Euclidean algorithm in
Lightning-Bolt form
Jonathan L.F. King
University of Florida, Gainesville FL 82611-2082, USA

squash@ufl.edu
Webpage http://squash.1gainesville.com/

12 February, 2021 (at 23:30)

The Euclidean algorithm, EU, is often presented
by a series of equations. I have found the following
table-form convenient, both because it organises the
computation, and gives a name to each number in the
table. Because the update-rule follows the shape of a
lightning-bolt, I call it the LBolt algorithm.

Henceforth, all variables are integers unless explic-
itly stated otherwise. Given integers 7o and 71 (for
the time being, assume each is positive) we will compute
G = GCD(ro,r1) as well as a pair S,T of Bézout
multipliers satisfying

1: G = Srg+Tr.

[There is a one-parameter family of Bézout-pairs; the algorithm
will compute a particular pair.] I’ll explain via an example.
Suppose we want the GCD of rg := 114 and r; = 33.
Then initialize the table as:

n H Tn ‘ dn ‘ Sn ‘ ty
0 114 — 1 0
1 33 0 1

In order to compute a BP (Bézout-Pair), we'll need

1: rn, = Sp-114 4+ t,-33
to hold, for every n. Notice that it already holds,
trivially, for n=0 and n=1.

At stage n, divide r, into r,_1 to get a quotient,
Jn, and a remainder, r,41. That is,
2 T'n—1 = [ann] + T+l

Now use this value of qg,, to update three columns:

T'n+1 = Tn—1 — qnTn ;
3: Sn+l = Sn—1 — nSn;
tnt1 = lp—1 — Onln
Doing this for n=1 gives
n H Tn ‘ dn ‘ Sn ‘ ty
0 114 — 1 0
1 33 3 0 1
2 15 1 -3

Webpage http://people.clas.ufl.edu/squash/

Continue until you get a “0” in the r-column; I’ll com-
pute the resulting “quotient” and write “c0” in the
g-column, obtaining

[O A
0 114 | - 1

1 33 3 0 1
2 15 2 1 -3
3 3 5 -2 7
4 0] oo 11 -38

The GCD-row [shown here red and italicized] is the row
above the “oco-row” The numbers we sought lie in
the GCD-row. In this instance, G = r3, S = s3 and
T = t3. And indeed,

3 = -2-114 4+ 7-33.

Why the extra row? You wonder “Why bother
to compute s4 and t47” It isn’t necessary, but they
provide verification-data. Consider finding (G, S,T)
when rog := 98 and 71 := 51. Initialize:

n ra | dn | sn | tn
0 98 [— 1
1 51 0 1

Now compute. . .

NI I O
0 98 [- 1

1 51 1 0 1
2 A7 1 1 -1
3 41 11 -1 2
4 3 1 12 -23
5 1 3 -13 25
6 0] oo 51 -8

This r5, which is 7, is indeed GCD(98,51). And

1 = [-13]-98 + 25-51.
Now examine the co-row; here, the 6** row. Note that
s¢ equals r1 upto . And tg equals rg upto =+.

In general, letting G := GCD(rg,r1), this “extra”
row satisfies”! that

4: SN+1'g = Tl-[*l]N—H and tN+1'g = TO'[*l]N.

“IThis is stated formally, and proven, in (9¢), further below.

Page 1 of 5

Prof. JLF King

If you made a computational error earlier in the
table, a glance at this [N+1]"-row will usually
shout “Error!”.

Convention. Depending on context, agree to use
“GCD-row” to mean both its index, and its contents.
E.g, for the preceding LBolt table, expression “Let
N := GCD-row” makes N = 5. I might also say “In
the GCD-row, the t-value is 25.”

Related pamphlets. Our Teaching page

http://www.math.ufl.edu/~squash /teaching.html

has link “practice sheet for the LBolt alg” with pre-
made tables.

There, too, is link “Algorithms in Number The-
ory” which uses LBolt iteratively to compute the
G := GCD(My, My, ..., M) of a list of integers, com-
puting also a Bézout multipliers Si, Ss,..., St st.

L
5: Y, SeMe = G.

We call S = (S1,...,5L) a Bézout tuple for the
= (Ml,...,ML).

given tuple

Exer: Fix an L-tuple ﬁ which is not the
all-zero tuple. Prove that the set of Bézout

tuples for M is [L—1]-dimensional.

The 27 page of “Algorithms in NT” describes
an algorithm for solving linear congruences such as
33-x =114 18, and has a worked-example.

Proving the Euclidean Alg. works

Page 2 of 5

Proving the Euclidean Alg. works

I’ll leave this as an Exer: The Euclidean-Alg always
halts.
Define the divisor and common-divisor sets,

=]
=
I

{dez‘qu} and
D(K) N D(N).

@

=

2
i

[Below, “LC” stands for “Linear Combination”.]

6: LC Lemma. Consider integers «, 3,v, M such that

6a: a+ [M-p] = ~.
Then
*: Cla,B) = €(B,7). 0

Proof. Each d € C(«,) necessarily divides a + [M],
since M € Z. Thus C(«, 5) C D(v). By its definition,
C(a, B) € D(B). Consequently

6b: Cla, B) C €(B,7).

OTOHand, we can rewrite (6a) as
v+ [MB = a.

The above reasoning hands us

Gc: C(a, B) D C(B,7)-
This, together with (6b), yields (x). ¢
6d: Corollary. Consider an LBolt seeded with inte-

gers ro and ri. Then C(rg,ri4+1) = C(ro,r1), for each
index k. Consequently,

6e: GCD(rg, rg+1) = GCD(rg,71).
Letting N be the GCD-row index, then,
6f: ry = GCD(rg,m1),

since ryy1 IS zero. O

Filename: Problems/NumberTheory/lightning-bolt.latex

Prof. JLF King Proving the Euclidean Alg. works

7: Bézout Lemma. Consider an LBolt seeded with
integers ro and r1. For each k, then,

B(k): ri = [skro] + [trr]

holds. I'll refer to assertion |VEEN: B(k)| as the
Bézout row-property or LBolt row-property.
With N = GCD-index, consequently,

Ta: GCD(rg,m1) = [sn7o] + [tnr1]- O
Proof. The LBolt-seeding gives B(0) and B(1).

Now fix a posint n st. B(n—1) and B(n). Courtesy
update rule (3),

= {[Sn—l - ann]'To} + [[tn—l - qntn]'rl}
= [Sn,ﬂ‘o + tnfl'rl] - qn'[sn ro + f,ﬂ‘[} >

since multiplication distributes-over addition. Asser-
tions B(n—1) and B(n) now give us that

= Tn—1 — Qn'T'n

which, by update (3), equals r,11. We've thus induc-
tively established

Vk>1: [B(k—1)&B(k)] = B(k+1). 4

Filename: Problems/NumberTheory/lightning-bolt.latex

Page 3 of 5

Prof. JLF King Alternate initialization Page 4 of 5

Alternate initialization In this last example
Consider an LBolt seeded with integers rp and ;. De-
- o el]
fine matrices
0 3 — -5 9
— Sn tn . Tn . F _
Mo =[] and Reo= [] 8d: 1 2| 1| 4| 7
2 1 2 -1 2
Up till now, our initialization matrix Mg has the iden- 3 0 00 i) 3
tity matrix I := [} ¢]. However, our Bézout Lemma
proof only used B(0) and B(1), i.e that has Mgy = {:i g}, whose determinant is 1, hence
e Mo-R; = Rq. yielding the same check-tuple (-2, 3) as in table (8a).

and so other values of Mg are possible.
As an example, the usual LBolt for GCD(3,2) is

n H Tn ‘ dn ‘ Sn ‘ tn
0 3 — 1 0
8az 1 2 1 1
2 1 2 1 -1
3 0 s -2 3
Another initial-matrix is Mg := B ﬂ, yielding
n H Tn ‘ dn ‘ Sn ‘ tn
0 3 — 3 -3
8b: 1 2 1 0 1
2 1 2 3 -4
3 0 o0 -6 9

Row-2 gives us a different Bézout pair. We might con-
jecture that check-pair (-6,9) equals the check-pair
(-2, 3) from the first table, but multiplied by Det(M).

Yet another init-matrix is Mg := B :g}, producing
n H Tn ‘ dn ‘ Sn ‘ tn
0 3 — 7 -9
8c: 1 2 1 2 -2
2 1 2 5 -7
3 0 00 -8 12

Row-2 gives us a third Bézout pair. The check-pair
(-8, 12) indeed equals Det(§ =) times the (-2, 3) from
our first table.

Filename: Problems/NumberTheory/lightning-bolt.latex

Prof. JLF King

Check-row. We study an LBolt seeded with a co-
prime pair ro L 1, and initial-matrix Mg st. (x) holds.

For k > 1, let
0 1

and observe Det(Q;) = -1. Define product matrix

Pn = Qn"'QZQl;

hence Py, the empty product, is the identity matrix I.
Update-rule (3) tells us that

Ry = QpRe—1 and My = Qp-My_1.
Consequently,
0a: R, = P,.-Ro, M, = P,-Mg
and Det(My) = Det(Mo)-[1]" .
Moreover,
9b: M,Ry = P,MgRy 22 PRy = R,.

Letting NV := GCD-index, we have that

o My-Ry = Ry =l m

since ro L r1. Have (S,T) = (sn,tn) denote the
Bézout-pair, and let (o, 3) = (sn+1,tn+1) be the
pair whose values we wish to determine. Finally, set
d := Det(My).

Our (xx) gives the top two lines of

Srg +1Tr = 1,
arg + Br1 = 0.
-oT + BS = 61"

Notice that

courtesy (9a), since Det(My) = Det({g g]) Multi-
plying the middle eqn by T and the bottom by ¢
gives

alrg + Try = 0 and

-oTrqg + BSry = ’r‘o(;[*l]N.

Adding them yields

B 2 B.[Sro + Tri] = roé - [1]V.

Alternate initialization

Page 5 of 5

Finally, plugging this into the middle eqn gives
0 = arg + 7o0[-1]V-ry .

When rg # 0, then 0 =« + r16-1]". Hence
a = —rd- 1N = rmé- V.

We have proven the following theorem.

9c: Check-value Theorem. Consider an LBolt seeded
with integers ro # 0 and 71, together with an initial-
matrix Mg satisfying

o] - [

r1 1
Let N := GCD-index and G :== GCD(rg,r1). Then

r1 . Det(MQ)-[*l]NJrl
0 - Det(MQ)-[*l]N .

SN+1-G
9e: -
and tyy1-G =

(Recall that our standard LBolt has Det(Mo) = 1.) %

Filename: Problems/NumberTheory/lightning-bolt.latex
As of: Thursday 06Jan2011. Typeset: 12Feb2021 at 23:30.

Filename: Problems/NumberTheory/lightning-bolt.latex

