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Abstract: This is Liouville’s proof of Liouville’s thm
on rational approximations of numbers.

Souvenir. The degree of an algebraic num-
ber α is the degree of the smallest-degree non-zip
intpoly having α as a zero.

Whenever I write a rational, e.g p
q
, the denom-

inator q is always positive.

Warmup. Here is a classic theorem (due probably
to Liouville).

1: Theorem. Fix an α ∈ R. Then∣∣∣α− p
q

∣∣∣ ≤ 1/q2†:

for a seq. of rationals p
q
with arbitrarily large q.♦

Proof. WLOG α is irrational. Take a large N
and look at 0,α, 2α, . . . , [N−1]α, where we in-
terprete these in the circle group, mod 1. By
PHP (Pigeon-hole Principle), for some indices j<k we
must have the circle-gp distance Jkα, jαK ≤ 1/N .
With q := k − j, then, Jqα, 0K = Jkα, jαK ≤ 1/N .
I.e, for some integer p,

|qα− p| ≤ 1/N
note
≤ 1/q .‡:

[Indeed, this last inequality is strict, as q ≤ N−1.] Di-
viding each side by q yields (†).

Write the dependancy as pN and qN . From (‡),
|α− pN

qN
| ≤ 1

N
. So pN

qN
→ α, an irrational, so the

set {pN
qN
}∞N=1 is infinite. Thus qN gets arbitrarily

large. �

2: Liouville’s Theorem. Suppose α is an irrational
but algebraic number. Let D := Deg(α)

note
≥ 2.

Then there exists a posreal C such that for all
integers q>0 and p,∣∣∣∣α− p

q

∣∣∣∣ ≥ C/qD .3: ♦

Proof. Let f() be a deg-D intpoly [necessarily Q-
irreducible] so that f(α) = 0. By continuity of f ′
[the derivative of f ] there exists a small interval

J := (α− ε, α+ ε)

on which f ′ is bounded away from infinity. On J
then, 1/f ′ is bounded away from zero; by 7/99,
say. Let

�� ��C := Min(ε, 7/99) ; this is positive.

Consider an arbitrary rational, p
q
. If p

q
6∈ J then

∣∣∣α− p

q

∣∣∣ ≥ ε ≥ C ≥ C/qD .

So WLOG p
q
∈ J .

Since f(p
q
) is not zero and f has integer coeffs,
∣∣∣f(p

q

)∣∣∣ ≥ 1/qD .4:

By the MVT (Mean Value Thm) there is a number ζ
between α and p

q
such that

[α− p
q
] · f ′(ζ) = f(α)− f(p

q
)

note
=== −f

(
p
q

)
.

Taking absolute values, then dividing,∣∣∣α− p
q

∣∣∣ = 1
|f ′(ζ)| ·

∣∣∣f(p
q

)∣∣∣ ≥ 1
|f ′(ζ)|

/
qD .5:

But p
q
∈ J , so ζ ∈ J . Hence (5) implies (3). �

Extension. Liouville’s thm holds also when α is
rational and D = 1, as long as we only consider
rationals p

q
6= α. Simply take J small enough that

α is the only zero of f() on J ; again (5) holds.�

Remark. Inequality (3) can be restated as

Infimum
p
q
∈Q

qD ·
∣∣∣α− p

q

∣∣∣ > 0 .3′:

This gives a criterion for transcendentality. A
number with a sequence such that (6.1) is finite,
is called a Liouville number. �
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6.0: Transcendental Theorem. Consider a real τττ .
Suppose there exist ∞ly many rationals pN/qN ,
each unequal to τττ and with qN ∈ [2 ..∞), st.

sup
N∈Z+

[qN ]N ·
∣∣∣τττ − pN

qN

∣∣∣6.1:

is finite. Then τττ is transcendental. ♦

Proof. Suppose the supremum is 7. Fixing
a posint D, could τττ have degree D? Well, for
each N ≥ D note that

[qN ]D ·
∣∣∣τττ − pN

qN

∣∣∣ ≤ 7
/

[qN ]N−D ≤ 7
/

2N−D .

The RhS goes to zero as N↗∞. This shows the
failure of (3′); so τττ does not have degree-D. �

7: Example. The following sum of factorial-powers

is a Liouville number:

τττ :=
∑∞

j=1
1/2[j!] . ♦

Proof. Fix posint N , let q := 2[N−1]! and define p
by p/q :=

∑N−1
j=1 1/2j!; so q = 2[N−1]!.

Now 2N ! · |τττ − p
q
| equals

2N ! ·
∞∑
j=N

1/2j! =
∞∑
j=N

1/2j!−N !

≤ [1 + 1
2

+ 1
4

+ . . . ] = 2 .

But qN = 2N !, so qN · |τττ − p
q
| ≤ 2. Consequently,

the number 2 dominates the (6.1) supremum. �

Transcendental sufficiency. A posint se-
quence ~d = (((d1, d2, d3, . . .))) is good if dn↗∞ and

d1 •| d2 •| d3 •| · · ·∗:

Define the N th-tail by TailN(~d) :=
∞∑

j=N+1

1
dj
.

8: Liouville sufficiency lemma. Consider a good ~d
such that

[dN ]N · TailN(~d)
N→∞−→ 0 ,

or, weaker, simply has finite limit-supremum.
Then τττ :=

∑∞
j=1

1
dj

is transcendental. ♦

Pf. Value pN := dN ·
∑N
j=1

1
dj

is an integer, cour-

tesy (∗). Thus τττ − pN
dN

= TailN(~d). Hence

[dN ]N ·
∣∣∣τττ − pN

dN

∣∣∣ = [dN ]N · TailN(~d) .

Now apply (6.1). �
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