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ABSTRACT: Markov chains, neither the 1-step nor the
multi-step, are stable under finite-block codes.

Geometric preliminaries. In a real vectorspace V, say
that

N
e E - iV (with each o € JR)

is a linear combination (lin.comb) of vectors (points) Vi,...,VN.
If, further, these scalars satisfy

1: a1 tazt-t+ay =1,

then we call (1) a weighted average of the points. Finally, if (})
and each a; > 0, then we call (1) a convex average of the points.
Given a set S C V of points, we define three supersets

Spn(S) D AffSpn(S) D Hull(S) .

The span is the set of all lin.combs (}), as {vi,...,vn} ranges
over all finite subsets of S. The affine span is the set of all (})
satisfying (), whereas the hull is the smaller set of all convex aver-
ages. Thus Spn(S) is the smallest subspace (that includes §) whereas
AffSpn(S) is the smallest affine-space and Hull(S) is the smallest
convezx set.

A point w € C is an “extreme point of a convex set C'” if:
Whenever we write w = a1v1 + aava as a convex average (of points
vi,va € C), then necessarily vi = va = w. A non-void set C C V is
an N-dimensional simplex (an “N-simplex”) if we can write it as

13

C = Hull(wl,. . -7WN+1)

where no w; is in the affine-span of the others. Equivalently, C has
precisely N+1 extreme-pts, and Dim(C) = N.

Existence of an invariant vector

Fix a posint ®. Let P = P®~! be the simplex of
probability vectors v € R®. Fix a DxD (col-
umn)-stochastic matrix M; each column is a
prob.vec. Let M:PO denote the map v — Mv
for a column-vector v.

1: Perron-Frobenius Theorem (weak version). There

exists a fixpt o € P, i.e a column vector o with
Mo =o. O

Proof (Brouwer fixed-pt). ~ Function M() is cts in,
say, the L'-topology. Since P is homeomorphic
with the [®—1]-disk, Brouwer applies to yield a
fixed-point o € P. ¢
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Proof (Cesaro averages). Fix a vector v € P. Let
— 1 j
vy = Ax(v) = & Zje[()..N) Mv .

Since P is cpt there is a o € P and increasing
seq N with VNk]H—Ofa. By cty of M(), then,

Mo = M- i v = Jin M- vy
And observe that
_ 1 j
M-vy = sze[L.N] M7 v
= LMYy — MO%] + Ay(v).

Sending k — oo sends N — 00, so 1 [MVv — M%v]

goes to 0. Thus Mo = 0. ¢

Exer. 1. Prove that the original full seq. (v,)]
converges to o.

Fix ¢ and use a &~ b to mean ||a — b|| < e.
ISTShow

limsup || — v, || < 3e.
n

To this end, WLOG 7 is large enough that
A7(v) = o. Since M is a contraction and com-
mutes with A7,

Ar(M*v) ~ MFa = o.

For each posint L, then,

o~ % Z A7(M7£V) note
Lel0..L)

A7L (V) .
(Rest left as exercise.) [l

Defn.  Let v > 0 mean that each component
v; = 0; ditto for “>". (Same convention for matrices.)
Use ||v| :== X7 |vs| for the L'-norm. Note that

2:  Ifv >0 then ||[Mv| = ||v]|,

since M is col-stochastic.
Computing its operator-norm on L' (R?®),

Mllop = 1. m
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3: Perron-Frobenius Theorem (stronger).  Suppose

that « is positive, where

T: a = a(M) == Min M,

ijelt.o] 7

Then M is a [1—a] contraction-mapping on P,
there is a unique fixed-pt o € P, and M"v — o
for each v € P. Indeed, ||o—M"v|| <2 [1—a]".0

Proof. For u,w € IP, our objective is

IMu = Mwl| < [lu—wl|-[1 —a].

WLOG u # w. WLOG u and w have disjoint
supports. (Let v := u—w, decompose into pos/neg parts
v = v —v~, rename to u—w, having scaled to make these
u and w probability vectors.) So now |[u —w| = 2
and our goal becomes

?
I: IMu—-Mw| < 2-2a.

From (1), each of v’ := Mu and w' = Mw
1

dominates « - {} So for each index j € [1..D],
i

u, —wi| < uj+ w; - 2.

Summing over j yields (1). ¢

4: Perron-Frobenius Corollary.  Suppose, for some
posint K, that ME > 0. Then M has a unique
fixedpt o € P. Further, 35 < 1 so that:

W eP V> K : HM”V—UH < B . 0

Proof. Let o be the fixed-pt under M¥. Then
Mo = lim, M - [MX]"e = lim, [ME]" . Mo. And
this latter is o, since every vector converges to o
under powers of M¥. Etc. ¢

Existence of an invariant vector
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Remark. The transition graph for M has vertices
[1..9]. This digraph, G, has an edge from j to i
IFF entry [M], ; is positive. The meaning of [M?]; ;
is the probability, having started in state j, of
being in state i after exactly 3 steps. (There may
exist several 3-step paths from j to z)

G is strongly connected IFF Vi, j 3k with
[M*];; > 0. Le, IFF Maxyepi. o) [M*];; is posi-
tive, for each 1, j. O

5: Frobenius Thm. Suppose Ged(Ly, . . .
Then there exists K so that

Ly)=1.

LiN+ LoN+ -+ LyN D [K . 00). O

Le, the non-negative linear combinations include
an infinite interval. ~ Proof. Exercise.

If G is strongly connected and the Ged of all
G-cycles is 1, then we say that G is tight (std:
irreducible and aperiodic).

A (directed) loop in G is a simple loop if it
repeats no vertex.

6: Theorem. TFAEquivalent.

a: There exists a posint K with M¥ > 0.

b: G is tight.

c: 3K so that Yk > K: MF > 0. O

Proof a=b. There is a K-path from each state
to each other, so certainly G is str. connected.
WLOG G has >2 states. Pick a state and a nbr
A — B. By hyp., we have paths B ~» B and
B ~» A, each of length K. Concatenating the lat-
ter with A — B gives a loop of length K+1. And
Ged(K, K+1) = 1. ¢

Proof b=-c.  Let Lq,..., Ly denote the simple
loops and also their lengths. Since G is finite,
ISTFix two states A, B and show Ve & that there
is a k-path from A to B. Let p; be a path from A
to some state S; in L;. Let 7w be a path A ~ B.
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Arbitrary natnums 7 = (nq,...,ny) give rise
to this path going from A to B: Go from A to Sy,
circle the L; loop ny times, then return to state A.
Now go to Ss, etc. Finally, after returning to A
from Sy, follow our path from A ~» B. This total
path has length

T+ QZjnj-Lj.

where 7" is Len(m) +2 3°, Len(p;). Now the Frobe-
nius thm (5) finishes the proof. ¢

Courtesy (6) and (3), a tight G has a unique
stationary measure (invariant vector); agree to call
it og or opm.

For a str.conn G, let CycGed(G) be the Ged of
the (lengths of) the simple loops in G (hence, of all
the loops in G).

For a posint Q, let G@) be the digraph of M<.

7: Theorem.  Take a str. connected digraph G

(use M for its matrix) and let Ly, ..., Ly denote the

simple-loop lengths. Let () .= Ged(Ly, ..., Ly).
Then G@ has precisely () many strongly con-

nected components,

T: G(Q):H0|_|H1|_||_|HQ,1
Each H has simple-loop lengths %, o %V (and
possible others) and thus is tight. The compo-

nents (1) can have been numbered so that M car-
ries each H; to Hjg; (addition mod Q). Ie, each
state in H; goes, under M, to a H;q-state.

The original G has a unique invariant measure.
It is

8: 0'(;25'[0'04-0'1%-”'-!-0'@_1],

where o ; denotes the M®-invariant measure oH;-
Moreover, M carries each measure o ; to the next
in circular order. That is, Mo ; = 0 je1, where we
view o ; as a col-vector whose non-zero entries are
on the states of H;. O

Reversibility
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Proof. = WLOG suppose Q = 6. Distinguish
a state S € G. For a state B, suppose 7, my are
paths S ~» B. Concatenate each with a particular
B ~~ S. Now we have two loops, so their lengths
must be be congruent mod 6. Thus

Len(m;) =s Len(my).

Thus we can label each state B € G by either
“07,....“5” modulo its distance from S. The states
with label j are the vertices of H;.

Consider a G-loop L and some state A € L;
suppose its label is 4. Going along the loop, then,
the next five states are 4®1,4®2,4P3,4B4 and
4B5. So all 6 labels occur on L. In Hy, then,
our state A lies in a loop of length £. (Note that
a non-simple loop in G might give rise to a simple loop in
Hy.)

Lastly, suppose p is an M-invariant measure
on the states of G. We need to show, for j =
0,1,...,5, that the restriction

. _ 1
x3: /,LJHJ—EO']

But M carries H; to Hjq1, so p must give mass=+

6
to each H component. And g is invariant under
M6, whence (x), since each H; has a unique M°-

invariant measure. ¢

Reversibility

Use INV(G) for the set of M-invariant measures
on G. Let REV(G) be the set of infinitely reversible
measures; those measures g so that there exists
probability measures p; with My = pj_1.

Evidently INV(G) and REV(G) are convex sub-
sets of P.

Defn. A vertex S of a str.conn digraph G is robust
if each of its descendents is an ancestor. If S is not
robust then say it is leaky; this, since probability
on S can leak-out to a descendent which is not an
ancestor, and thus this probability can never get
back to S.
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Use Core(G) to denote the subgraph of robust
vertices (and the directed-edges between them). De-
composing this into str.connected components

COI‘G(G) = C1 L C2 L...u CN+1

we will call the “str.conn decomposition of G’s
core”. O

The next lemma explores a state S which is not
robust.
9: Leakage Lemma. Suppose we have an edge
S — B with

B ¢ A = Ancestor(S)
Then 3 L posint and € > 0 s.t for each p € P:

Vn>=L: [M'uA) < [1—¢g".

In particular, each reversible p is supported
on Core(G). O

Proof. Fix an edge S 28" to a non-ancestor S’. For
each B € A, let Lg be the length of a path B ~~ S
and let 75 be the product of the transition-probs
along this path. Let N := #A and

L = MBaXLB and 7 = ME}HTB.

Now consider a measure which puts total-mass m

on A. Tt must put mass 3+ on at least one state
of A; say B. Thus in 75 many steps, mass 37 - 75

will arrive at S in 75. The upshot?

In each L steps, a mass of § == 2 -7 A,

Z|

leaks from A, never to return. In particular, a
reversible measure p must have all its support

in Core(G). ¢

A coded Markov need not even be a generalized Markov process
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A coded Markov need not
even be a generalized Markov
process

(11Mar2002: I typed this from a printed copy from
29Mar1985. T edited it slightly.) Below, “process”
means “stationary process”. A process is “gener-
alized Markov” if it is n-step Markov for some n.

Goal. T exhibit a three-state ergodic Markov
process, alphabet (bg,bi,c), coded by means of
a length-one code to a two-state process. The
code simply lumps the two b-states into a sin-
gle “superstate” S. The coded alphabet is thus
({bo,bl}, c), which T denote as (S, c).

Construction. Choose probabilities

0 <po<p <1

and let ¢; := 1 —p;. Stateb; goes to itself with
prob. p;, and goes to ¢ with prob. ¢;. Finally,
state ¢ goes to each b; with probability %

Evidently there is a unique stationary prob-
ability distribution of probabilities Yy, Y7, Y. on
states by, by, c. Easily Yp, Yy, Y. >0.

For a sequence xixoxsz...xNn of letters, let
P(xixe...zxn) denote the probability that
occurs followed by z,, etc. Let z™ abbr.
n consecutive letters x.

Proof. To show that the (S, c)-process is not
generalized Markov, we compute the probabil-
ity that the process produces c at the next
step, conditioned on it having just produced
n—+1 consecutive letters S.

First note that

P(s™!) = P(bgby™) + P(bib"),

since to go between the b-states one must leave S.
Hence

10: P(Snﬂ) = Yo-po" +Yi-pi".
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Similarly,
11: P(S"e) = Yo-po"qo + Yi-pi" - qu-
Consequently, the conditional probability equals

P(Sn—I—lC)

P(Sn+1>

_ Yorp" g+ Yi-pi"q
B Yo -po" + Yi-pi" '

P(c|s"t) =

Now divide top and bottom by p;", then send
n,‘oo. Since pg/p1 < 1, we conclude that
12: lim P(c|8"™) = ¢.

n—o0

Eventual constancy. Were (8,c) some n-
step Markov process, then n + P(c | 8"*1) would
be eventually-constant. But, by cross multiplying
in (x), an equality P(c | S"™!) = ¢; would imply
that

Yo po"-q = Yo-po"-aqi-
Yet Yy - po™ is not zero, so gg = q1. Hence p; = py.

O
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