

Liouville's Theorem: Calculus

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 17 April, 2024 (at 09:36)

ABSTRACT: This is Liouville's proof of Liouville's thm on rational approximations of numbers.

Souvenir. The *degree* of an algebraic number α is the degree of the smallest-degree non-*zip* intpoly having α as a zero.

Whenever I write a rational, e.g. $\frac{p}{q}$, the denominator q is *always positive*.

Warmup. Here is a classic theorem (due probably to Liouville).

1: Theorem. Fix an $\alpha \in \mathbb{R}$. Then

$$\dagger: \quad \left| \alpha - \frac{p}{q} \right| \leq 1/q^2$$

for a seq. of rationals $\frac{p}{q}$ with arbitrarily large q . \diamond

Proof. WLOG α is irrational. Take a large N and look at $0, \alpha, 2\alpha, \dots, [N-1]\alpha$, where we interprete these in the circle group, $\bmod 1$. By PHP (Pigeon-hole Principle), for some indices $j < k$ we must have the circle-gp distance $\llbracket k\alpha, j\alpha \rrbracket \leq 1/N$. With $q := k - j$, then, $\llbracket q\alpha, 0 \rrbracket = \llbracket k\alpha, j\alpha \rrbracket \leq 1/N$. I.e, for some integer p ,

$$\ddagger: \quad |q\alpha - p| \leq 1/N \stackrel{\text{note}}{\leq} 1/q.$$

[Indeed, this last inequality is strict, as $q \leq N-1$.] Dividing each side by q yields (\dagger).

Write the dependency as p_N and q_N . From (\ddagger), $|\alpha - \frac{p_N}{q_N}| \leq \frac{1}{N}$. So $\frac{p_N}{q_N} \rightarrow \alpha$, an irrational, so the set $\{\frac{p_N}{q_N}\}_{N=1}^{\infty}$ is infinite. Thus q_N gets arbitrarily large. \diamond

2: Liouville's Theorem. Suppose α is an irrational but algebraic number. Let $\mathfrak{D} := \text{Deg}(\alpha) \stackrel{\text{note}}{\geq} 2$. Then there exists a posreal C such that for all integers $q > 0$ and p ,

$$3: \quad \left| \alpha - \frac{p}{q} \right| \geq C/q^{\mathfrak{D}}. \quad \diamond$$

Proof. Let $f()$ be a deg- \mathfrak{D} intpoly [necessarily \mathbb{Q} -irreducible] so that $f(\alpha) = 0$. By continuity of f' [the derivative of f] there exists a small interval

$$J := (\alpha - \varepsilon, \alpha + \varepsilon)$$

on which f' is bounded away from infinity. On J then, $1/f'$ is bounded away from zero; by 7/99, say. Let $C := \text{Min}(\varepsilon, 7/99)$; this is positive.

Consider an arbitrary rational, $\frac{p}{q}$. If $\frac{p}{q} \notin J$ then

$$\left| \alpha - \frac{p}{q} \right| \geq \varepsilon \geq C \geq C/q^{\mathfrak{D}}.$$

So WLOG $\frac{p}{q} \in J$.

Since $f(\frac{p}{q})$ is not zero and f has integer coeffs,

$$4: \quad \left| f\left(\frac{p}{q}\right) \right| \geq 1/q^{\mathfrak{D}}.$$

By the MVT (Mean Value Thm) there is a number ζ between α and $\frac{p}{q}$ such that

$$[\alpha - \frac{p}{q}] \cdot f'(\zeta) = f(\alpha) - f(\frac{p}{q}) \stackrel{\text{note}}{=} -f\left(\frac{p}{q}\right).$$

Taking absolute values, then dividing,

$$5: \quad \left| \alpha - \frac{p}{q} \right| = \frac{1}{|f'(\zeta)|} \cdot \left| f\left(\frac{p}{q}\right) \right| \geq \frac{1}{|f'(\zeta)|} / q^{\mathfrak{D}}.$$

But $\frac{p}{q} \in J$, so $\zeta \in J$. Hence (5) implies (3). \diamond

Extension. Liouville's thm holds also when α is rational and $\mathfrak{D} = 1$, as long as we only consider rationals $\frac{p}{q} \neq \alpha$. Simply take J small enough that α is the *only* zero of $f()$ on J ; again (5) holds. \square

Remark. Inequality (3) can be restated as

$$3': \quad \inf_{\frac{p}{q} \in \mathbb{Q}} q^{\mathfrak{D}} \cdot \left| \alpha - \frac{p}{q} \right| > 0.$$

This gives a criterion for transcendentality. A number with a sequence such that (6.1) is finite, is called a **Liouville number**. \square

6.0: Transcendental Theorem. Consider a real τ . Suppose there exist ∞ many rationals p_N/q_N , each **unequal** to τ and with $q_N \in [2.. \infty)$, st.

$$6.1: \sup_{N \in \mathbb{Z}_+} [q_N]^N \cdot \left| \tau - \frac{p_N}{q_N} \right|$$

is finite. Then τ is transcendental. \diamond

Proof. Suppose the supremum is 7. Fixing a posint \mathfrak{D} , could τ have degree \mathfrak{D} ? Well, for each $N \geq \mathfrak{D}$ note that

$$[q_N]^\mathfrak{D} \cdot \left| \tau - \frac{p_N}{q_N} \right| \leq 7/[q_N]^{N-\mathfrak{D}} \leq 7/2^{N-\mathfrak{D}}.$$

The RhS goes to zero as $N \nearrow \infty$. This shows the failure of (3'); so τ does *not* have degree- \mathfrak{D} . \blacklozenge

7: Example. The following sum of factorial-powers is a Liouville number:

$$\tau := \sum_{j=1}^{\infty} 1/2^{[j!]}.$$

Proof. Fix posint N , let $q := 2^{[N-1]!}$ and define p by $p/q := \sum_{j=1}^{N-1} 1/2^{j!}$; so $q = 2^{[N-1]!}$.

Now $2^{N!} \cdot |\tau - \frac{p}{q}|$ equals

$$\begin{aligned} 2^{N!} \cdot \sum_{j=N}^{\infty} 1/2^{j!} &= \sum_{j=N}^{\infty} 1/2^{j!-N!} \\ &\leq [1 + \frac{1}{2} + \frac{1}{4} + \dots] = 2. \end{aligned}$$

But $q^N = 2^{N!}$, so $q^N \cdot |\tau - \frac{p}{q}| \leq 2$. Consequently, the number 2 dominates the (6.1) supremum. \blacklozenge

Transcendental sufficiency. A posint sequence $\vec{d} = (d_1, d_2, d_3, \dots)$ is **good** if $d_n \nearrow \infty$ and

$$*: \quad d_1 \bullet d_2 \bullet d_3 \bullet \dots$$

Define the $N^{\text{th}}\text{-tail}$ by $\text{Tail}_N(\vec{d}) := \sum_{j=N+1}^{\infty} \frac{1}{d_j}$.

8: Liouville sufficiency lemma. Consider a good \vec{d} such that

$$[d_N]^N \cdot \text{Tail}_N(\vec{d}) \xrightarrow{N \rightarrow \infty} 0,$$

or, weaker, simply has finite limit-supremum. Then $\tau := \sum_{j=1}^{\infty} \frac{1}{d_j}$ is transcendental. \diamond

Pf. Value $p_N := d_N \cdot \sum_{j=1}^N \frac{1}{d_j}$ is an integer, courtesy (*). Thus $\tau - \frac{p_N}{d_N} = \text{Tail}_N(\vec{d})$. Hence

$$[d_N]^N \cdot \left| \tau - \frac{p_N}{d_N} \right| = [d_N]^N \cdot \text{Tail}_N(\vec{d}).$$

Now apply (6.1). \blacklozenge