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Cubic-surface Problem
On R3, find all extreme points P = (((x, y, z))) of
function

ψ(P ) := x2 + y2 + z2 ,

subject to the two constraints that

x · y · z = 54 ; (a cubic surface)Cf :
x+ y + z = 12 . (a plane)Cg:

A picture. Note that the objective fnc and the
two constraints are symmetric under all permuta-
tions of x, y, z. Thus our set of Lagrange points
must have a six-fold (6 = 3!) symmetry.

A good picture suggests that the only Lagrange
pts have some two of x, y, z equal. In the case that
x = z, say, a picture suggests that there are 3 so-
lutions; two solns where the common value is pos-
itive and one soln with it negative. Thus the z=y,
y=x and x=z solutions would give us 9 Lagrange-
pts all together, but only 3 types of Lagrange-pt.

A solution

Define specifier functions

f(P ) := x·y·z and
g(P ) := x+ y + z ,

so that locus (Cf ) is some level-set of f , and lo-
cus (Cg) is some level-set of g.

The Lagrange eqns. Using variables α, β to be
the Lagrange multipliers for f and g, respectively,
the Lagrange eqns become:

ψx = αfx + βgx , i.e 2x = α · yz + β · 1 .Lx:
ψy = αfy + βgy , i.e 2y = α · zx+ β · 1 .Ly:
ψz = αfz + βgz , i.e 2z = α · xy + β · 1 .Lz:

We have 5 unknowns: The spatial variables x, y, z
and the Lagr.vars α, β. We have 5 eqns: The con-
straints eqns (Cf ), (Cg), and the Lagr.eqns (Lx),
(Ly), (Lz).

Solving this system of eqns. If possible, we
try to eliminate the Lagrange-vars first. We can
subtract (Ly) from (Lz) to obtain

2[z − y] = αxy − αzx
note
=== αx[y − z] .

(Lz)-(Ly):

We now use symmetry to solve the system.

Case
�� ��x = y = z . Equation (Cg) yields that x =

y = z = 4. So their product, x · y · z, is 64. This
contradicts (Cf ). Thus: No solutions, here.

Case
�� ��x, y, z are distinct . Then y − z 6= 0 so

we may divide equation (Ly) − (Lz) to conclude
that 2 = αx. But 2 is not zero, so α must be
non-zero and so x = 2

α
.

By symmetry [z − x 6= 0, etc], we may conclude
that y, too, equals 2

α
. Alas, this contradicts that

x 6= y. So: No solutions in this case.

Case
�� ��Exactly two of x, y, z are equal .

Use t for the value which occurs twice among
{x, y, z}, and use u for the value which oc-
curs uniquely. Eqn (Cg) tells us then that
t+ t+u = 12, i.e, u = 12− 2t. From (Cf ), then,
54 = t2u

note
=== t2[12− 2t]. Multiplying out, then,

0 = q(t) , where q(t) := t3 − 6t2 + 27.

Evidently q(3) is zero, so we divide t − 3 into
t3 − 6t2 + 27 to obtain this factorization:

q(t) = [t− 3][t2 − 3t+ 9] .
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The QF (Quadratic Formula) tells us that the
zeros of t2 − 3t+ 9 are 3

2
[1 ±

√
5 ]. And since

u = 12 − 2t, we obtain this table of Lagrange
pairs (((t,u))). In the table, the three values of t
decrease from left to right.

Soln 1 Soln 2 Soln 3

t 3
2
[1 +
√
5 ] 3 3

2
[1−
√
5 ]

u 3[3−
√
5 ] 6 3[3 +

√
5 ]

1
9
ψ(t, t,u) 17− 5

√
5 6 17 + 5

√
5

Size closest med. farthest

The Method in General
Suppose we have (or have derived) K constraints in
N -dim space; use Q = (((x1, . . . , xN))) for a general
point in N -space. We wish to find all constrained
extrema of a function ψ:RN→R.

Step I. Write down a formula for ψ, the objec-
tive function , and label the constraint equations
(C1),. . . ,(CK).

Step II. Write down definitions (:=) of specifier
functions f1, . . . , fK so that each (Cj) is a level-set
of the corresponding fj.

Introduce unknowns α1, . . . , αK to be the La-
grange multipliers of f1, . . . , fK .

Step III. For m = 1, 2, . . . , N , write down the
Lagrange equations

∂ψ

∂xm
=

K∑
j=1

[
αj · ∂fj∂xm

]
.Lm:

We now have a system of K+N eqns
(C1),. . . ,(CK), (L1),. . . ,(LN) in N+K unknowns
x1, . . . , xN , α1, . . . , αK .

Step IV. A soln to the above SoE (System
of Eqns) has form (((~x, ~α))), where ~x abbreviates
x1, . . . , xN and ~α abbreviates α1, . . . , αK .

Find all solutions to this system. Each tuple
P := (((x1, . . . , xN))) is a Lagrange point.

Step V. Evaluate ψ at each Lagrange pt and
find those which give largest and smallest values.

Will we examine the comet?
Our astronomy community has informed us that a
comet, in parabolic orbit about the Sun, is going
to arrive in about 2 years.
Unfinished.

Problems
LM1: Find all points P on the intersection of the
sphere x2+ y2+ z2 = 12 and plane 3x+2y = z which
extremize ψ, where ψ(Q) := y + z.

LM2: Consider light rays emitted from point Q1 :=
(((0, 1))), bounce once off the xy=1 hyperbola –let P
denote the point where it hits– and then arrive at the
origin Q2.

Carefully perform steps I, II, III en route to finding
all points P which minimize the length of the polygo-
nal path Q1PQ2. (Do not solve the system of eqns; just
set it up.)

LM3: Set up the above light-ray problem but in
3-space, with Q1 := ((( 79, 0, 0))) and Q2 := (((3, 23, 29))),
using an ellipsoidal mirror

x2

32
+
y2

52
+
z2

72
= 12 .

(Just set up the SoE; do not solve it.)
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