
Euclidean algorithm in
Lightning-Bolt form

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu
Webpage http://squash.1gainesville.com/

12 February, 2021 (at 23:30)

The Euclidean algorithm, EU , is often presented
by a series of equations. I have found the following
table-form convenient, both because it organises the
computation, and gives a name to each number in the
table. Because the update-rule follows the shape of a
lightning-bolt, I call it the LBolt algorithm.

Henceforth, all variables are integers unless explic-
itly stated otherwise. Given integers r0 and r1 (for
the time being, assume each is positive) we will compute
G := GCD(r0, r1) as well as a pair S,T of Bézout
multipliers satisfying

G = S·r0 + T ·r1 .1:

[There is a one-parameter family of Bézout-pairs; the algorithm
will compute a particular pair.] I’ll explain via an example.
Suppose we want the GCD of r0 := 114 and r1 := 33.
Then initialize the table as:

n rn qn sn tn

0 114 1 0
1 33 0 1

In order to compute a BP (Bézout-Pair), we’ll need

rn = sn·114 + tn·331′:

to hold, for every n. Notice that it already holds,
trivially, for n=0 and n=1.

At stage n, divide rn into rn−1 to get a quotient,
qn, and a remainder, rn+1. That is,

rn−1 = [qnrn] + rn+1 .2:

Now use this value of qn to update three columns:

rn+1 = rn−1 − qnrn ;

sn+1 := sn−1 − qnsn ;

tn+1 := tn−1 − qntn .

3:

Doing this for n=1 gives

n rn qn sn tn

0 114 1 0
1 33 3 0 1
2 15 1 3

Continue until you get a “0” in the r-column; I’ll com-
pute the resulting “quotient” and write “∞” in the
q-column, obtaining

n rn qn sn tn

0 114 1 0
1 33 3 0 1
2 15 2 1 3

3 3 5 2 7

4 0 ∞ 11 38

The GCD-row [shown here red and italicized] is the row
above the “∞-row ” The numbers we sought lie in
the GCD-row. In this instance, G = r3, S = s3 and
T = t3. And indeed,

3 = 2 · 114 + 7 · 33 .

Why the extra row? You wonder “Why bother
to compute s4 and t4? ” It isn’t necessary, but they
provide verification-data. Consider finding (((G, S, T)))
when r0 := 98 and r1 := 51. Initialize:

n rn qn sn tn

0 98 1 0
1 51 0 1

Now compute. . .

n rn qn sn tn

0 98 1 0
1 51 1 0 1
2 47 1 1 1

3 4 11 1 2

4 3 1 12 23

5 1 3 13 25

6 0 ∞ 51 98

This r5, which is 1 , is indeed GCD(98, 51). And

1 = [13] · 98 + 25 · 51 .

Now examine the∞-row; here, the 6th row. Note that
s6 equals r1 upto ±. And t6 equals r0 upto ±.

In general, letting G := GCD(r0, r1), this “extra”
row satisfies♥1 that

sN+1·G = r1·[1]N+1 and tN+1·G = r0·[1]N .4:

♥1This is stated formally, and proven, in (9c), further below.

Webpage http://people.clas.ufl.edu/squash/ Page 1 of 5

Prof. JLF King Proving the Euclidean Alg. works Page 2 of 5

If you made a computational error earlier in the
table, a glance at this [N+1]th -row will usually
shout “Error!”.

Convention. Depending on context, agree to use
“GCD-row” to mean both its index, and its contents.
E.g, for the preceding LBolt table, expression “Let
N := GCD-row” makes N = 5. I might also say “In
the GCD-row, the t-value is 25.”

Related pamphlets. Our Teaching page

http://www.math.ufl.edu/~squash/teaching.html

has link “practice sheet for the LBolt alg ” with pre-
made tables.

There, too, is link “Algorithms in Number The-
ory ” which uses LBolt iteratively to compute the
G := GCD(M1,M2, . . . ,ML) of a list of integers, com-
puting also a Bézout multipliers S1, S2, . . . , SL st.∑L

`=1
S`M` = G .5:

We call ~S := (((S1, . . . , SL))) a Bézout tuple for the
given tuple

−→
M := (((M1, . . . ,ML))).

Exer: Fix an L-tuple
−→
M which is not the

all-zero tuple. Prove that the set of Bézout
tuples for

−→
M is [L−1]-dimensional.

The 2nd page of “Algorithms in NT ” describes
an algorithm for solving linear congruences such as
33·x ≡114 18, and has a worked-example.

Proving the Euclidean Alg. works

I’ll leave this as an Exer: The Euclidean-Alg always
halts.

Define the divisor and common-divisor sets,

D(K) :=
{
d ∈ Z

∣∣∣ d •| K} and

C(K,N) := D(K) ∩D(N) .

[Below, “LC” stands for “Linear Combination”.]

6: LC Lemma. Consider integers α, β, γ,M such that

α + [M ·β] = γ .6a:

Then

C(α, β) = C(β, γ) .∗: ♦

Proof. Each d ∈ C(α, β) necessarily divides α+ [Mβ],
since M ∈ Z. Thus C(α, β) ⊂ D(γ). By its definition,
C(α, β) ⊂ D(β). Consequently

C(α, β) ⊂ C(β, γ) .6b:

OTOHand, we can rewrite (6a) as

γ + [M ·β] = α .

The above reasoning hands us

C(α, β) ⊃ C(β, γ) .6c:

This, together with (6b), yields (∗). �

6d: Corollary. Consider an LBolt seeded with inte-
gers r0 and r1. Then C(rk, rk+1) = C(r0, r1), for each
index k. Consequently,

GCD(rk, rk+1) = GCD(r0, r1) .6e:

Letting N be the GCD-row index, then,

rN = GCD(r0, r1) ,6f:

since rN+1 is zero. ♦

Filename: Problems/NumberTheory/lightning-bolt.latex

Prof. JLF King Proving the Euclidean Alg. works Page 3 of 5

7: Bézout Lemma. Consider an LBolt seeded with
integers r0 and r1. For each k, then,

rk = [skr0] + [tkr1]B(k):

holds. I’ll refer to assertion [∀k∈N: B(k)] as the
Bézout row-property or LBolt row-property.

With N := GCD-index, consequently,

GCD(r0, r1) = [sNr0] + [tNr1] .7a: ♦

Proof. The LBolt-seeding gives B(0) and B(1).
Now fix a posint n st. B(n−1) and B(n). Courtesy

update rule (3),

sn+1r0 + tn+1r1

=
[
[sn−1 − qnsn]·r0

]
+
[
[tn−1 − qntn]·r1

]
=
[
sn−1r0 + tn−1r1

]
− qn·

[
snr0 + tnr1

]
,

since multiplication distributes-over addition. Asser-
tions B(n−1) and B(n) now give us that

sn+1r0 + tn+1r1 = rn−1 − qn·rn

which, by update (3), equals rn+1. We’ve thus induc-
tively established

∀k > 1 :
[
B(k−1) & B(k)

]
=⇒ B(k+1) . �

Filename: Problems/NumberTheory/lightning-bolt.latex

Prof. JLF King Alternate initialization Page 4 of 5

Alternate initialization

Consider an LBolt seeded with integers r0 and r1. De-
fine matrices

Mn :=
[
sn tn
sn+1 tn+1

]
and Rn :=

[
rn
rn+1

]
.

Up till now, our initialization matrix M0 has the iden-
tity matrix I := [1 0

0 1]. However, our Bézout Lemma
proof only used B(0) and B(1), i.e that

M0·R0 = R0 .∗:

and so other values of M0 are possible.
As an example, the usual LBolt for GCD(3, 2) is

n rn qn sn tn

0 3 1 0

1 2 1 0 1

2 1 2 1 1

3 0 ∞ 2 3

8a:

Another initial-matrix is M0 :=
[
3 3
0 1

]
, yielding

n rn qn sn tn

0 3 3 3

1 2 1 0 1

2 1 2 3 4

3 0 ∞ 6 9

8b:

Row-2 gives us a different Bézout pair. We might con-
jecture that check-pair (((6, 9))) equals the check-pair
(((2, 3))) from the first table, but multiplied by Det(M0).

Yet another init-matrix is M0 :=
[
7 9
2 2

]
, producing

n rn qn sn tn

0 3 7 9

1 2 1 2 2

2 1 2 5 7

3 0 ∞ 8 12

8c:

Row-2 gives us a third Bézout pair. The check-pair
(((8, 12))) indeed equals Det(7 9

2 2) times the (((2, 3))) from
our first table.

In this last example

n rn qn sn tn

0 3 5 9

1 2 1 4 7

2 1 2 1 2

3 0 ∞ 2 3

8d:

has M0 :=
[

5 9
4 7

]
, whose determinant is 1, hence

yielding the same check-tuple (((2, 3))) as in table (8a).

Filename: Problems/NumberTheory/lightning-bolt.latex

Prof. JLF King Alternate initialization Page 5 of 5

Check-row. We study an LBolt seeded with a co-
prime pair r0 ⊥ r1, and initial-matrixM0 st. (∗) holds.

For k > 1, let
Qk :=

[
0 1
1 −qk

]

and observe Det(Qk) = 1. Define product matrix

Pn := Qn · · ·Q2Q1 ;

hence P0, the empty product, is the identity matrix I.
Update-rule (3) tells us that

Rk = Qk·Rk−1 and Mk = Qk·Mk−1 .

Consequently,

Rn = Pn·R0 , Mn = Pn·M0

and Det(Mn) = Det(M0) ·[1]n .
9a:

Moreover,

Mn·R0 = PnM0·R0
by (∗)
===== PnR0 = Rn .9b:

Letting N := GCD-index, we have that

MN ·R0 = RN
recall
====

[
1
0

]
,∗∗:

since r0 ⊥ r1. Have (((S, T))) := (((sN , tN))) denote the
Bézout-pair, and let (((α, β))) := (((sN+1, tN+1))) be the
pair whose values we wish to determine. Finally, set
δ := Det(M0).

Our (∗∗) gives the top two lines of

Sr0 + Tr1 = 1 ,

αr0 + βr1 = 0 . Notice that

αT + βS = δ ·[1]N

courtesy (9a), since Det(MN) = Det(
[
S T
α β

]
). Multi-

plying the middle eqn by T and the bottom by r0
gives

αTr0 + βTr1 = 0 and

αTr0 + βSr0 = r0δ[1]
N .

Adding them yields

β
note
=== β·[Sr0 + Tr1] = r0 δ · [1]N .

Finally, plugging this into the middle eqn gives

0 = αr0 + r0δ[1]
N ·r1 .

When r0 6= 0, then 0 = α + r1δ[1]
N . Hence

α = −r1δ · [1]N = r1δ · [1]N+1 .

We have proven the following theorem.

9c: Check-value Theorem. Consider an LBolt seeded
with integers r0 6= 0 and r1, together with an initial-
matrix M0 satisfying

M0 ·
[
r0
r1

]
=

[
r0
r1

]
.9d:

Let N := GCD-index and G := GCD(r0, r1). Then

sN+1 · G = r1 ·Det(M0)·[1]N+1

and tN+1 · G = r0 ·Det(M0)·[1]N .
9e:

(Recall that our standard LBolt has Det(M0) = 1.) ♦

Filename: Problems/NumberTheory/lightning-bolt.latex
As of: Thursday 06Jan2011. Typeset: 12Feb2021 at 23:30.

Filename: Problems/NumberTheory/lightning-bolt.latex

