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Notation. Use “ r∼” for row-equivalence: I.e,
K×N matrices M

r∼ M′ IFF we can get from M
to M′ using row operations. Use “ c∼” for column-
equivalence.

Two N×N matrices B & C are similar , or con-
jugate to each other, if

�� ��there exists an invertible
matrix U such that

U 1 · B · U = C .

Use B
sim∼ C for the similarity equiv-relation.

Call a matrix OTForm sI
note
=== [ s 0

0 s ], a dilation ;
its action on the plane is simply to scale-uniformly by
factor s. Every matrix commutes with I, and so:

A dilation is only conjugate to itself.1:

I.e, for invertible U, necessarily U 1 · sI · U = sI.
For T a square matrix (or a trn from a vectorspace to

itself) and a complex number α, define the subspace

ET,α :=
{
vectors v

∣∣ Tv = αv
}
.

Saying that “α is a T-eigenvalue” is the same as saying
that Dim(ET,α) ≥ 1.

Linear recurrence
A fibonacci-like seq ~z := (((zn)))

∞
n= ∞ is specified using

(complex) numbers S and P, with P non-zero♥1, by

zn+2 := Szn+1 − Pzn ,2:

and some initial condition (((z1, z0))). With

G :=
[ S P
1 0

]
, then

[ zn+1
zn

]
= Gn · [ z1z0 ] ,

for each integer n. We want to diagonalize G.
♥1Actually, recurrence (2) can be run backwards, giving zn

values when n is negative, as soon as (((S,P))) 6= (((0, 0))). However,
the P6=0 case is the interesting case.

Its char-poly is f(x) = fG(x) := x2 − Sx+ P. Fac-
tor this f as f(x) = [x−α][x− β], with α,β ∈ C.
Equating coeffs in the polynomial gives

α+ β = S ; (Sum)
α · β = P . (Product)

2a:

Since P 6= 0, necessarily
�� ��α 6= 0 and

�� ��β 6= 0 . Each of
α,β is a root of f , hence

α2 = Sα− P and β2 = Sβ − P .

Specifically : α,β = 1
2

[
S ±

√
S2 − 4P

]
.

Finding an α-eigenvector. An α-eVec (for G) is
an element of Nul(G−αI). Applying row operations,

G−αI =
[
S −α P

1 α

]
r∼

[
1 α

S −α P

]
r∼

[
1 α
0 0

]
.

2b:

This last r∼ requires no computation, since the rows
must be linearly-dependent (since α is an eigenvalue of G).

This last matrix has one free column, and evidently
multiplies [α1 ] to the zero-vector. So

The singleton
{[

α
1

]}
is a basis for the α-

eigenspace of G, which is one-dimensional.
2c:

Instead of row-ops to show that EG,α (the α-
eigenspace of G) is one-dim’al, we could have argued
as follows: Were EG,α two-dim’al, then G

sim∼ [α 0
0 α ].

By (1), then, G would equal [α 0
0 α ] —which it doesn’t!

When is α = β? This happens when the discrim-
inant of f is zero. Its discrim is [ S]2 − 4 · 1 · P, i.e
[α2 + β2 + 2αβ]− 4αβ. Hence

Discr(f) = S2 − 4P note
=== [α− β]2 .3a:

Since (2c) also applies to eigenvalue β, we conclude:

Matrix G=
[
S P
1 0

]
is diagonalizable IFF

G has distinct eigenvalues; i.e S2 6= 4P.
3b:
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Distinct eigenvalues

When α 6= β, our (2c) implies that G is conjugate to
diagonal-matrix

D :=
[
α 0
0 β

]
via matrix

U :=
[
α β
1 1

]
. Note U 1 = 1

α−β ·
[

1 β
1 α

]
.

4:

We populated U with evecs, using the same order of
evals in D. One can check that

�� ��U 1GU = D . Hence
G = UDU 1. So for each integer n,

Gn = 1
α−β

[
α β
1 1

]
·
[
αn 0
0 βn

]
·
[
1 β
1 α

]
.5a:

Multiplying from the right by initial-condition [ z1z0 ]
will produce

[ zn+1
zn

]
. Extracting the zn, we get the

nice formula

zn = 1
α−β ·

[
[z1 − βz0]α

n − [z1 −αz0]β
n
]
.5b:

This formula is symmetric in α&β, as it must be.

Equal eigenvalues

Let’s take a look at the α=β case. This means that

G =

[
2β −β2

1 0

]
.6:

While we can’t conjugate G to a diagonal matrix, we
can conjugate to its Jordan canonical form. The
JCF of (6) is

J = JG :=

[
β 1
0 β

]
.

Mysteriously pulling the below C from a hat, multi-
plication verifies that

J = C 1GC , where C :=

[
β 1
1 0

]
7:

and C 1 =
[
0 1
1 β

]
. This will yield a formula for zn.

Induction on n shows that

Jn := βn−1 ·
[
β n
0 β

]
, for each n ∈ Z.

As before, G = CJC 1 so Gn = CJnC 1. That is,

Gn = βn−1 ·
[
β 1
1 0

] [
β n
0 β

] [
0 1
1 β

]

= βn−1 ·
[
[1 + n]β −nβ2

n [1− n]β

]
.

8a:

Multiplying by [ z1z0 ]; the bottom entry in the resulting
column-vector is

zn =
[
nz1 + [1− n]βz0

]
· βn−1

=
[
[z1 − βz0]n + βz0

]
· βn−1 .

8b:

Addendum. We could have derived (8b) from (5b), by
sending α→β, then using l’Hôpital’s rule:

Derivative d
dα [α− β] is 1. And

d
dα

[
[z1 − βz0]α

n − [z1 −αz0]β
n
]

= [z1 − βz0]·nαn−1 − z0β
n

= [z1 − βz0]·nαn−1 + z0β
n.

Applying limα→β to this last expression, yields

[z1 − βz0]·nβn−1 + z0β
n note
=== RhS(8b) . �
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