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ABSTRACT: This first gives a defn of exponential order
which is better adapted to convolution. Following, is
a discussion of the “tapping on a bell” problem; one
text called this “soldiers marching on a bridge”. Both
interpretations need a grain-of-salt. . .

Prelims. On a (possibly infinite) interval J C R, a func-
tion [:J—C is locally-integrable if, for each bounded
subinterval [a,b] C J, integral f( ? / exists and is finite. A
sufficient (but not necessary) condition is that on each [a, 1],
our f is bounded with only finitely-many discontinuities.

For a fnc f:[0,00)—C and complex number s we define
the “Laplace transform of f*°, evaluated at s,

o fe) = e = [ et

for those values of s where this integral exists.
For complex numbers o and [, let « = [ mean
Re(a) > Re(f). For a real u, say that “f has exponen-

tial order p”, written | f € Ord(p) |, if f:[0,00)—C and
f is locally-integrable and

o VQ>p lim [f()]/e9T = 0.

One can replace (1) by the seemingly weaker

f: VQ>p: limsup|f(t)]/e9!t < oo,
t—o0

but they are [exercise| equivalent.

2: Lemma. Consider an f € Ord(w). Then f(s)
exists for each s with Re(s) > p. Indeed the
integrand in ([1)) is absolutely integrable. O

Proof.Fix s with = := Re(s) > u, then pick Q) with
x> > p. Ourtis real, so |e*| =e™". Hence
the integrand in is eventually bounded,

et f(t)] < et et B gl

once t is large enough. Since x—() is positive, this
last is integrable over ¢ € [0, 00). ¢

We need the following standard tool, to prove
a uniqueness result.

3a: Identically-zero lemma.  On a closed bounded
interval J := [b,c] C R, consider continuous func-
tions h,G: J—C.

Webpage http://people.clas.ufl.edu/squash/

iz Suppose h = 0. If [;h =0, then h =0, i.e, h
is identically-zero. |Exer: |

ii: If G is real-valued and [;[G-G| = 0, then
G = 0. [Exer: Set h == G-G, etc.|

iii: Suppose
3b: Vn € N: /x”G(:p) de = 0.
J

Then G is identically-zero on J. O

Proof of (iii). Splitting G into real and imaginary
parts, WLOG G is real-valued. Stmt implies,
for each polynomial p, that [;[p-G] is zero.

By the Weierstrass Approximation Thm, there is

k—o0

a sequence of (real) polynomials, so that p, — G
uniformly. Consequently,

J le-ar e

[pr-G] = Lm0 = 0. ¢

lim
k—oo JJ k—o0

3c: Uniqueness Thm. Consider fucs g,y € Ord ().
Suppose their Laplace transforms, g and 7, agree
on some real interval I := [sy, 00). If g and v are
continuous, then g = . O

[Proof is in notes, commented out.]
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Convolution. Recall that the (one-sided) com-
volution of two (locally-integrable) functions
f,9:[0,00)—C, is the function

4a: [f ®g](t /ft—v (v)dv

4b: Lemma. Suppose f,g € Ord(u). Then the
convolution f ® g € Ord(p). O

[Pr()()f is in notes, commented out.]

o~

4c: Lap-of-Convolve. [L(f@g)}(s) = f(s)-q(s).0

Proof. Define 1(true) := 1 and 1(false) := 0. We
can now write RhS([4d)) as

| 1w <) £t = v)g()dv.
Hence [L(f ® g)} (s) equals

/0 7“/ f(t —v)g(v)dvdt.

Under mild Condition@ on f and g, we can re-
verse the integrals, giving that [f®g¢](s) equals

/ g(v) / ‘1(71 <t) e f(t—v)didv.
Jo Jo
The inner integral can be written as
¥: et f(t —w)dt.
JU

CoV x = t—v traverses v—uv ‘'t—v ' oco—v =00,
and dz=dt. So (¥) equals

‘/Ox Sl f () dr = S”/Oocésx-f(x)dx

Thus {L(f ® g)} (s) equals

| o) e i s an 2 Fis) g (s). ¢

“1See Fubini—Tonelli theorem.
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ba: Deriv-of-Lap.  Fix a natnum N. Taking the

N derivative,

e = e(Erm)e)
e YL (V1) (s). 0

5b: Integral-of-Lap. For real s with s > p,
< t
| Fwya L(ﬂ))(s). 0

t
5c: Lap-of-Deriv.  Suppose f differentiable. Then
fiis) = [s:f(s)] = £(0).

For N € N, suppose that an N-times differen-
tiable f, has f,f',...,.f" =Y € Ord(u). Then

s = [N Re)] - X ),
T ren

where the sum is over all ordered-pairs (j,k) of
natnums. O

Pf of , Deriv-of-Lap.  With appropriate con-
ditions on f, we can differentiate under the inte-
gral sign in , applying %, to get the N=1 case
of . Now induct on N. ¢

Pf of , Integral-of-Lap. For t positive, note

OOit
/ edu =
ke S

. emt )u:s
U=00
-st

= =

—st *oo]

.[e —e :%.e

Applying the definition, [;°f

[lferseraa

) du equals

f(u
/ / Ut du dt
/ .

.1 *st

o+

This latter is the defn of £(”)(s). ¢

t
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Pf of (5d), Lap-of-Deriv.
as M oo, of

Our f7 (s) is the limit,

M
/ e f(t)dt.
ol S

Integrating by parts, this equals

ol - [l s
* |
Ry,

This last term equals @ — feu\\][) = f(0) — fe(]\\?
If Re(s) > p, f(M) — 0. as M oo. Send-
ing M oo thus sends (*) to {sf( )} — f(0), as
desired. o

Finally, the formula for () follows by induc-
tion on V. ¢

6: Lap-of-Exp-prod. Fix B € C. Then

L(eP f(1))(s) =

whenever s > B + p. O
Proof. By defn, L(eBt

/ Testelt (1) dt = / T el Bl dt
0 0

This last integral converges once Re(s — B) > p,
i.e, once s = B+ u. ¢
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Examples

Below, B € C and F € R. Easily [£(1)](s) equals
1/s.  From Deriv-of-Lap, then, [-1]V - L(tN>(s)
equals [Q]N@(s)) = P(%) Thus

ds ds

N!
g N _
Ta: L(t)(s) = -
From Lap-of-Exp-prod, note,
1
: L (eP = .
: L)) = —

Recall cos(F't) = L[elf" + €M), So (x) gives

2

2 £(cos(FO)(s) = i+ r = oo
Dividing both sides by 2,
L (COS(Ft)) (s) = % ,  and similarly
2+ F
7b: ' r
L(smFt)(s) = ar

On [0, 00), sin() is bounded, so has a Lap-xform
there. By (7H)), sin(z) = 2 reeall atan’(2). So

2241
SO | i U_— d
./0 sin (2)dz = dim | sin (z) dz
= [Ul% atan(U)} — atan(0)
s ™
% 2

Skipping the effort it takes to justify applying
at s=0, we get that

/Oooeo'tsm(t)dt :L<Smt(t)>(0) | s

S~~~ t
=il

This, together with the previous line, gives

Tc: /oo sin(?) dt = z )
0 t 2

in an appropriate sense. [The appropriate sense is
. . . U sin(t)
interpreting LhS(7d) as ng}; Jy 2 de]

Filename: Problems/Analysis/Calculus/laplace.xform.latex

Page 4 of@



Prof. JLF King

Preliminaries

The Heaviside fnc H:R—{0,1} is 0 on (-o0,0)
and is 1 on [0,+00). Thugd”}

Edp

for each x>0.

Let & denote the Dirac delta “function”[”]
Write d5 for its translate @ — d(x — 5). So for P
a posreal, and f continuous at P:

/0°°f.5p -

In particular, for each f which is continuous:

f(P).

8az:

B 0 ,ift6[0>5)
[f ®85](t) = {f(t—5) ,ift€[5,00)}.

Le. f@ég) = Tg(Hf)

Periodicity. A posreal number P is a “period
of fnc f” if
Ve: fx+P) = f(z).

Typically, there is a smallest such period, which
is called the “least-period of f”.

For a posreal P, let fipy := f-1j9p) abbreviate
what I will call “f clipped at P”. That is, we
restrict f to interval [0, P). Thus

Foy(s) = /0 " et p(t) dt.

8b: Periodicity Theorem.
and P is a posreal. Then

I L(H(t = P)-f(t = P))(s) =P f(s).

2: L(H(t - P)g(t))(s) =T - L(g(t +P))(s).

“2For a real z, the expression |z is called the floor of z;
it is the largest integer less-equal . So || is 3.

Use DE to mean ‘differential eqn’.

“31t is actually a Schwartzian distribution, named after
Laurant Schwartz. As distributions, H = 6.

Suppose f,g € Ord(p)

Preliminaries
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3: Suppose now that P is a period of f. Then

flo) = Tm(o /L= 0

Proof of (BB|[L). The LhS equals [° e f(t — P) dt.
CoV = =1t — P gives dz = dt, and thus

LhSEH) = / e Pl () dp 22 RuS(RE) .4
0

Pf (BHB). Because our “clipped” fipy(t) equals
H(t) — H(t — P)| - f(1), it follows that

L(fp)) = L(H-f) = L(H(t - P)- f(t))
S IR S(Hf) — L(H(t — P)-f(t — P)).

Our (BOJI) says that L(H(t —P)-f(t — P))(s)
equals e - f(s). And, always, L(H-f) = L(f),
since the Laplace integral is over [0,00). So we

1—e*P]. f(s).

can re-write () as f/<;>(5) = |
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Using periodicity. Function sin() is periodic,
with period 27. So for each posint K:

[Siﬂ@égﬂ-[{} (t) _ {0 Jif t € [O,Qﬂ'K) } ‘

sin(t) ,if t € 27K, 00)
For N € {1,2,3,... } U{oo}, define the sum

N
RN = ZK:I (527‘-[(.
For N finite, then,

{sin ®RN} (t) = {;;_J - sin(¢)

holds when 0 < ¢ < 27w[N+1]. There are no con-
vergence problems as N 7co. So Vit € [0.. 00):

8c: {sin ®Roo} (t) = {;J -sin(t) .

™

Moreover, for each finite N:

Bdy: [sin@RN} (t) = Min(N, Lij) -sin(t).

Hammering an undamped spring

(Ono of the textbooks called this Soldiers marching in ca-
dence, but the interpretation is less clear, since soldiers
already on the bridge are still marching.

There is some historical evidence: [Broughton Sus-
pension Bridge, 1831 and Millennium Bridge, 2000| [TY,
Molly Militello]. YouTube Synchronization|discusses self-
developing synchrony, using the Millennium bridge as one
example [TY, Alexander Rush].)

With y the unknown-fnc, let us examine DE
: Y'+y = D Ok
K=1

Given two complex numbers «, 3, let (D, p)
mean the DE together with initial conditions
y(0) = « and ¥/(0) = .

Consider the corresponding ZeroTai” ] TVP

2" +2z =0, withz(0)=a«a and 2'(0) =f3.

“4Some textbooks call this (yuck!) “homogeneous”.

Hammering an undamped spring
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Its solution is
8d: z = [a-cos]+ [ - sin].

So the soln, y, to (Do) will, when added to z,
give the solution to (D, z).
Courtesy [Lap-of-Deriv lemma]

L(y" +y)(s) = |59(s) — [s-9(0) + ' (0)] | +(s)
= [s* +1]-9(s).

Now (D) says that L(y” + y) = L(R..). Divid-
ing, R L e

y(s) = 241 Reo(s).
The RhS is a product, so its inv-lap-xform is a
convolution.

In other words, the function

8e: Yo p(t) == acos(t) + Bsin(t) + LZ;J - sin(¢)

is the general solution to IVP (D,.g).

At this point, it would be good to have a care-
ful sketch of y, (). One could also analyze, at
each time t, the potential and kinetic energy in
the spring. If the spring is damped, is there a net
absorption, or loss, of energy?

Suppose the tapping on the spring was not
aligned with the resonant frequency of the spring
—would the spring nonetheless absorb energy?

Random hammering. Times 0<Gi1<Gy< ...
define -
RG = ZK:I 5GK .

The above reasoning applied to DE |y” +y = Rg
yields y = sin ®R¢g, as before. Computing the
convolution gives

NE

8f: y(t) = H(t — Gk) - sin(t — Gk) .

=
Il

1

Adding |« cos(t) + [sin(t)| hands us the gen-
eral solution y, s.

Filename: Problems/Analysis/Calculus/laplace.xform.latex


https://en.wikipedia.org/wiki/Broughton_Suspension_Bridge
https://en.wikipedia.org/wiki/Broughton_Suspension_Bridge
https://en.wikipedia.org/wiki/Millennium_Bridge,_London
https://youtu.be/t-_VPRCtiUg

Prof. JLF King Square Wave

Square Wave

For a period P>0 and a dUty cycle U € [0, 1],
define the square-wave fnc S\Vp /() to be the
P-periodic fnc mapping R—R, which agrees with
1j0,upy on interval [0, P); the pulse width is UP.
S0 SWp o =0 and SWp; = 1. Thus we expect

*: S/A/;) = 0 and SV\//P\J(S) = 1/s.

Setting f = SWpy, our Periodicity Thm says
that fip)(s) equals

P . UP
/0 efSt . 1[0,UP) (t) dt since U < 1 /0 e*st dt

1
= 2.1 = -s-UP ]
Lojp— ey

Consequently,
—— 1
'i'l: SVVRU (S) = g . MP’U<S) 5
where this multiplier fnc Mp s is
I - e_UP.S note eP.S - eFP.S
T pu(s) 1 P oPs _ 1

here, /' == 1 — U represents the “ofF” part of the
cycle. Happily, (11,12) is consistent with (x).

Square-Wave into Spring. Laplace trans-
forming [y” +y= SNP,U] yields

¥ 2+ 1] -5(s) = SVops (s).

Using initial conditions ¢'(0) = 0 and y(0) = 0,
the earlier derivation gives

9. Yy = Sin@SVVp,U.
Alternatively, write (¥) as
[s* +1]-5(s) = - Mpy(s). So
1

yls) =
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SiIl @ 1 @ Lil(Mp’U)
[1—cos]® L (Mpy).
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[For pictures]
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