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Abstract: This first gives a defn of exponential order
which is better adapted to convolution. Following, is
a discussion of the “tapping on a bell” problem; one
text called this “soldiers marching on a bridge”. Both
interpretations need a grain-of-salt. . .

Prelims. On a (possibly infinite) interval J ⊂ R, a func-
tion f :J→C is locally-integrable if, for each bounded
subinterval [a, b] ⊂ J , integral

∫ b

a
f exists and is finite. A

sufficient (but not necessary) condition is that on each [a, b],
our f is bounded with only finitely-many discontinuities.

For a fnc f : [0,∞)→C and complex number s we define
the “Laplace transform of f ” , evaluated at s,

f̂(s) =
[
L
(
f
)]
(s) :=

∫ ∞
0

e st·f(t)·dt ,1:

for those values of s where this integral exists.
For complex numbers α and β, let α � β mean

Re(α) > Re(β). For a real µ, say that “f has exponen-
tial order µ” , written

�� ��f ∈ Ord(µ) , if f : [0,∞)→C and
f is locally-integrable and

∀Q > µ: lim
t→∞

|f(t)|/eQ·t = 0 .†:

One can replace (†) by the seemingly weaker
∀Q > µ: limsup

t→∞
|f(t)|/eQ·t < ∞ ,‡:

but they are [exercise] equivalent.

2: Lemma. Consider an f ∈ Ord(µ). Then f̂(s)
exists for each s with Re(s) > µ. Indeed the
integrand in (1) is absolutely integrable. ♦

Proof.Fix s with x := Re(s) > µ, then pickQ with
x > Q > µ. Our t is real, so |e st| = e xt. Hence
the integrand in (1) is eventually bounded,∣∣∣e st·f(t)

∣∣∣ < e xt · eQt note
=== e [x−Q]t ,

once t is large enough. Since x−Q is positive, this
last is integrable over t ∈ [0,∞). �

We need the following standard tool, to prove
a uniqueness result.

3a: Identically-zero lemma. On a closed bounded
interval J := [b, c] ⊂ R, consider continuous func-
tions h,G:J→C.

i: Suppose h > 0. If
∫
J h = 0, then h ≡ 0, i.e, h

is identically-zero. [Exer: ]

ii: If G is real-valued and
∫
J [G ·G] = 0, then

G ≡ 0. [Exer: Set h := G·G, etc.]

iii: Suppose

∀n ∈ N:
∫
J
xn·G(x) dx = 0 .3b:

Then G is identically-zero on J . ♦

Proof of (iii). Splitting G into real and imaginary
parts, WLOG G is real-valued. Stmt (3b) implies,
for each polynomial p, that

∫
J [p ·G] is zero.

By the Weierstrass Approximation Thm, there is
a sequence of (real) polynomials, so that pk

k→∞−→ G
uniformly. Consequently,∫

J
[G·G] Exer.==== lim

k→∞

∫
J
[pk ·G] = lim

k→∞
0 = 0 . �

3c: Uniqueness Thm. Consider fncs g,γ ∈ Ord(µ).
Suppose their Laplace transforms, ĝ and γ̂, agree
on some real interval I := [s0,∞). If g and γ are
continuous, then g = γ. ♦

[Proof is in notes, commented out.]
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Convolution. Recall that the (one-sided) con-
volution of two (locally-integrable) functions
f, g:[0,∞)→C, is the function

[f ~ g](t) :=
∫ t

0
f(t− v) · g(v) dv .4a:

4b: Lemma. Suppose f, g ∈ Ord(µ). Then the
convolution f ~ g ∈ Ord(µ). ♦

[Proof is in notes, commented out.]

4c: Lap-of-Convolve.
[
L(f ~ g)

]
(s) = f̂(s) · ĝ(s).♦

Proof. Define 1(true) := 1 and 1(false) := 0. We
can now write RhS(4a) as∫ ∞

0
1(v 6 t) · f(t− v)·g(v) dv .

Hence
[
L(f ~ g)

]
(s) equals∫ ∞

0
e st

∫ ∞
0

1(v 6 t) · f(t− v)·g(v) dv dt .

Under mild conditions♥1 on f and g, we can re-
verse the integrals, giving that [̂f~g](s) equals∫ ∞

0
g(v)

∫ ∞
0

1(v 6 t) · e st·f(t− v) dt dv .

The inner integral can be written as∫
v
∞e st·f(t− v) dt .U:

CoV x = t−v traverses v−v↗ t−v↗∞−v=∞,
and dx=dt. So (U) equals∫ ∞

0
e s[x+v]·f(x) dx = e sv

∫ ∞
0
e sx·f(x) dx

= e sv · f̂ (s) .

Thus
[
L(f ~ g)

]
(s) equals∫ ∞

0
g(v) · e sv·f̂ (s) dv note

=== f̂ (s) · ĝ (s) . �

♥1See Fubini–Tonelli theorem.
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5a: Deriv-of-Lap. Fix a natnum N . Taking the
N th derivative,[

d

ds

]N
f̂(s) = L

(
[ t]N ·f(t)

)
(s)

note
=== [ 1]N · L

(
tN ·f(t)

)
(s) . ♦

5b: Integral-of-Lap. For real s with s > µ,∫ ∞
s

f̂(u) du = L

(
f(t)

t

)
(s) . ♦

5c: Lap-of-Deriv. Suppose f differentiable. Then

f̂ ′ (s) =
[
s·f̂(s)

]
− f(0) .

For N ∈ N, suppose that an N -times differen-
tiable f , has f,f ′, . . . ,f (N−1) ∈ Ord(µ). Then

f̂ (N) (s) =
[
sN · f̂(s)

]
−

∑
j+k=N−1
j,k∈N

sj·
[
f (k)(0)

]
,

where the sum is over all ordered-pairs (((j, k))) of
natnums. ♦

Pf of (5a), Deriv-of-Lap. With appropriate con-
ditions on f , we can differentiate under the inte-
gral sign in (1), applying d

ds
, to get the N=1 case

of (5a). Now induct on N . �

Pf of (5b), Integral-of-Lap. For t positive, note∫ ∞
s
e ut du = 1

t
· e ut

∣∣∣u=s
u=∞

= 1
t
·[e st − e ∞] = 1

t
· e st .

∗:

Applying the definition,
∫∞
s f̂(u) du equals∫ ∞

s

[∫ ∞
0
e ut·f(t)· dt

]
du =

∫ ∞
0
f(t)

∫ ∞
s
e ut du dt

by (∗)
====

∫ ∞
0
f(t) · 1

t
·e st dt .

This latter is the defn of L
(
f(t)
t

)
(s). �

Pf of (5c), Lap-of-Deriv. Our f̂ ′ (s) is the limit,
as M↗∞, of ∫ M

0
e st︸︷︷︸
u

· f ′(t) dt︸ ︷︷ ︸
dv

.

Integrating by parts, this equals

e st︸︷︷︸
u

· f(t)︸︷︷︸
v

∣∣∣t=M
t=0

−
∫ M

0
f(t)︸︷︷︸
v

· [ s]e st dt︸ ︷︷ ︸
du

=
[
s ·
∫ M

0
f(t)·e st dt

]
− f(t)

est

∣∣∣∣t=0

t=M
.

∗:

This last term equals f(0)
1
− f(M)

esM
= f(0)− f(M)

esM
.

If Re(s) > µ, then f(M)
esM
→ 0. as M↗∞. Send-

ing M↗∞ thus sends (∗) to
[
s·f̂(s)

]
− f(0), as

desired.
Finally, the formula for f̂ (N) follows by induc-

tion on N . �

6: Lap-of-Exp-prod. Fix B ∈ C. Then

L
(
eBt · f(t)

)
(s) = f̂(s−B) ,

whenever s � B + µ. ♦

Proof. By defn, L
(
eBt · f(t)

)
(s) equals

∫ ∞
0

e steBtf(t) dt =
∫ ∞
0

e [s−B]tf(t) dt .

This last integral converges once Re(s−B) > µ,
i.e, once s � B + µ. �
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Examples

Below, B ∈ C and F ∈ R. Easily [L(1)](s) equals
1/s. From Deriv-of-Lap, then, [ 1]N · L

(
tN
)
(s)

equals [ d
ds
]N
(
1̂(s)

)
= [ d

ds
]N
(
1
s

)
. Thus

L
(
tN
)
(s) =

N !

sN+1
.7a:

From Lap-of-Exp-prod, note,

[L(eBt)](s) =
1

s−B
.∗:

Recall cos(Ft) = 1
2
[eiFt + e iFt]. So (∗) gives

2 · L
(
cos(Ft)

)
(s) = 1

s− iF + 1
s+ iF =

2s

s2 + F 2
.

Dividing both sides by 2,

L
(
cos(Ft)

)
(s) =

s

s2 + F 2
, and similarly

L
(
sinFt

)
(s) =

F

s2 + F 2
.

7b:

On [0,∞), sin() is bounded, so has a Lap-xform
there. By (7b), ŝin(z) = 1

z2+1

recall
==== atan′(z). So∫ ∞

0
ŝin (z) dz = lim

U↗∞

∫ U

0
ŝin (z) dz

=
[
lim
U↗∞

atan(U)
]
− atan(0)

=
π

2
− 0 =

π

2
.

Skipping the effort it takes to justify applying (5b)
at s=0, we get that∫ ∞

0
e 0·t︸︷︷︸
=1

sin(t)

t
dt = L

(
sin(t)

t

)
(0)

by (5b)
=====

∫ ∞
0

ŝin .

This, together with the previous line, gives

∫ ∞
0

sin(t)

t
dt =

π

2
,7c:

in an appropriate sense. [The appropriate sense is
interpreting LhS(7c) as lim

U↗∞

∫ U

0
sin(t)

t dt.]
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Preliminaries

The Heaviside fnc H:R→{0, 1} is 0 on ( ∞, 0)
and is 1 on [0, ∞). Thus♥2

∞∑
K=1

H(x−K) = bxc , for each x>0.

Let δ denote the Dirac delta “function” .♥3
Write δ5 for its translate x 7→ δ(x− 5). So for P
a posreal, and f continuous at P:∫ ∞

0
f · δP = f(P) .

In particular, for each f which is continuous:

[f ~ δ5](t) =

0 , if t ∈ [0, 5)

f(t− 5) , if t ∈ [5,∞)

 .

I.e. f ~ δ5 = T5

(
H · f

)
.

8a:

Periodicity. A posreal number P is a “period
of fnc f ” if

∀x : f(x+ P) = f(x) .

Typically, there is a smallest such period, which
is called the “ least-period of f ” .

For a posreal P, let f〈P〉 := f ·1[0,P) abbreviate
what I will call “f clipped at P” . That is, we
restrict f to interval [0,P). Thus

f̂〈P〉(s) =
∫ P

0
e stf(t) dt .

8b: Periodicity Theorem. Suppose f,g ∈ Ord(µ)
and P is a posreal. Then

1: L
(
H(t− P) ·f(t− P)

)
(s) = e sP · f̂(s).

2: L
(
H(t− P)g(t)

)
(s) = e sP · L

(
g(t+ P)

)
(s).

♥2For a real x, the expression bxc is called the floor of x;
it is the largest integer less-equal x. So bπc is 3.
Use DE to mean ‘differential eqn’.
♥3It is actually a Schwartzian distribution, named after

Laurant Schwartz. As distributions, H′ = δ.

3: Suppose now that P is a period of f . Then

f̂(s) = f̂〈P〉(s)
/
[1− e sP] . ♦

Proof of (8b.1).The LhS equals
∫∞
P e stf(t− P) dt.

CoV x = t− P gives dx = dt, and thus

LhS(8b.1) =
∫ ∞
0
e s [x+P]f(x) dx

note
=== RhS(8b.1) .�

Pf (8b.3). Because our “clipped” f〈P〉(t) equals
[H(t)−H(t− P)] · f(t), it follows that

L(f〈P〉) = L(H·f)− L
(
H(t− P) · f(t)

)
P an f -period
==========L(H·f)− L

(
H(t− P)·f(t− P)

)
.

∗:

Our (8b.1) says that L
(
H(t− P)·f(t− P)

)
(s)

equals e sP · f̂(s). And, always, L(H·f) = L(f),
since the Laplace integral is over [0,∞). So we
can re-write (∗) as f̂〈P〉(s) = [1− e sP] · f̂(s). �
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Using periodicity. Function sin() is periodic,
with period 2π. So for each posint K:

[
sin~ δ2πK

]
(t) =

0 , if t ∈ [0, 2πK)

sin(t) , if t ∈ [2πK,∞)

 .

For N ∈ {1, 2, 3, . . . } ∪ {∞}, define the sum

RN :=
∑N

K=1
δ2πK .

For N finite, then,[
sin~RN

]
(t) =

⌊ t

2π

⌋
· sin(t)

holds when 0 6 t < 2π[N+1]. There are no con-
vergence problems as N↗∞. So ∀t ∈ [0 ..∞):

[
sin~R∞

]
(t) =

⌊
t

2π

⌋
· sin(t) .8c:

Moreover, for each finite N :[
sin~RN

]
(t) = Min

(
N , b t

2π
c
)
· sin(t).8cN :

Hammering an undamped spring
(One of the textbooks called this Soldiers marching in ca-
dence, but the interpretation is less clear, since soldiers
already on the bridge are still marching.

There is some historical evidence: Broughton Sus-
pension Bridge, 1831 and Millennium Bridge, 2000 [TY,
Molly Militello]. YouTube Synchronization discusses self-
developing synchrony, using the Millennium bridge as one
example [TY, Alexander Bush].)

With y the unknown-fnc, let us examine DE

y′′ + y =
∞∑
K=1

δ2πK .D:

Given two complex numbers α, β, let (Dα,β)
mean the DE together with initial conditions
y(0) = α and y′(0) = β.

Consider the corresponding ZeroTar♥4 IVP

z′′ + z = 0 , with z(0) = α and z′(0) = β .

♥4Some textbooks call this (yuck!) “homogeneous”.

Its solution is

z = [α · cos] + [β · sin] .8d:

So the soln, y, to (D0,0) will, when added to z,
give the solution to (Dα,β).

Courtesy (5c) [Lap-of-Deriv lemma]

L
(
y′′ + y

)
(s) =

[
s2 ·ŷ(s) −

=0︷ ︸︸ ︷
[s · y(0) + y′(0)]

]
+ ŷ(s)

= [s2 + 1] ·ŷ(s) .

Now (D) says that L
(
y′′ + y

)
= L(R∞). Divid-

ing,
ŷ(s) = 1

s2+1
· R̂∞(s) .

The RhS is a product, so its inv-lap-xform is a
convolution.

y = sin~R∞ .

In other words, the function

yα,β(t) := αcos(t) + βsin(t) +
⌊
t

2π

⌋
· sin(t)8e:

is the general solution to IVP (Dα,β).
At this point, it would be good to have a care-

ful sketch of yα,β(). One could also analyze, at
each time t, the potential and kinetic energy in
the spring. If the spring is damped, is there a net
absorption, or loss, of energy?

Suppose the tapping on the spring was not
aligned with the resonant frequency of the spring
—would the spring nonetheless absorb energy?

Random hammering. Times 0<G1<G2< . . .
define

RG :=
∑∞

K=1
δGK

.

The above reasoning applied to DE
�� ��y′′ + y = RG

yields y = sin~RG, as before. Computing the
convolution gives

y(t) =
∞∑
K=1

H(t−GK) · sin(t−GK) .8f:

Adding [α cos(t) + β sin(t)] hands us the gen-
eral solution yα,β.

Filename: Problems/Analysis/Calculus/laplace.xform.latex

https://en.wikipedia.org/wiki/Broughton_Suspension_Bridge
https://en.wikipedia.org/wiki/Broughton_Suspension_Bridge
https://en.wikipedia.org/wiki/Millennium_Bridge,_London
https://youtu.be/t-_VPRCtiUg


Prof. JLF King Square Wave Page 7 of 8

Square Wave

For a period P>0 and a dUty cycle U ∈ [0, 1],
define the square-wave fnc SWP,U() to be the
P-periodic fnc mapping R→R, which agrees with
1[0, UP) on interval [0,P); the pulse width is UP.

So SWP,0 ≡ 0 and SWP,1 ≡ 1. Thus we expect

ŜWP,0 ≡ 0 and ŜWP,1(s) = 1/s .∗:

Setting f := SWP,U , our Periodicity Thm says
that f̂〈P〉(s) equals∫ P

0
e st · 1[0, UP)(t) dt

since U 6 1
========

∫ UP

0
e st dt

=
1

s
· [1 − e s·UP] .

Consequently,

ŜWP,U (s) =
1

s
·MP,U(s) ,†1:

where this multiplier fnc MP,U is

MP,U(s) =
1 − e UP·s

1 − e P·s
note
===

eP·s − eFP·s

eP·s − 1
;†2:

here, F := 1− U represents the “ofF” part of the
cycle. Happily, (†1, †2) is consistent with (∗).

Square-Wave into Spring. Laplace trans-
forming

�� ��y′′ + y = SWP,U yields

[s2 + 1] ·ŷ(s) = ŜWP,U (s) .U:

Using initial conditions y′(0) = 0 and y(0) = 0,
the earlier derivation gives

y = sin~ SWP,U .9:

Alternatively, write (U) as

[s2 + 1] ·ŷ(s) = 1
s
·MP,U(s) . So

ŷ(s) =
1

s2 + 1
· 1
s
·MP,U(s) . Thus

y = sin~1 ~ L 1(MP,U)9′:
= [1− cos]~ L 1(MP,U) .
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[For pictures]
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