Let π be a path $A \rightsquigarrow B$.

Arbitrary natnums $\vec{n} := (n_1, \dots, n_N)$ give rise to this path going from A to B : Go from A to S_1 , circle the L_1 loop n_1 times, then return to state A . Now go to S_2 , etc. Finally, after returning to A from S_N , follow our path from $A \rightsquigarrow B$. This total path has length

$$T + 2 \sum_j n_j \cdot L_j.$$

where T is $\text{Len}(\pi) + 2 \sum_j \text{Len}(p_j)$. Now the Frobenius thm (5) finishes the proof. \spadesuit

Courtesy (6) and (3), a tight \mathbf{G} has a *unique* stationary measure (invariant vector); agree to call it $\boldsymbol{\sigma}_{\mathbf{G}}$ or $\boldsymbol{\sigma}_{\mathbf{M}}$.

For a str.conn \mathbf{G} , let $\text{CycGcd}(\mathbf{G})$ be the Gcd of the (lengths of) the simple loops in \mathbf{G} (hence, of *all* the loops in \mathbf{G}).

For a posint Q , let $\mathbf{G}^{(Q)}$ be the digraph of \mathbf{M}^Q .

7: Theorem. Take a str. connected digraph \mathbf{G} (use \mathbf{M} for its matrix) and let L_1, \dots, L_N denote the simple-loop lengths. Let $Q := \text{Gcd}(L_1, \dots, L_N)$.

Then $\mathbf{G}^{(Q)}$ has precisely Q many strongly connected components,

$$\dagger: \quad \mathbf{G}^{(Q)} = \mathbf{H}_0 \sqcup \mathbf{H}_1 \sqcup \dots \sqcup \mathbf{H}_{Q-1}.$$

Each \mathbf{H} has simple-loop lengths $\frac{L_1}{Q}, \dots, \frac{L_N}{Q}$ (and possible others) and thus is tight. The components (\dagger) can have been numbered so that \mathbf{M} carries each \mathbf{H}_j to \mathbf{H}_{j+1} (addition mod Q). I.e, each state in \mathbf{H}_j goes, under \mathbf{M} , to a \mathbf{H}_{j+1} -state.

The original \mathbf{G} has a unique invariant measure. It is

$$8: \quad \boldsymbol{\sigma}_{\mathbf{G}} = \frac{1}{Q} \cdot [\boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_1 + \dots + \boldsymbol{\sigma}_{Q-1}],$$

where $\boldsymbol{\sigma}_j$ denotes the \mathbf{M}^Q -invariant measure $\boldsymbol{\sigma}_{\mathbf{H}_j}$. Moreover, \mathbf{M} carries each measure $\boldsymbol{\sigma}_j$ to the next in circular order. That is, $\mathbf{M}\boldsymbol{\sigma}_j = \boldsymbol{\sigma}_{j+1}$, where we view $\boldsymbol{\sigma}_j$ as a col-vector whose non-zero entries are on the states of \mathbf{H}_j . \diamond

Proof. WLOG suppose $Q = 6$. Distinguish a state $S \in \mathbf{G}$. For a state B , suppose π_1, π_2 are paths $S \rightsquigarrow B$. Concatenate each with a particular $B \rightsquigarrow S$. Now we have two loops, so their lengths must be congruent mod 6. Thus

$$\text{Len}(\pi_1) \equiv_6 \text{Len}(\pi_2).$$

Thus we can label each state $B \in \mathbf{G}$ by either “0”, …, “5” modulo its distance from S . The states with label j are the vertices of \mathbf{H}_j .

Consider a \mathbf{G} -loop L and some state $A \in L$; suppose its label is 4. Going along the loop, then, the next five states are $4 \oplus 1, 4 \oplus 2, 4 \oplus 3, 4 \oplus 4$ and $4 \oplus 5$. So *all* 6 labels occur on L . In \mathbf{H}_4 , then, our state A lies in a loop of length $\frac{L}{6}$. (Note that a non-simple loop in \mathbf{G} might give rise to a simple loop in \mathbf{H}_4 .)

Lastly, suppose μ is an \mathbf{M} -invariant measure on the states of \mathbf{G} . We need to show, for $j = 0, 1, \dots, 5$, that the restriction

$$*: \quad \mu|_{\mathbf{H}_j} = \frac{1}{6} \cdot \boldsymbol{\sigma}_j.$$

But \mathbf{M} carries \mathbf{H}_j to \mathbf{H}_{j+1} , so μ must give mass $= \frac{1}{6}$ to each \mathbf{H} component. And μ is invariant under \mathbf{M}^6 , whence (*), since each \mathbf{H}_j has a *unique* \mathbf{M}^6 -invariant measure. \spadesuit

Reversibility

Use $\text{INV}(\mathbf{G})$ for the set of \mathbf{M} -invariant measures on \mathbf{G} . Let $\text{REV}(\mathbf{G})$ be the set of infinitely reversible measures; those measures μ_0 so that there exists probability measures μ_j with $\mathbf{M}\mu_j = \mu_{j-1}$.

Evidently $\text{INV}(\mathbf{G})$ and $\text{REV}(\mathbf{G})$ are convex subsets of \mathbb{P} .

Defn. A vertex S of a str.conn digraph \mathbf{G} is **robust** if each of its descendants is an ancestor. If S is not robust then say it is **leaky**; this, since probability on S can leak-out to a descendent which is not an ancestor, and thus this probability can never get back to S .

Use $\text{Core}(G)$ to denote the subgraph of robust vertices (and the directed-edges between them). Decomposing this into str.conn components

$$\text{Core}(G) = C_1 \sqcup C_2 \sqcup \dots \sqcup C_{N+1}$$

we will call the “str.conn decomposition of G ’s core”. \square

The next lemma explores a state S which is not robust.

9: Leakage Lemma. *Suppose we have an edge $S \rightarrow B$ with*

$$B \notin \mathcal{A} := \text{Ancestor}(S)$$

Then $\exists L$ posint and $\varepsilon > 0$ s.t for each $\mu \in \mathbb{P}$:

$$\forall n \geq L: [\mathbb{M}^n \mu](\mathcal{A}) \leq [1 - \varepsilon]^n.$$

In particular, each reversible μ is supported on $\text{Core}(G)$. \diamond

Proof. Fix an edge $S \xrightarrow{\lambda} S'$ to a non-ancestor S' . For each $B \in \mathcal{A}$, let L_B be the length of a path $B \rightsquigarrow S$, and let τ_B be the product of the transition-probs along this path. Let $N := \#\mathcal{A}$ and

$$L := \max_B L_B \quad \text{and} \quad \tau := \min_B \tau_B.$$

Now consider a measure which puts total-mass \mathbf{m} on \mathcal{A} . It must put mass $\frac{\mathbf{m}}{N}$ on at least one state of \mathcal{A} ; say B . Thus in τ_B many steps, mass $\frac{\mathbf{m}}{N} \cdot \tau_B$ will arrive at S in τ_B . The upshot?

In each L steps, a mass of $\delta := \frac{\mathbf{m}}{N} \cdot \tau \cdot \lambda$,

leaks from \mathcal{A} , never to return. In particular, a reversible measure μ must have all its support in $\text{Core}(G)$. \diamond

A coded Markov need not even be a generalized Markov process

(11Mar2002: I typed this from a printed copy from 29Mar1985. I edited it slightly.) Below, “process” means “stationary process”. A process is “generalized Markov” if it is n -step Markov for some n .

Goal. I exhibit a three-state ergodic Markov process, alphabet (b_0, b_1, c) , coded by means of a length-one code to a two-state process. The code simply lumps the two b -states into a single “superstate” S . The coded alphabet is thus $(\{b_0, b_1\}, c)$, which I denote as (S, c) .

Construction. Choose probabilities

$$0 < p_0 < p_1 < 1$$

and let $q_j := 1 - p_j$. State b_j goes to itself with prob. p_j , and goes to c with prob. q_j . Finally, state c goes to each b_j with probability $\frac{1}{2}$.

Evidently there is a unique stationary probability distribution of probabilities Y_0, Y_1, Y_c on states b_0, b_1, c . Easily $Y_0, Y_1, Y_c > 0$.

For a sequence $x_1 x_2 x_3 \dots x_N$ of letters, let $P(x_1 x_2 \dots x_N)$ denote the probability that x_1 occurs followed by x_2 , etc. Let x^n abbr. n consecutive letters x .

Proof. To show that the (S, c) -process is not generalized Markov, we compute the probability that the process produces c at the next step, conditioned on it having just produced $n+1$ consecutive letters S .

First note that

$$P(S^{n+1}) = P(b_0 b_0^n) + P(b_1 b_1^n),$$

since to go between the b -states one must leave S . Hence

$$10: \quad P(S^{n+1}) = Y_0 \cdot p_0^n + Y_1 \cdot p_1^n.$$

Similarly,

$$11: \quad P(S^{n+1}c) = Y_0 \cdot p_0^n \cdot q_0 + Y_1 \cdot p_1^n \cdot q_1.$$

Consequently, the conditional probability equals

$$\begin{aligned} P(c | S^{n+1}) &= \frac{P(S^{n+1}c)}{P(S^{n+1})} \\ *: &= \frac{Y_0 \cdot p_0^n \cdot q_0 + Y_1 \cdot p_1^n \cdot q_1}{Y_0 \cdot p_0^n + Y_1 \cdot p_1^n}. \end{aligned}$$

Now divide top and bottom by p_1^n , then send $n \nearrow \infty$. Since $p_0/p_1 < 1$, we conclude that

$$12: \quad \lim_{n \rightarrow \infty} P(c | S^{n+1}) = q_1.$$

Eventual constancy. Were (S, c) some n -step Markov process, then $n \mapsto P(c | S^{n+1})$ would be eventually-constant. But, by cross multiplying in (*), an equality $P(c | S^{n+1}) = q_1$ would imply that

$$Y_0 \cdot p_0^n \cdot q_0 = Y_0 \cdot p_0^n \cdot q_1.$$

Yet $Y_0 \cdot p_0^n$ is not zero, so $q_0 = q_1$. Hence $p_1 = p_0$.

◊

Filename: Problems/Probability/markov-chains.JK.latex
As of: Tuesday 15May2018. Typeset: 5Jun2018 at 03:21.