

Linear Recurrence using matrices

Jonathan L.F. King
 University of Florida, Gainesville FL 32611
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 20 December, 2023 (at 17:37)

See also [Problems/NumberTheory/fibonacci.latex](#)

Notation. Use “ \sim^r ” for row-equivalence: I.e, $K \times N$ matrices $M \sim^r M'$ IFF we can get from M to M' using row operations. Use “ \sim^c ” for column-equivalence.

Two $N \times N$ matrices B & C are *similar*, or *conjugate* to each other, if $\boxed{\text{there exists}}$ an invertible matrix U such that

$$U^{-1} \cdot B \cdot U = C.$$

Use $B \stackrel{\text{sim}}{\sim} C$ for the similarity equiv-relation.

Call a matrix OTForm $s\mathbf{I} \stackrel{\text{note}}{=} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$, a *dilation*; its action on the plane is simply to scale-uniformly by factor s . *Every* matrix commutes with \mathbf{I} , and so:

1: *A dilation is only conjugate to itself.*

I.e, for invertible U , necessarily $U^{-1} \cdot s\mathbf{I} \cdot U = s\mathbf{I}$.

For T a square matrix (or a trn from a vectorspace to itself) and a complex number α , define the subspace

$$\mathbb{E}_{T,\alpha} := \{\text{vectors } \mathbf{v} \mid T\mathbf{v} = \alpha\mathbf{v}\}.$$

Saying that “ α is a T -eigenvalue” is the same as saying that $\text{Dim}(\mathbb{E}_{T,\alpha}) \geq 1$.

Linear recurrence

A fibonacci-like seq $\vec{z} := (z_n)_{n=-\infty}^{\infty}$ is specified using (complex) numbers \mathcal{S} and \mathcal{P} , with \mathcal{P} non-zero $\heartsuit 1$, by

$$2: \quad z_{n+2} := \mathcal{S}z_{n+1} - \mathcal{P}z_n,$$

and some initial condition (z_1, z_0) . With

$$G := \begin{bmatrix} \mathcal{S} & -\mathcal{P} \\ 1 & 0 \end{bmatrix}, \quad \text{then } \begin{bmatrix} z_{n+1} \\ z_n \end{bmatrix} = G^n \cdot \begin{bmatrix} z_1 \\ z_0 \end{bmatrix},$$

for each integer n . We want to diagonalize G .

$\heartsuit 1$ Actually, recurrence (2) can be run backwards, giving z_n values when n is negative, as soon as $(\mathcal{S}, \mathcal{P}) \neq (0, 0)$. However, the $\mathcal{P} \neq 0$ case is the interesting case.

Its char-poly is $f(x) = f_G(x) := x^2 - \mathcal{S}x + \mathcal{P}$. Factor this f as $f(x) = [x - \alpha][x - \beta]$, with $\alpha, \beta \in \mathbb{C}$. Equating coeffs in the polynomial gives

$$2a: \quad \begin{aligned} \alpha + \beta &= \mathcal{S}; & (\text{Sum}) \\ \alpha \cdot \beta &= \mathcal{P}. & (\text{Product}) \end{aligned}$$

Since $\mathcal{P} \neq 0$, necessarily $\boxed{\alpha \neq 0}$ and $\boxed{\beta \neq 0}$. Each of α, β is a root of f , hence

$$\alpha^2 = \mathcal{S}\alpha - \mathcal{P} \quad \text{and} \quad \beta^2 = \mathcal{S}\beta - \mathcal{P}.$$

$$\text{Specifically: } \alpha, \beta = \frac{1}{2}[\mathcal{S} \pm \sqrt{\mathcal{S}^2 - 4\mathcal{P}}].$$

Finding an α -eVec. An α -eVec (for G) is an element of $\text{Nul}(G - \alpha\mathbf{I})$. Applying row operations,

$$2b: \quad G - \alpha\mathbf{I} = \begin{bmatrix} \mathcal{S} - \alpha & -\mathcal{P} \\ 1 & -\alpha \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} 1 & -\alpha \\ \mathcal{S} - \alpha & -\mathcal{P} \end{bmatrix} \stackrel{r}{\sim} \begin{bmatrix} 1 & -\alpha \\ 0 & 0 \end{bmatrix}.$$

This last $\stackrel{r}{\sim}$ requires no computation, since the rows *must* be linearly-dependent (since α is an eigenvalue of G).

This last matrix has one free column, and evidently multiplies $\begin{bmatrix} \alpha \\ 1 \end{bmatrix}$ to the zero-vector. So

2c: *The singleton $\left\{ \begin{bmatrix} \alpha \\ 1 \end{bmatrix} \right\}$ is a basis for the α -eigenspace of G , which is one-dimensional.*

Instead of row-ops to show that $\mathbb{E}_{G,\alpha}$ (the α -eigenspace of G) is one-dim'al, we could have argued as follows: Were $\mathbb{E}_{G,\alpha}$ two-dim'al, then $G \stackrel{\text{sim}}{\sim} \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$. By (1), then, G would equal $\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$ —which it doesn't!

When is $\alpha = \beta$? This happens when the discriminant of f is zero. Its discrimin is $[-\mathcal{S}]^2 - 4 \cdot 1 \cdot \mathcal{P}$, i.e $[\alpha^2 + \beta^2 + 2\alpha\beta] - 4\alpha\beta$. Hence

$$3a: \quad \text{Discr}(f) = \mathcal{S}^2 - 4\mathcal{P} \stackrel{\text{note}}{=} [\alpha - \beta]^2.$$

Since (2c) also applies to eigenvalue β , we conclude:

3b: *Matrix $G = \begin{bmatrix} \mathcal{S} & -\mathcal{P} \\ 1 & 0 \end{bmatrix}$ is diagonalizable IFF G has distinct eigenvalues; i.e $\mathcal{S}^2 \neq 4\mathcal{P}$.*

Distinct eigenvalues

When $\alpha \neq \beta$, our (2c) implies that G is conjugate to diagonal-matrix

4: $D := \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ via matrix
 $U := \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}$. Note $U^{-1} = \frac{1}{\alpha-\beta} \cdot \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}$.

We populated U with evecs, using the same order of evals in D . One can check that $U^{-1}GU = D$. Hence $G = UDU^{-1}$. So for each integer n ,

5a: $G^n = \frac{1}{\alpha-\beta} \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{bmatrix} \cdot \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}$.

Multiplying from the right by initial-condition $\begin{bmatrix} z_1 \\ z_0 \end{bmatrix}$ will produce $\begin{bmatrix} z_{n+1} \\ z_n \end{bmatrix}$. Extracting the z_n , we get the nice formula

5b: $z_n = \frac{1}{\alpha-\beta} \cdot \left[[z_1 - \beta z_0] \alpha^n - [z_1 - \alpha z_0] \beta^n \right]$.

This formula is symmetric in α & β , as it must be.

Equal eigenvalues

Let's take a look at the $\alpha=\beta$ case. This means that

6: $G = \begin{bmatrix} 2\beta & -\beta^2 \\ 1 & 0 \end{bmatrix}$.

While we can't conjugate G to a *diagonal* matrix, we can conjugate to its ***Jordan canonical form***. The JCF of (6) is

$$J = J_G := \begin{bmatrix} \beta & 1 \\ 0 & \beta \end{bmatrix}$$

Mysteriously pulling the below C from a hat, multiplication verifies that

7: $J = C^{-1}GC$, where $C := \begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix}$

and $C^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -\beta \end{bmatrix}$. This will yield a formula for z_n .

Induction on n shows that

$$J^n := \beta^{n-1} \cdot \begin{bmatrix} \beta & n \\ 0 & \beta \end{bmatrix}, \quad \text{for each } n \in \mathbb{Z}$$

As before, $G = CJC^{-1}$ so $G^n = CJ^nC^{-1}$. That is,

8a:
$$\begin{aligned} G^n &= \beta^{n-1} \cdot \begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta & n \\ 0 & \beta \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -\beta \end{bmatrix} \\ &= \beta^{n-1} \cdot \begin{bmatrix} [1+n]\beta & -n\beta^2 \\ n & [1-n]\beta \end{bmatrix}. \end{aligned}$$

Multiplying by $\begin{bmatrix} z_1 \\ z_0 \end{bmatrix}$; the bottom entry in the resulting column-vector is

8b:
$$\begin{aligned} z_n &= [nz_1 + [1-n]\beta z_0] \cdot \beta^{n-1} \\ &= [[z_1 - \beta z_0]n + \beta z_0] \cdot \beta^{n-1}. \end{aligned}$$

Addendum. We could have derived (8b) from (5b), by sending $\alpha \rightarrow \beta$, then using l'Hôpital's rule:

Derivative $\frac{d}{d\alpha} [\alpha - \beta]$ is 1. And

$$\begin{aligned} \frac{d}{d\alpha} & \left[[z_1 - \beta z_0] \alpha^n - [z_1 - \alpha z_0] \beta^n \right] \\ &= [z_1 - \beta z_0] \cdot n \alpha^{n-1} - z_0 \beta^n \\ &= [z_1 - \beta z_0] \cdot n \alpha^{n-1} + z_0 \beta^n. \end{aligned}$$

Applying $\lim_{\alpha \rightarrow \beta}$ to this last expression, yields

$$[z_1 - \beta z_0] \cdot n \beta^{n-1} + z_0 \beta^n \stackrel{\text{note}}{=} \text{RHS}(8b). \quad \square$$

Filename: Problems/Algebra/LinearAlg/linear-recurr.latex
As of: Monday 05Mar2007. Typeset: 20Dec2023 at 17:37.