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The Problem
Suppose we have a collection K of N points
Q1, . . . , Qj, . . . , QN in the plane R×R. Consider
now the line L with equation y = βx+ α. It
has slope β and y-intercept α. At a given point
Q = (((x, y))), the vertical (signed) distance to L is

v := [α + βx] − y .1:

Letting vj denote the vertical distance at Qj, de-
fine the least-square distance from K to L by

g(α, β) :=
∑N

j=1
[vj]

2 .1′:

Our goal is to find all pairs (((α, β))) which mini-
mize g. It will turn out there is a unique min-
imum, except in the silly case that all the given
points lie on one vertical line. That is, writing Qj

as (((xj, yj))), except when x1 = · · · = xN .
The quantities that we will need are

X :=
∑N
j=1 xj , Y :=

∑N
j=1 yj ,

S :=
∑N
j=1 xj

2 , P :=
∑N
j=1 yjxj .

(“S” is for Squares and “P ” is for Product.)

Using Calculus

Evidently in computing the first-partials of g we
will want to compute them for each vj. From (1)
we compute that

dv
dα

= 1 , so d
dα
(v2) = 2v · 1 and

dv
dβ

= x , so d
dβ
(v2) = 2v · x ,

by the Chain Rule. Consequently

dg

dα
=
∑N

j=1
2vj and

dg

dβ
=
∑N

j=1
2vjxj .

Thus, the pair (((α, β))) is a critical point of g IFF
at (((α, β))) we have that

0 =
∑N

j=1
vj and 0 =

∑N

j=1
vjxj .2:

Recall that vj is α+ xjβ − yj. So multiplying out
and distributing the summations in (2) yields that

0 = Nα +Xβ − Y , 0 = Xα+ Sβ − P .2′:

We can rewrite this to say that (((α, β))) is a critical
point of g IFF

Y = Nα +Xβ ,

P = Xα+ Sβ .
3:

Matrices. Let M denote the matrix [N X
X S ] and

let
D := Det(M)

note
=== NS −X2 .

It follows from a standard♥1♥2 inequality that:
All the points x1, . . . , xN are equal IFF D = 0.
We henceforth assume that our scatterplot has at
least two distinct x-values.

Bare-hands computation [or matrix algebra] shows
that (3) has a unique solution, which is

α = 1
D

[
S Y − XP

]
,

β = 1
D

[
XY + NP

]
.

4:

I.e,
[
α

β

]
= 1

D

[
S X
X N

]
·
[
Y
P

]
.

♥1Jensen’s Inequality implies that D is positive. For that
assertion is equivalent to “D

/
[N2] > 0”, i.e, to

1
N

∑N

j=1
[xj ]

2 >
[

1
N

∑N

j=1
xj

]2
.

This has form 1
N

∑N
1 f(xj) > f

(
1
N

∑N
1 xj

)
, where f is

the squaring-map. Since f is strictly convex-up, Jensen’s
yields “≥”, with equality IFF x1 = . . . = xN .

♥2We can use the Cauchy-Schwarz inequality [CS] with
inner-product

〈
(((p1, . . . , pN))),(((q1, . . . , qN)))

〉
:=
∑N

1 pj · qj .
For let 1 := (((1, N. . . , 1))) and w := (((x1, . . . , xN))). CS gives∣∣〈1,w〉∣∣2 ≤ 〈1,1〉 · 〈w,w〉 ,

i.e, X2 ≤ N ·S. There is equality IFF w is a multiple
of 1, i.e IFF all the xj equal a common value.
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Neat!
(Exer. E1: Let Qj := (((j, j2))). For N = 2, 3, 4, 5, find the

best approximating line to scatterplotQ1, . . . , QN . How do
the slopes of the lines change as you increase N? Taking
two of the geometric points in the list, what happens to
the fitting-line if you repeat each of them several times to
make a new list?)

Using Linear Algebra

In matrix notation we can write (4) as[
α
β

]
= M 1 ·

[
Y
P

]
,4′:

suggesting that least-squares secretly contains lin-
ear algebra. We set the stage for a more general
problem, then apply it to least-squares.

With F either R or C, consider an N -dim’al
F–inner-product space

(((
H, 〈·, ·〉

)))
, a K-dim’al

subspace W⊂ H, and its ortho-complement

W⊥ :=
{
g ∈ H

∣∣∣ ∀w ∈W: g ⊥ w
}
.

The orthogonal projection operator is the map
Proj :H→W satisfying, for each Q ∈ H, that

Q− Proj(Q) ∈ W⊥ .

Point P := Proj(Q) is the (unique) closest-point
on W to Q; it minimizes 〈w −Q, w −Q〉 as w
ranges over W.

Subspaces. One way to get a subspace is as the
range of a linear map A:FK→H; so let

W := Range(A)
note
=== {AU | U ∈ FK} .5:

Consider a point P ∈W. Then

There is a unique U0 ∈ FK with AU0 = P

IFF U 7→ AU is 1-to-1, i.e, Rank(A) = K.
6:

We want to state this rank-condition in terms
of an adjoint operator, so equip FK with the
[conjugate] dot-product.♥3 Thus we have a well-
defined adjoint map A>:H→FK , defined by

♥3Actually, any inner-product on FK works in (8), but
note that changing the IP will change what “A>” means.

∀g ∈ H and ∀U ∈ FK : 〈A>g, U〉 = 〈g, AU〉 .7:

(Exer. E2: Show that [A>]> = A.) Hence
we have linear maps A>A:FK→FK and
AA>:H→H. A standard result (Exer. E3) is
that Ker(A>A) = Ker(A). A corollary of this is
that Rank(A>A) = Rank(A), since our VSes are
finite dimensional. [We used the Rank+Nullity thm.]

Thus, we can restate the above as

There is a unique U0 ∈ FK with AU0 = P

IFF U 7→ AU is 1-to-1, i.e, Rank(A) = K.
IFF A>A is invertible.

6′:

The Problem. Fix a rank-K linear-map
A:FK→H and a point Q ∈ H. We seek a formula
for the unique point U0 ∈ FK so that ‖AU0−Q‖ is
the minimum of ‖AU−Q‖ taken over all U ∈ FK .

The difference-vector AU0 −Q is orthogonal to
every vector in (5). I.e, for each U ∈ FK , inner
product

〈
AU0 −Q, AU

〉
is zero. By (7), then,〈

A>AU0 − A>Q, U
〉

= 0 .

But the only vector orthogonal to all U ∈ FK is
~0 ∈ FK . Thus U0 satisfies A>AU0 = A>Q. Hence

U0 = [A>A] 1A>Q ,8:

courtesy (6′).

Least squares. We can apply this to our line-
fitting of (1). After all, RhS(1′) is the square of the
dot-product norm on H := FN . We are minimiz-
ing the square-norm of column vector

[
v1, . . . , vN

]t.
Our unknown vector is U =

[
α
β

]
; so K = 2. With

A :=


1 x1
1 x2
...

...
1 xN

 and Q :=


y1
y2
...
yN

 ,9:

we are minimizing the norm of AU− Q over all U.
Applying (8), the minimum occurs at[

α
β

]
= [A>A] 1A>Q8′:

Of course, RhS(8′) must equal RhS(4′). Indeed
we find that A>A = M and A>Q =

[
Y
P

]
.
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Finally, note that Rank(A) equals K, i.e,
equals 2, exactly when not all x1, . . . , xN are
equal. This was precisely the “non-silly” condi-
tion we needed for the Calculus approach.

Fitting to a polynomial. To our N many
data-points Qj = (((xj, yj))) in the F×F plane, we
wish to least-squares fit the closest K-topped (i.e,
Deg < K) polynomial

α0 + α1x + α2x
2 + . . . + αK−1x

K−1 .10:

Copying what we did in (9), define our “unknown”
col-vector U :=

[
α0 α1 · · · αK−1

]t, as well as
AK :=


1 x1 x21 . . . xK−1

1

1 x2 x22 . . . xK−1
2

...

1 xN x2N . . . xK−1
N

 , Q :=


y1

y2
...
yN

 .9′:

When Rank(AK) equals K, then (8) applies,
telling us that the closest-fit polynomial (10) has
coefficients U = [A>

KAK ]
1A>

KQ.

Vandermonde matrices. The N×K ma-
trix AK of (9′) is called a Vandermonde ma-
trix.♥4 When N and K equal a common value,
L, then –it turns out–

Det(AL) =
∏

j,i∈ [1 .. L]
with j>i

[xj − xi] .11:

Returning to the general N×K case, let L de-
note the number of distinct values in {x1, . . . , xN},
and suppose that

�� ��K ≥ L . Remove the duplicate
rows, then only keep the first L many columns.
We have thus produced an L×L Vandermonde ma-
trix inside our original N×K matrix, and (11) im-
plies that this L×L has non-zero determinant. We
have thus proven:

Fix an arbitrary field F, points x1, . . . , xN ∈ F,
and let L be the number of distinct points in this
list. Then, for each K ≥ L, the Vandermonde
matrix AK(x1, x2, . . . , xN ) has rank equaling L,
the cardinality of set {x1, x2, . . . , xN}.

11′:

♥4The Vandermonde-matrix Wikipedia article is nice.

So we get a unique K-topped polynomial
least-squares–closest to our N many data-points
exactly when there are at leastK distinct x-values
among the points.

Lagrange polynomials. Suppose points
x1, . . . , xN are distinct. If K equals N , then
Lagrange Interpolation tells us there is a
unique K-topped polynomial whose graph
passes through each of Q1, . . . , Qj, . . . QN ; the
least-squares distance is zero.

When K>N , then there is a family of K-
topped polynomials (a [K−N ]-dim’al family) which
pass through the data-points; so no uniqueness in
the least-squares fit.

Fitting to a family of functions. Fix an
arbitrary set S, functions f0, f1, . . . , fK−1:S→F,
and let G be the set of linear combinations∑K−1
j=0 cj·fj().
A scatterplot is a multiset {Qj}Nj=1 of points

Qj = (((sj, τj))) ∈ S× F .

Points {sj}Nj=1 ⊂ S are the sample points, and
{τj}Nj=1 are the target values. [Previously we used
“xj” for a sample point, and “yj” for a target value.]

We can use the preceding technique to find a
function g ∈ G which minimizes the least-square
distance to scatterplot {Qj}Nj=1 Namely, define
this N×K matrix and column-vector

A:=


f0(s1) f1(s1) . . . fK−1(s1)
f0(s2) f1(s2) . . . fK−1(s2)
...

...

f0(sN ) f1(sN ) . . . fK−1(sN )

,Q:=

τ1
τ2
...
τN

 .12:

When A has rank K, then
c0
c1
...

cK−1

 := [A>A] 1A>Q8′′:

is the coeff-vector giving this closest fnc g().

13: Appl: 1-variable polynomials. The setup
in (9′) is a special case of (12), by setting

S := F and fj := [x 7→ xj]. �
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14: Appl: Closest plane. Suppose now you want
to find the plane

(((x, y))) 7→ a+ bx+ cy

least-square closest to {Qj}N1 , where sj = (((xj, yj))),
a point in F×F. So apply (12) and (8′′), where

S := F×F and functions f0, f1, f2 send
s := (((x, y))) to, respectively: 1, x, y.

Then
[
a
b
c

]
= [A>A] 1A>Q. �
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