

Table of Laplace transforms

Jonathan L.F. King

squash@ufl.edu

19 April, 2021 (at 14:39)

General Lap xforms. For complex numbers α and β , let $\alpha \succ \beta$ mean $\operatorname{Re}(\alpha) > \operatorname{Re}(\beta)$.

With μ an arbitrary real number and $f, g \in \operatorname{Ord}(\mu)$,¹ each formula in the table below holds for all complex $s \succ \mu$, unless a trailing note says otherwise.

Natural numbers:

N, j, k .

Real numbers:

F . Positive reals: 7, 9.

Complex Numbers:

R, Q, B_j .

is the xform of $[B_0 f + B_1 f' + B_2 f'' + \cdots + B_N f^{(N)}]$.

Line (5) arranges for periodic input fncs with

$$\mathcal{L}_7(f)(s) := \int_0^7 e^{-st} f(t) dt.$$

Formula (5) holds $\forall s \succ 0$.

Line (3) is valid for all $s \succ R + \mu$.

Formula (Mul) is valid for all $s \succ 9\mu$.

Specific Lap xforms. Many of the below come from the “General” table, with $f := 1$.

h or $h(t)$	\hat{h} or $\hat{h}(s)$
C : $f \circledast g$	$\hat{f} \cdot \hat{g}$
Mul : $f(9t)$	$\frac{1}{9} \cdot \hat{f}(s/9)$
1 : f'	$s \cdot \hat{f}(s) - f(0)$
1_N : $f^{(N)}$	$s^N \hat{f}(s) - \left[\sum_{j+k=N-1} s^j \cdot f^{(k)}(0) \right]$
1_{Ply} : $[q(\mathbf{D})](f)$	$q \cdot \hat{f}$
1_{-1} : $\int_0^t f(x) dx \stackrel{\text{note}}{=} [1 \circledast f](t)$	$\hat{f}(s)/s$
2 : $f(t) \cdot t$	$-[\hat{f}]'$
2_N : $f(t) \cdot t^N$	$[-1]^N \hat{f}^{(N)}$
2_{-1} : $f(t)/t$	$\int_s^\infty \hat{f}$
3 : $f(t) \cdot e^{Rt}$	$\hat{f}(s - R)$
4 : $f(t-7) \cdot \mathbf{H}(t-7)$	$e^{-7s} \cdot \hat{f}(s)$
$f(t) \cdot \mathbf{H}(t-7)$	$e^{-7s} \cdot \widehat{f(t+7)}(s)$
5 : f has period 7	$\mathcal{L}_7(f)(s) / [1 - e^{-7s}]$

Formula (12) requires $R \succ -1$, as does this defn:

$$\Gamma(R+1) := \int_0^\infty t^R e^{-t} dt.$$

The (12) formulas hold for all $s \succ 0$.

Formulas (13,14) are valid for all $s \succ R$.

Filename: <Problems/Analysis/Calculus/lapxform.table.latex>
As of: Wednesday 15Mar2006. Typeset: 19Apr2021 at 14:39.

The “D” in formula (1_{Ply}) is the differentiation operator. The “q” is a general degree- N polynomial

$$q(s) = B_0 + B_1 s + B_2 s^2 + \cdots + B_N s^N.$$

This** needs that derivative $f^{(k)}(0)$ is zero, for each $k \in [0 .. N]$. In that case, (1_{Ply}) is says that function

$$s \mapsto q(s) \cdot \hat{f}(s)$$

¹See “exponential order” in the `laplace.xform.latex` file.