

Projections on a line : LinearAlg

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 3 April, 2022 (at 13:57)

Problem

Let $P = P_{30^\circ}$ be the 2×2 matrix whose lefthand action is ortho-projection on the $\angle=30^\circ$ line through the origin. Compute P .

Support your answer in three conceptually-different ways.

Strategy

Step S0. A simplifying notation:
 Use $c := \cos(30^\circ)$ and $s := \sin(30^\circ)$.

Step S1. Use similar triangles to compute $P \cdot \mathbf{e}_1$; this product gives the first column of P . Use similar triangles to compute $P \cdot \mathbf{e}_2$; this equals the second column of P .

Step S2. Partial verification of our result: Each vector \mathbf{v} on the 30° line should be *fixed* (not moved) by the projection. So $P \cdot \mathbf{v}$ better equal \mathbf{v} .

Step S3. “Variation of parameters”: Generalize the result of Step 1, replacing “ 30° ” by a general angle ω . Easily

$$* : P_{0^\circ} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad P_{90^\circ} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Now we will check that our P_ω formula gives these two matrices when ω is set equal to 0° and 90° .

Step S4. “The Dictionary Idea”: Instead, let us obtain P_{30° by *conjugation* by rotation matrix R_{30° . So we check that

$$P_\omega \stackrel{?}{=} R_\omega \cdot P_{0^\circ} \cdot R_{-\omega}.$$

(Aside: Here, given two $N \times N$ matrices B and invertible D , let “ B conjugated by D ” mean $D \cdot B \cdot D^{-1}$.)

Applying the Strategy

Doing S1. Similar triangles yields

$$1: \quad P = \begin{bmatrix} c \cdot c & c \cdot s \\ c \cdot s & s \cdot s \end{bmatrix}. \quad \diamond$$

Doing S2. The unit-vectors on the 30° line are $\pm \mathbf{v}$, where $\mathbf{v} := \begin{bmatrix} c \\ s \end{bmatrix}$. Define $\begin{bmatrix} x \\ y \end{bmatrix} := P \cdot \begin{bmatrix} c \\ s \end{bmatrix}$. The beloved Pythagorean theorem yields that

$$2: \quad x = [c \cdot c] \cdot c + [c \cdot s] \cdot s = c \cdot [c^2 + s^2] \stackrel{\text{Pythag}}{=} c.$$

Similarly $y = s$. Thus we see that $P \cdot \mathbf{v}$ indeed equals \mathbf{v} . \diamond

Doing S3. The derivation of (1) applies when 30° is replaced by a general angle ω . Redefining $c := \cos$ and $s := \sin$ thus gives

$$3: \quad P_\omega = \begin{bmatrix} c(\omega) \cdot c(\omega) & c(\omega) \cdot s(\omega) \\ c(\omega) \cdot s(\omega) & s(\omega) \cdot s(\omega) \end{bmatrix}.$$

So P_{0° is $\begin{bmatrix} 1 \cdot 1 & 1 \cdot 0 \\ 1 \cdot 0 & 0 \cdot 0 \end{bmatrix}$, which indeed equals $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, the P_{0° from (*). The check for P_{90° similarly works. Note that we could also have used P_{45° as an easy check. \diamond

Doing S4. Letting c and s denote $\cos(\omega)$ and $\sin(\omega)$, recall our rotation matrix $R_\omega = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$. Since $\cos()$ is an even fnc, and $\sin()$ is odd, automatically $R_{-\omega} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$. Multiplying the matrices $R_\omega \cdot P_{0^\circ} \cdot R_{-\omega}$ indeed yields RhS(1), as hoped. \diamond

Filename: <Problems/Algebra/LinearAlg/linalg.proj.latex>
 As of: Friday 10May2002. Typeset: 3Apr2022 at 13:57.