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The Problem

Suppose we have a collection K of N points
Q1,...,0Q;, ...,y in the plane RxR. Consider
now the line L with equation y = gz + . It
has slope [ and y-intercept a. At a given point
Q) = (x,y), the vertical (signed) distance to L is

1: v o= Ja+ fx] —y.

Letting v; denote the vertical distance at ();, de-
fine the least-square distance from K to L. by

1 gla, B) = > [v]*.

Our goal is to find all pairs («, ) which mini-
mize g. It will turn out there is a unique min-
imum, ezcept in the silly case that all the given
points lie on one vertical line. That is, writing @);

N
i=1

as (r;,1;), except when z; = --- = xy.
The quantities that we will need are
X = Zé.vzlxj, Y = Z;V:lyj’

(“S” is for Squares and “P” is for Product.)

Using Calculus

Evidently in computing the first-partials of g we
will want to compute them for each v;. From (1)
we compute that

L =1, so L)) =2v-1 and
dv _ d 2y _
@ =z, so g(v?) = 2v-z,

by the Chain Rule. Consequently

dg N dg N
1o = ijl 2v; and @ = ijl 20z .
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Thus, the pair (o, 3) is a critical point of g IFF
at («, 8) we have that

N N
22 0= Zj—l v; and 0= ijl VT .

Recall that v; is a + 2;3 — y;. So multiplying out
and distributing the summations in (2) yields that
2:0 = Na+XB-Y, 0= Xa+S5-P.

We can rewrite this to say that («, ) is a critical
point of g IFF

Y = Na+ X8,

3:

P = Xa+ 5p.
Matrices. Let M denote the matrix [§ €] and
let

D = Det(M) 2 NS — X2,

It follows from a standard”'“? inequality that:
All the points x1,...,xy are equal IFF D = 0.
We henceforth assume that our scatterplot has at
least two distinct x-values.

Bare-hands computation [or matrix algebra| shows
that (3) has a unique solution, which is

. a = %[ SY—XP],
' B = 3L[-XY + NP

Le, [3] = 35 %3]

“1Jensen's Inequality implies that D is positive. For that
assertion is equivalent to “D/[N?] > 07, i.e, to

N N 2
1 2 1
szzl[xj] > [N ijl x]}
This has form %Zf[ f(z;) > f(%Zf[ zj), where [ is
the squaring-map. Since f is strictly convex-up, Jensen's
yields “>”, with equality IFF xzy = ... =xzx.
“?We can use the Cauchy-Schwarz inequality [CS] with
inner-product  ((p1,....pn). (q1.. ... qn)) = Z‘l\ Dy - qj-
For let 1 := (1, .N. 1) and w := (21,...,2y). CS gives

2

’<1’W>‘ < <1,1>'<W,W>,

ie, X2 < N-S. There is equality IFF w is a multiple
of 1, i.e IFF all the z; equal a common value.
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Neat!
(Exer. El: Let Q; := (4, j%). For N =2,3,4,5, find the
best approximating line to scatterplot @y, ...,Qn. How do

the slopes of the lines change as you increase N? Taking
two of the geometric points in the list, what happens to
the fitting-line if you repeat each of them several times to

make a new list? )

Using Linear Algebra

In matrix notation we can write (4) as

5= weep,

suggesting that least-squares secretly contains lin-
ear algebra. We set the stage for a more general
problem, then apply it to least-squares.

With F either R or C, consider an /N-dim’al
F-inner-product space (H, (- >), a K-dim’al
subspace W C H, and its ortho-complement

Wt = {gEH"v’WEW:gJ_W}.

The orthogonal projection operator is the map
Proj:H—W satisfying, for each @) € H, that

Q — Proj(Q) € W+.

Point P := Proj(Q) is the (unique) closest-point
on W to Q; it minimizes (w — ), w — () as w
ranges over W.

Subspaces. One way to get a subspace is as the
range of a linear map A:FX—H; so let

5. W = Range(A) = {AU| U e F¥}.
Consider a point P € W. Then

There is a unique Uy € FX with AUy = P
IFF U~ AU is 1-to-1, i.e, Rank(A) = K.

We want to state this rank-condition in terms
of an adjoint operator, so equip F¥ with the
[conjugate| dot-product.”® Thus we have a well-
defined adjoint map A*:H—FX  defined by

V3 Actually, any inner-product on FX works in (8), but
note that changing the IP will change what “A*” means.
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7: VgeHand VU € FX: (A%g, U) = (g, AU).

(Exer. E2: Show that [A*[* = A.) Hence
we have linear maps A*A:FKX—FX  and
AA*:H—H. A standard result (Exer.E3) is

that Ker(A*A) = Ker(A). A corollary of this is
that Rank(A*A) = Rank(A), since our VSes are
finite dimensional. [We used the Rank+Nullity thm.|

Thus, we can restate the above as

There is a unique Uy € FX with AUy = P
6:  IFF U AU is 1-to-1, i.e, Rank(A) = K.
IFF A*A is invertible.

The Problem. Fix a rank-K linear-map
A:FE —+H and a point Q € H. We seek a formula
for the unique point Uy € FX so that ||[AUy— Q)| is
the minimum of ||AU — Q|| taken over all U € FX.

The difference-vector AUy — @) is orthogonal to
every vector in (5). Le, for each U € FX inner

product <AU0 —Q, AU> is zero. By (7), then,
(A*AUs — A*Q, U) = 0.

But the only vector orthogonal to all U € FX is

0 € FX. Thus U, satisfies A*AU, = A*(). Hence

8: UO — [A*A]_lA*Q )

courtesy (6').

Least squares. We can apply this to our line-
fitting of (1). After all, RhS(1’) is the square of the
dot-product norm on H := FV. We are minimiz-
ing the square-norm of column vector [vl,...,vN]t.

Our unknown vector is U = M; so K = 2. With

B
1 x Y1
xro Y2
9: A = and Q = |7 |,
1 xn YN

we are minimizing the norm of AU — Q over all U.
Applying (8), the minimum occurs at

8 5] = [IAATAYQ

Of course, RhS(8) must equal RhS(4’). Indeed
we find that A*A = M and A*Q = | ¥ |.
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Finally, note that Rank(A) equals K, i.e,
equals 2, exactly when not all xy,...,zy are
equal. This was precisely the “non-silly” condi-
tion we needed for the Calculus approach.

Fitting to a polynomial. To our N many
data-points Q; = (x;,y;) in the FxF plane, we
wish to least-squares fit the closest K-topped (i.e,
Deg < K) polynomial

10: ap + a1r + a0 + ..+ ag_qx8!

Copying what we did in (9), define our “unknown”

col-vector U = a0 e ax-1]", as well as
1 = :c% ${<71 Y1
2 K—1
/o R S x L. o
9: A= 3 S Qe |
1 N ac?v mﬁ_l YN

When Rank(Ag) equals K, then (8) applies,
telling us that the closest-fit polynomial (10) has
coefficients U = [ARAx]TARQ.

Vandermonde matrices. The NxK ma-
trix Ag of (9) is called a Vandermonde ma-
triz.”* When N and K equal a common value,
L, then —it turns out—

11: Det(AL) =

II [z —ail.

jiell. L]

with j>¢

Returning to the general NxK case, let L de-
note the number of distinct values in {x1,..., 2y},
and suppose that . Remove the duplicate
rows, then only keep the first L many columns.
We have thus produced an LxL Vandermonde ma-
trix inside our original NxK matrix, and (11) im-
plies that this LxL has non-zero determinant. We
have thus proven:

Fix an arbitrary field F, points x1,...,xny € F,
and let L be the number of distinct points in this
11’: list.  Then, for each K > L, the Vandermonde
matrix Ag(x1,Z2,...,2N) has rank equaling L,

the cardinality of set {x1,x2,...,ZN}.

“4The Vandermonde-matrix Wikipedia article is nice.
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So we get a wunique K-topped polynomial
least-squares—closest to our N many data-points
exactly when there are at least K distinct x-values
among the points.

polynomials. Suppose points
If K equals N, then

there is a
whose graph

,Qj, ... Qn; the

Lagrange
x1,...,xy are distinct.
Lagrange Interpolation tells us
unique K-topped polynomial
passes through each of @Qq,...
least-squares distance is zero.

When K>N, then there is a family of K-
topped polynomials (a [K—N]-dim’al family) which
pass through the data-points; so no uniqueness in
the least-squares fit.

Fitting to a family of functions. Fix an
arbitrary set S, functions fy, f1,..., fxk_1:S—F,
and let G be the set of linear combinations

g 0 ¢ fi ().
A scatterplot is a multiset {Q;}_, of points

Q' = (Sj,Tj) € SxF.

Points {s;}}_; C S are the sample points, and
{7 }]:1 are the target values. |Previously we used

“

x;” for a sample point, and “y;” for a target Value.]

We can use the preceding technique to find a
function g € § which minimizes the least-square
distance to scatterplot {Qj}jyzl Namely, define

this NxK matrix and column-vector

fo(s1)  fa(s1) fr—1(s1) -
fo(s2)  fi(s2) fre—1(s2) 7-;
12: A=1: : , Q=] |
fo(sn)  fa(sw) fre-1(sn) ™
When A has rank K, then
co
8" o= [ATATARQ

CK_1
is the coeff-vector giving this closest fnc g().

13: Appl: 1-variable polynomaials. The setup
in (9') is a special case of (12), by setting

S:=F and f; = [z 27|, O
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14: Appl: Closest plane. Suppose now you want
to find the plane

(z,y) = a+br+cy

least-square closest to {Q;}Y, where s; = (z;,v;),
a point in FxF. So apply (12) and (8”), where

S := FxF and functions fy, f1, fo send
s = (z,y) to, respectively: 1, xz, y.

Then H — [A*A]TA%Q. O

c
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