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ABSTRACT: This is Liouville’s proof of Liouville’s thm
on rational approximations of numbers.

Souvenir. The degree of an algebraic num-
ber « is the degree of the smallest-degree non-zip
intpoly having o as a zero.

Whenever I write a rational, e.g g, the denom-
inator ¢ is always positive.

Warmup. Here is a classic theorem (due probably

to Liouville).
1: Theorem. Fix an o« € R. Then

T ‘a—%‘ < 1/¢

for a seq. of rationals g with arbitrarily large q.0

Proof. WLOG « is irrational. Take a large N
and look at 0,a,2a, ..., [N—1]a, where we in-
terprete these in the circle group, mod 1. By
PHP (Pigeon-hole Principle), for some indices j<k we
must have the circle-gp distance [ka, jaf < 1/N.
With ¢ == k — j, then, [¢a, 0] = [ke, ja] < 1/N.
I.e, for some integer p,

note
ies lgae —p| < 1/N < 1/q.

[Indeed, this last inequality is strict, as ¢ < N 71.] Di-
viding each side by ¢ yields ().

Write the dependancy as py and gy. From (1),
ja — B < +- So P — o, an irrational, so the
set {¥~}¥_, is infinite. Thus ¢y gets arbitrarily
large. ¢

2: Liouville's Theorem. Suppose « is an irrational
note

but algebraic number. Let ® = Deg(a) > 2.
Then there exists a posreal C' such that for all
integers ¢>0 and p,

3: ‘a—g‘ > C’/qg. O
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Proof. Let f() be a deg-® intpoly [necessarily Q-
irreducible| so that f(a) = 0. By continuity of f’
[the derivative of f| there exists a small interval

J = (a—¢ a+e)

on which f’ is bounded away from infinity. On .J
then, 1/f’ is bounded away from zero; by 7/99,

say. Let [C’ = Min(e, 7/99)]; this is positive.

Consider an arbitrary rational, fl’ If S ¢ J then

R
|
2 [
W%
™
W%

C > C/g°.

So WLOG ” € J.

Since f (5) is not zero and [ has integer coeffs,

& OV

By the MVT (Mean Value Thm) there is a number ¢
between o and § such that

[ —=E]- f1(Q) =

Taking absolute values, then dividing,

5 Joe—2] = g [ (2)] 2 M/qg'

But £ € J, so ¢ € J. Hence (5) implies (3). 4

FExtension.  Liouville's thm holds also when « is
rational and © = 1, as long as we only consider
rationals f’; # «. Simply take J small enough that

« is the only zero of f() on J; again (5) holds. [

Remark. Inequality (3) can be restated as

3 Infimum ¢® - ‘a — E‘ > 0.
eo q

This gives a criterion for transcendentality. A
number with a sequence such that (6.1) is finite,
is called a Liouville number. 0
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6.0: Transcendental Theorem. Consider a real T.
Suppose there exist coly many rationals py/qy,
each unequal to T and with qy € [2..00), st.

6.1: sup [qn]"V - "r _ ey

NEeZy qnN
is finite. Then T is transcendental. O
Proof. Suppose the supremum is 7. Fixing

a posint D, could 7 have degree ©7 Well, for
each N > 9 note that

[qn]® - ‘T — {:z\v[’ < 7/[C]N]N_33 < 7/2N_5D -

The RhS goes to zero as N "oo. This shows the
failure of (3'); so 7 does not have degree-©. ¢

7: Example. The following sum of factorial-powers

is a Liouville number:
> 5]
T = E | 11/2 gy O
j:

Proof. Fix posint N, let ¢ .= 2IV~1" and define p
by p/q == 2.N7'1/27% so g = 2V-1

Now 2M' . |1 — Y| equals
2N! X Z 1/2]' _ Z 1/2j!—N!
=N =N

< l+3+3+...]1=2.

But ¢ =2V so ¢V |1 — “[ < 2. Consequently,
the number 2 dominates the (6.1) supremum. ¢
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Transcendental sufficiency. A posint se-
quence d = (dy,da, ds, ...) is good if d,, /oo and

*2 d1.|d2.|d30|
Define the N*-tail by Taily(d) = 5 <.
j=N41 Y

8: Liouville sufficiency lemma. Consider a good d

such that S NL
[dy]Y - Taily(d) =% 0,

or, weaker, simply has finite limit-supremum.

Then T = szl di is transcendental. O
'J

Pf. Value py =dyn -3V, 4

is an integer, cour-

i=14;
_ PN — Tailv(d
tesy (x). Thus 7 — B~ = Taily(d). Hence
N bn| N . 3
[dN] T = = [dN] 'TallN(d>.
dn
Now apply (6.1). ¢
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