Jordan Decomposition Theorem: LinearAlg

Jonathan L.F. King
University of Florida, Gainesville FL 82611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/

9 November, 2023 (at 00:40)

ABSTRACT: Gives a home-grown proof of the Jor-
dan Decomposition Theorem. (Some of the lemmas work
in Hilbert space.) The “Partial-form JCF Theorem”,
(26), needs to be reworked.

Prolegomenon

Our goal is to prove the “JCF” (Jordan Canonical
Form) Theorem for a linear trn T:H—H, where
H is a finite-dim’al vectorspace. Formally, we’ll
assume that H is P**, where the field F is either R
or C.

For vectorspaces use

H,A,B,E, V
H, A B,EV.

vectorspace:

dimension:

Use sans-serif font for matrices A, B, G, I, M. For
square matrices A., let Diag(Aq,...,Ag) be the
partitioned matrix which has A, ..., Ag along its
diagonal, and zeros elsewhere.

1: Notation. A collection C :={V1,V,, ..., V}
of subspaces of H is linearly independent
(abbreviation lin-indep) if the only soln to

vi+---+vy, = 0, witheach v, € Vy,

is the trivial soln vi =0,...,v;, = 0.

Recall that a subspace V C H is T-invariant
if T(V) C V.

I'll use eVal, eVec and eSpace for eigenvalue,
eigenvector and eigenspace. U

§1 Examining nilpotent case

In sections §1 and §2, “eVal” means the eigen-
value zero, and “eVec” means an eigenvector with
eVal zero.
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2: Defn. W.r.t T, a vector v is nilpotent if
Td(v) = 0 for some posint d. Indeed, the T-
depth of a vector v, written T-Depth(v), is the
infimum of all natnums n for which T"(v) is 0.
The zero-vector has depth 0. An eVec for eVal=0
has depth 1. (A non-nilpotent vector has depth c.)

Use Nil(T) for the nilspace of T; it comprises
the set of finite-depth vectors. So

Nil(T) & Ker(T") "5 Ker(T).
n=1
Transformation T is nilpotent if there exists a
posint D such that TP = 0. Since H is finite di-
mensional, [trn T is nilpotent iff Nil(T) = H].D

3: Depth Lemma (preliminary). Consider a sum
3 Vi+vVe+---+ v
whose depths satisfy

dy > dy > ...

Then the depth of (3') is d;.

> dj .

Proof. Exercise.

A downtup (“down tuple”) B = (Dy,...,D¢)

is a sequence of integers with

4: Dy >Dy>--->Dg>1.

The stze of B is the sum Dy + -+ + Deg.

A posint D determines a DxD Jordan Block
HlatriX 01
0 1
5: JB(D) = N
C0 1

0
with zeros on the diagonal and ones on the first

off-diagonal. Every undisplayed position is zero.

6: Nilpotent JCF Theorem. A nilpotent T:F**0O

has a unique downtup B so that

7. M= M(D) = D/ag<JB(D1),...,JB(Dg>>

is the matrix of T w.r.t some basis. In particular,

Size(B) equals H. O
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Remark. In general, the above basis is not unique.
The theorem can be restated ITOf matrices.
A nilpotent F-matrix M’ determines a unique

downtup D so that, with M from (7),
M = G'.M(D)-G,
for some invertible F-matrix G. 0
Temporarily letting c', ..., c” denote the stan-

dard basis, notice that the DxD jordan-blk (5)
acts on the standard basis by sending ¢ — -+ —
¢! — 0. Let this motivate our definition of
a chain: a sequence C = (cd)gz1 of vectors, with

D > 1, fulfilling
8: 0<LC1<LC2<L...<LCD.

Furthermore ¢! # 0, ie, c! is an eigenvector.
Equivalently, the depth of each c? is d.
Calling the (8)-chain C, let Depth(C) = D.

9: Lemma. Consider a chain C as in (8), Then the
eigenspace in Spn(C) is just 1-dimensional. Fur-
ther, C is a basis for Spn(C) and so the dimension
of Spn(C) is D.  Proof. The Depth Lemma. §

_>
A chain complex C for T is a sequence
C1,C,, ..., C¢ of T-chains such that D is a down
tuple, (4), where D, := Depth(C,). Furthermore

The list c},cl, ci... ct of eigenvectors

10:
is linearly independent.

The downtup B is called the signature of (_3>

By the way, we call a “spanning chain-
complex” if | [°_, C. is a basis for H. Cour-
tesy the next lemma, the chain-complex spans iff
Dy + -+ D¢ equals Dim(H).

11: Chain Independence Lemma. Suppose that
C4,...,C¢ are chains (of possibly different Iengths).
Then TFAEquivalent.

a: The list of eigenvectors c},c},ci... ct is
linearly independent.

The Construction
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b: The list Spn(Cy), Spn(C,), ..., Spn(Cg¢) of
subspaces is linearly independent.

c: The disjoint union |_|‘§:,l C. is a lin-indep set.{)

Proof. That (b) = (c) follows from Lemma?9. The
interesting implication is (a) = (b).

Were the subspaces dependent, then we could

find vectors v, € Spn(C.), not all 0, so that
"': 0 = Vi +Vyg+ -+ Vg1 + Ve.
Let D be the maximum of Depth(v,), taken over
e=1,...,&. Replacing each v, by TP~!(v,) ar-
ranges that: Fach v, is either an eigenvector or
is 0, and not all are 0.

Courtesy (9), the eigenspace in each Spn(C.)
is 1-dim’al, so v, is a multiple of c!. But, by hy-
pothesis, these evecs are linearly independent, 3« .
(I use 3 for “contradiction”.) ¢

The above proof allows us to jazz up an earlier
lemma. For a nilpotent vector v of depth d>1, call
T4 1(v) its penultimate vector. |This penultimate

vector is an eVec.]

12: Depth Corollary. Let D be the max depth of
some list vy, ...,ve of vectors. For those vectors
of depth D, suppose the set of their penultimate

vectors is linearly-independent.
Then Depth(vy+...+ve) = D. O

The Construction

To establish the existence part of Nilpotent JCF
Theorem, we fabricate a spanning chain-complex
for our nilpotent T.

Pick a maximum-length chain C;. Look at
the lengths of those chains whose eVec is not
in Spn(C;); among those having the maximum
length, take one such chain and call it C,.
Pick a maximum-length chain, call it Cs, from
those whose eVec is not in Spn(C; U Cy). Con-
tinuing, produces a sequence of some £ many
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chains Cy,...,Cgc. By construction, the eigen-
vectors ci,...,cg are linearly indep., and their
lengths satisty Dy > Dy > --- > Dg.

Our goal is to show that Spn(C; Ll... U Cg) is
all of H. [Corollarily, (11)&(12) will imply that £ is the

dimension of the eigenspace of T.]

Proof. If V := Spn(Cy,...,Cg¢) is not all of H,
then there exists a “bad” vector b i.e:

13: b ¢V, yet T(b) e V.

[This, since T is nilpotent.| Thus we can write T(b)
as a lin.comb over the V-basis |_|‘1g C.. Because it
will make no difference to the following argument,
I will assume, in the expansion of T(b), that each
non-zero coeff is 1.

Suppose, for example, that

” T(b) =[c] +ch+ct®+c37] + [cs +ci + cp]

' +[eg +eg'] + ...+ [e7s + e
Consider the c5 term. It has a predecessor on its
chain, since 5 < Ds. (After all, D3 is at least 47.)
Hence replacing the bad vector b by [b — ¢§] pre-
serves (13) and arranges that the T-image of this
new b has one fewer term in (14). Only the
chain-end cP¢ of a chain C, cannot be so re-
moved.

Continue this until there are only chain-ends.
For example,”! suppose that the new b maps to

14': T(b) = e +cPB +... +cip®.

Corollary 12 tells us that vector T(b) has depth*?
Max(Ds, Ds, ... ) —which is D3. Consequently:

(The depth of b is 1+Ds.]

But all the vectors in RhS(14") were chosen, dur-
ing “The Construction”, at stages 3 and after. So

D3 was not in fact the length of the longest avail-
able chain. 3%. ¢

The Construction

Page 3 of 7

Uniqueness of signature. A spanning chain-
complex must have exactly £ = Dim(E) chains,
where E is the eigenspace of T.  Although
the spanning chain-complex itself is not unique
nonetheless its signature is unique —the Nilpotent
JCF Thm asserts this, so I'd better prove it!

15: Lemma.  Given a nilpotent T, all spanning
chain-complexes have the same signature. O

Proof. Consider two spanning chain-complexes

8:

Ce

(Cy,...,C¢),
(Qla"'aQS)a

with different signatures. For specificity, suppose
that the two signatures differ in their third term
as follows:

9=D3 > Dy > -+ > Dg ;

>
> 8>Dy >D}>-- > Dp .

Now write vector cf over the 8'—basis. This
lin-comb must have a vector of depth 9 and none
of greater depth. The only depth-9 vectors in C*
lie in chains Q; and Q5. So our lin-comb has form

. 9 _ 9 9
K C, = a1q; +a2qy + U,
for some scalars o,y and some vector u

[in Spn(@')] whose depth is at most 8; this, cour-
tesy (12). Applying T® to (1) thus tells us that

: ci € Spn(aj,ab).
Repeating the argument twice more gives
{cl.csc3} C Spn(ala}).

But a 3-dim’al space won’t fit inside a 2-dim’al
space. ¢

Having proved JCF in the nilpotent case, (6),
we now develop the tools for the general case.
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§2 Algebraic information

The characteristic poly of an MxM matrix M
is

om(x) = Det(zI — M).
So pm is a deg-M poly. [Some textbooks define oy ()
as Det(M — zT)]

16: Lemma. For a BxB matrix B,

Ker(B) is trivial <= ¢g(0) # 0,
i.e, IFF' @g() has a |non-zero| constant term.  {

Suppose A.B C H is a lin-indep pair of sub-
spaces, which jointly span H. Indicate this by
writing

AeB = H.
Let Projs be projection, parallel to A, from H
onto B. Said differently, put an inner-product
on H making A | B. Then Proja is simply the
orthogonal projection Projg.

An arbitrary linear trn T:HO gives a composi-
tion oA
. BB H
Let “ T4 ” denote the restriction of (x) to B, i.e,
the mapping BO by

Ts = [Projg o T]|B.

17: Block-UT-matrix Lemma.
triangular partitioned matrix

Consider an upper-

Aaxa Gaxs

18: M =
Opxa Bpxs

Then Det(M) = Det(A)-Det(B). In consequence,
the char-poly o\ factors as

18" PM = PA B -

Restated, suppose T:HO has subspaces A, B st.
19: H = A&B.
with subspace A being T-invariant. Then

19': PT = PTIA - PTA - O

§2 Algebraic information
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Proof of Det(M) = Det(A) - Det(B). Since Det(M)
is a sum of products taken over all transversals
of M, ISTS that a transversal straying from the
A, B blocks necessarily has product zero.

WLOG this misguided transversal hits G. It
therefore misses some row of A hence (since A is
square) some column of A. In this column, then,
the transversal must hit the 0z, 4 block.

Exer: Why do the signs of the permutations
work out correctly? ¢

Proof of (19"). Let B = (ai,...,au, by,...,bg)
be a basis for H, with each a;, € A and b; € B.
Then M, the B-matrix of T, has form (18). Fur-
thermore, the (ay,...,as)-matrix of T|, is A
and the (by,...,bg)-matrix of Tg is B. Hence
(18")=(19"). ¢

Recall from (2) the defn of nilpotent and Nil(T).

20: Lemma. Consider a nilpotent S:FA0. Then

ps(x) = [m—O]A. O

Pf. The char-poly of a eVal=0 Jordan-Block (5) is
2P, By the Block-UT-matrix Lemmma, the char-
poly of Diag(JB(Dl), . ,JB(Dg)) is the product

Di...gDe. je gDit-+De, o

T X

21: Multiplicity Theorem. Let A := Nil(T). Then
A = Dim(A) is the multiplicity of 0 in the char-
acteristic poly o, i.e,

A

pr(z) = [r =07 g(x),

where g is a poly with a constant term. O
Proof. Let B be a complementary subspace

B & A = H. Then (19’) and (20) tell us that

pr(z) = [z—0" - pra(e).
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Consequently, courtesy (16), ISTProve that T3
has no kernel. So fix a v € B sent to 0 by Ta.
Decompose its image as T(v) = b + a, with
beBandaec A. Then 0 =TA(v) 2 b. Hence
T(v) = a. So T(v) is nilpotent. Thus v too is
nilpotent. So v € A N B and is therefore 0. ¢

§3 Using all the eigenvalues

For A € C, we now return to using “X\-eVec” to
mean an eigenvector with eigenvalue A\, and we
extend our defns to other evals.
An A-Jordan Block is a DxD matrix
Al
Al
22: M-JB(D) = M
a1
A
Generalizing, a downtup D = (D1, ...,D¢) en-
genders an )\,B-Jordan-Block:-System

23: AB(D) = Diag(\-B(Dy), ..., »-B(De))

24: Jordan Canonical Form Theorem. Suppose
that T:PO has all of its eigenvalues \q, ..., \r,
in F. Then there is a unique list of downtups,

Bl, BQ, . BL, so that
25:  Diag(\-JB(DY), ..., A-JB(D"Y))

is the matrix of T relative to some basis.
In particular, Size( D) = S;, where
or(z) = [z =M% [z = X [ — A

is the F-factorization of the char-poly of T. O

§3 Using all the eigenvalues
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26: Partial-form JCF Theorem. Given lin-
ear T:P"O, factor its char-poly over F as
[ZE — )\1]51 s [l’ — /\L]SL

pr(z) = - g(x),

where g is an F-poly with no roots in F. (And
Mi,..., A € F are distinct.) Then there is a unique

list of downtups, DY, ... DL, Unfinished: as
of 9Nov2023 O

For a € F, let T, abbreviate the T — ol trans-
formation, and let E® comprise the vectors of
T,-depth at most d. Evidently

EY = Ker(T,*)

«

is a subspace, and E{! is the eigenspace (when a
is an eigenvalue). Certainly

27: {0} = E9 cEY cE® cE® ..

«

.C L.,

where L, == U2, E? is the nilspace.

28: Lemma. Fix o, € C. For eachd =0,1,...,
the subspace E\? is forward-invariant under Tp.
Therefore L,, is Tg-forward-invariant. O
Proof. ~ WLOG « = 0 (replace T by T—al and j

by 8—a). Fix an order d, say d=3, and fix a vector
v € E®. Automatically T(v) € E? c E®,
Hence [T — BI]v = T(v) — v € E® as desired. ¢

29: Lemma. Consider distinct scalars o # 3. For
d=0,1,2,..., the restricted operator

T - BI[JEL

has trivial kernel and so is a (linear) automorphism
of E&d> (since B is finite-dim’al). Taking a union,
then, {T — BI}JLQ is an automorphism of L,.
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Proof. WLOG a = 0; so 8 # 0. By the preceding
lemma, T3 maps E into E. So FTSOContra-
diction we may suppose that there is a non-zero
v € E@ which is sent to 0 by Tj.

Evidently T < Tg. For j = 0,1,2,..., conse-
quently, the vector T7(v) is also in Ker(Tz). Con-
sider the value of j for which T7(v) is in E® < {0}.
Redefining v to be this T/(v), we now have that

v is a non-zero vector simultaneously
in Ker(T) and Ker(Tg).

But then 0 =Tg(v) =T(v) — fv=—p0v. And
this latter is not zero, since 3 # 0. ¢

30: Prop'n. Let A1,..., A be the distinct eigen-
values of T. Then the collection Ly,,..., Ly, of
nilspaces is linearly independent. O

Proof. Consider a sum vy +---+v; = 0, with each
vy € L),. ISTShow that vi = 0. So ISTCon-
struct a linear A:HO sending each of vy,..., vy
to 0, so that A|L,, is an automorphism of Ly, .
To this end, pick a number D large enough that

(Vg) = 0,

oD
} foreach ¢ =2,3,..., L.

¥
Since all the operators (T,),cc commute, it fol-
lows that the composition
oD
A = {T)\Q OT)\BO---OT)\L}

sends each of vy,..., vy to 0. And Lemma?29 as-
sures us that A is an automorphism of Ly, . ¢

Proof of JCF, (24). Apply the Nilpotent JCF
to Ty, on Ly, to get a basis B, for L), against
which T has a matrix-block of form )\g—JB(BZ).
Then L]le B, is a basis against which T looks
like (25). That the downtup sequence is unique
follows from the uniqueness in Nilpotent thm and
that T uniquely determines its nilspaces. ¢

End Notes
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End Notes

See cayley_hamilton.latex for several applica-
tions of JCF, and the minimum polynomial of a
matrix.

Transposes. Let J be a jordan block. Its trans-
pose J' is conjugate to J simply by reversing the
order of the vectors in the basis. It follows that

JCF(TY) = JCF(T)

for an arbitrary square matrix T. U
Remark. Fix a square matrix T. Given a

scalar A, let BT()\) be the corresponding downtup
in JCF(T); if A is not a T-eVal, then the downtup
is empty.

The complez-conjugate of a JCF is a JCF. So
JCF(T) = J. This gives the (=) direction below.

31: JCF-of-real Theorem. A complex JCF B is the
JCF of some real matrix IFF

Ds(A) = Ds(V),

for each complex number \. O

Proof of («=).  ISTProve this when B consists
of a jordan block and its complex-conjugate. For
specificity suppose that each jordan block has di-
mension D=3.

Fix reals ¢ and s, and let

A i=c+is and A\ =c—is.

We show that B = Diag(A\*-JB(3), \-JB(3)) is
conjugate to a real matrix by producing a basis

32: {w, w;}i,

for C, against which B acts using only real co-

efficients.
For each choice of “*” and “7”, let {e;-IE 31 be
the std basis for A*-JB(3). Thus for j € [1..3],

B8 Blef) = A -ef +1-e74,
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e G et @ilhen memnes R 0 Yo! Look in source file, here. U
Define new vectors Filename: Problems/Algebra/LinearAlg/jordan_decomp.latex
As of:  Thursday 13Apr2006. Typeset: 9Nov2023 at 00:40.

u; = 1-e;-F +i-e;;

w; = i-e +1-€;

so ug and wg are each 0. Check that

1
2

u; Fiw;] = e,

so (32) spans all the e’s. Thus (32) indeed is a
basis for C*S.

The B-images of vectors. Verify that
cu; +sw; = ATel +ilTe; and
—suj +cw; = idTel + A\e; .
From (33) we compute:
B(u;) = 1- [)ﬁ“-ej + 1-e;“_1] +
i-[ATef + 1€,
Grouping terms by subscript, our B(u;) equals

(Mef +irTe;| +[1efy +i-ej,].

This, together with similar elbow grease, yields

B(u;) = [cu; + swj] 4+ uj_g;
B(w;)

[*Sllj + CW]’] + W;_1.

Since all the coefficients are real, we get that B is
conjugate to a real matrix. ¢

Cyclic decompositions. The (forward) cyclic sub-
space generated by v is

Spn(v, Tv, T?v, T3v,...).

And T is a cyclic operator if there is a v whose
cyclic subspace is all of V.

Easily, a jordan-block is a cyclic operator on its
space. So the jordan decomposition of T yields a
T-cyclic decomposition of the vectorspace.
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