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Abstract: Gives a home-grown proof of the Jor-
dan Decomposition Theorem. (Some of the lemmas work
in Hilbert space.) The “Partial-form JCF Theorem”,
(26), needs to be reworked.

Prolegomenon

Our goal is to prove the “JCF” (Jordan Canonical
Form) Theorem for a linear trn T:H→H, where
H is a finite-dim’al vectorspace. Formally, we’ll
assume that H is F×H, where the field F is either R
or C.

For vectorspaces use

vectorspace: H,A,B,E,V

dimension: H,A,B, E ,V .

Use sans-serif font for matrices A,B,G, I,M. For
square matrices Ae, let Diag(A1, . . . ,AE) be the
partitioned matrix which has A1, . . . ,AE along its
diagonal, and zeros elsewhere.

1: Notation. A collection C := {V1,V2, . . . ,VL}
of subspaces of H is linearly independent
(abbreviation lin-indep) if the only soln to

v1 + · · ·+ vL = 0 , with each v` ∈ V`,

is the trivial soln v1 = 0, . . . ,vL = 0.
Recall that a subspace V ⊂ H is T-invariant

if T(V) ⊂ V.
I’ll use eVal, eVec and eSpace for eigenvalue,

eigenvector and eigenspace. �

§1 Examining nilpotent case
In sections §1 and §2, “eVal” means the eigen-
value zero, and “eVec” means an eigenvector with
eVal zero.

2: Defn. W.r.t T, a vector v is nilpotent if
Td(v) = 0 for some posint d. Indeed, the T-
depth of a vector v, written T-Depth(v), is the
infimum of all natnums n for which Tn(v) is 0.
The zero-vector has depth 0. An eVec for eVal=0
has depth 1. (A non-nilpotent vector has depth ∞.)

Use Nil(T) for the nilspace of T; it comprises
the set of finite-depth vectors. So

Nil(T)
def
==

∞⋃
n=1

Ker(Tn)
note
⊃ Ker(T) .

Transformation T is nilpotent if there exists a
posint D such that TD = 0. Since H is finite di-
mensional,

�� ��trn T is nilpotent iff Nil(T) = H .�

3: Depth Lemma (preliminary). Consider a sum

v1 + v2 + · · ·+ vL3′:

whose depths satisfy

d1 > d2 > . . . > dL .

Then the depth of (3′) is d1. Proof. Exercise. ♦

A downtup (“down tuple”)
−→
D = (((D1, . . . , DE)))

is a sequence of integers with

D1 ≥ D2 ≥ · · · ≥ DE ≥ 1 .4:

The size of
−→
D is the sum D1 + · · ·+DE .

A posint D determines a D×D Jordan Block
matrix

JB(D) :=


0 1
0 1
0 1
. . .

. . .
0 1

0

5:

with zeros on the diagonal and ones on the first
off-diagonal. Every undisplayed position is zero.

6: Nilpotent JCF Theorem. A nilpotent T:F×H �

has a unique downtup
−→
D so that

M = M(
−→
D) := Diag

(
JB(D1), . . . , JB(DE)

)
7:

is the matrix of T w.r.t some basis. In particular,
Size(

−→
D) equals H. ♦
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Remark. In general, the above basis is not unique.
The theorem can be restated ITOf matrices.

A nilpotent F-matrix M′ determines a unique
downtup

−→
D so that, with M from (7),

M′ = G 1 ·M(
−→
D) · G ,

for some invertible F-matrix G. �

Temporarily letting c1, . . . , cD denote the stan-
dard basis, notice that the D×D jordan-blk (5)
acts on the standard basis by sending cD → · · · →
c1 → 0. Let this motivate our definition of
a chain : a sequence C = (((cd)))

D

d=1 of vectors, with
D ≥ 1, fulfilling

0
T←− c1

T←− c2
T←− . . .

T←− cD .8:

Furthermore c1 6= 0, i.e, c1 is an eigenvector.
Equivalently, the depth of each cd is d.

Calling the (8)-chain C, let Depth(C) := D.

9: Lemma. Consider a chain C as in (8), Then the
eigenspace in Spn(C) is just 1-dimensional. Fur-
ther, C is a basis for Spn(C) and so the dimension
of Spn(C) is D. Proof. The DepthLemma. ♦

A chain complex
−→
C for T is a sequence

C1,C2, . . . ,CE of T-chains such that
−→
D is a down

tuple, (4), where De := Depth(Ce). Furthermore

The list c11, c
1
2, c

1
3 . . . , c

1
E of eigenvectors

is linearly independent.
10:

The downtup
−→
D is called the signature of

−→
C .

By the way, we call
−→
C a “spanning chain-

complex” if
⊔E
e=1Ce is a basis for H. Cour-

tesy the next lemma, the chain-complex spans iff
D1 + · · ·+DE equals Dim(H).

11: Chain Independence Lemma. Suppose that
C1, . . . ,CE are chains (of possibly different lengths).
Then TFAEquivalent.

a: The list of eigenvectors c11, c
1
2, c

1
3 . . . , c

1
E is

linearly independent.

b: The list Spn(C1) , Spn(C2) , . . . , Spn(CE) of
subspaces is linearly independent.

c: The disjoint union
⊔E
e=1 Ce is a lin-indep set.♦

Proof. That (b)⇒ (c) follows from Lemma 9. The
interesting implication is (a)⇒ (b).

Were the subspaces dependent, then we could
find vectors ve ∈ Spn(Ce), not all 0, so that

0 = v1 + v2 + · · ·+ vE−1 + vE .†:

Let D be the maximum of Depth(ve), taken over
e = 1, . . . , E . Replacing each ve by TD−1(ve) ar-
ranges that: Each ve is either an eigenvector or
is 0, and not all are 0.

Courtesy (9), the eigenspace in each Spn(Ce)
is 1-dim’al, so ve is a multiple of c1e. But, by hy-
pothesis, these evecs are linearly independent, ### .
(I use ### for “contradiction”.) �

The above proof allows us to jazz up an earlier
lemma. For a nilpotent vector v of depth d≥1, call
Td−1(v) its penultimate vector. [This penultimate
vector is an eVec.]

12: Depth Corollary. Let D be the max depth of
some list v1, . . . ,vE of vectors. For those vectors
of depth D, suppose the set of their penultimate
vectors is linearly-independent.

Then Depth(v1 + . . .+ vE) = D. ♦

The Construction

To establish the existence part of Nilpotent JCF
Theorem, we fabricate a spanning chain-complex
for our nilpotent T.

Pick a maximum-length chain C1. Look at
the lengths of those chains whose eVec is not
in Spn(C1); among those having the maximum
length, take one such chain and call it C2.
Pick a maximum-length chain, call it C3, from
those whose eVec is not in Spn(C1 tC2). Con-
tinuing, produces a sequence of some E many
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chains C1, . . . ,CE . By construction, the eigen-
vectors c11, . . . , c

1
E are linearly indep., and their

lengths satisfy D1 ≥ D2 ≥ · · · ≥ DE .

Our goal is to show that Spn(C1 t . . . tCE) is
all of H. [Corollarily, (11)&(12) will imply that E is the
dimension of the eigenspace of T.]

Proof. If V := Spn(C1, . . . ,CE) is not all of H,
then there exists a “bad” vector b i.e:

b /∈ V, yet T(b) ∈ V.13:

[This, since T is nilpotent.] Thus we can write T(b)
as a lin.comb over the V-basis

⊔E
1 Ce. Because it

will make no difference to the following argument,
I will assume, in the expansion of T(b), that each
non-zero coeff is 1.

Suppose, for example, that

T(b) = [c53 + c93 + c133 + c473 ] + [c16 + c46 + c96]

+ [c28 + c318 ] + . . .+ [c273 + c1473] .
14:

Consider the c53 term. It has a predecessor on its
chain, since 5 < D3. (After all, D3 is at least 47.)
Hence replacing the bad vector b by [b− c63] pre-
serves (13) and arranges that the T-image of this
new b has one fewer term in (14). Only the
chain-end cDe

e of a chain Ce cannot be so re-
moved.

Continue this until there are only chain-ends.
For example,♥1 suppose that the new b maps to

T(b) = cD3
3 + cD8

8 + . . .+ cD73
73 .14′:

Corollary 12 tells us that vector T(b) has depth♥2

Max(D3, D8, . . . ) —which is D3. Consequently:�� ��The depth of b is 1+D3.

But all the vectors in RhS(14′) were chosen, dur-
ing “The Construction”, at stages 3 and after. So
D3 was not in fact the length of the longest avail-
able chain. ### . �

Uniqueness of signature. A spanning chain-
complex must have exactly E = Dim(E) chains,
where E is the eigenspace of T. Although
the spanning chain-complex itself is not unique
nonetheless its signature is unique —the Nilpotent
JCF Thm asserts this, so I’d better prove it!

15: Lemma. Given a nilpotent T, all spanning
chain-complexes have the same signature. ♦

Proof. Consider two spanning chain-complexes

−→
C = (((C1, . . . ,CE))) ,
−→
C• = (((Q1, . . . ,QE))) ,

with different signatures. For specificity, suppose
that the two signatures differ in their third term
as follows:

D1 ≥ D2 ≥ 9=D3 ≥ D4 ≥ · · · ≥ DE ;

D1 ≥ D2 ≥ 8≥D•3 ≥ D•4 ≥ · · · ≥ D•E .

Now write vector c91 over the
−→
C•-basis. This

lin-comb must have a vector of depth 9 and none
of greater depth. The only depth-9 vectors in

−→
C•

lie in chains Q1 and Q2. So our lin-comb has form

c91 = α1q
9
1 + α2q

9
2 + u ,†:

for some scalars α1, α2 and some vector u
[in Spn(

−→
C•)] whose depth is at most 8; this, cour-

tesy (12). Applying T8 to (†) thus tells us that

c11 ∈ Spn
(
q1
1,q

1
2

)
.‡:

Repeating the argument twice more gives{
c11, c

1
2, c

1
3

}
⊂ Spn

(
q1
1,q

1
2

)
.

But a 3-dim’al space won’t fit inside a 2-dim’al
space. �

Having proved JCF in the nilpotent case, (6),
we now develop the tools for the general case.
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§2 Algebraic information
The characteristic poly of anM×M matrix M
is

℘M(x) := Det(xI−M) .

So ℘M is a deg-M poly. [Some textbooks define ℘M(x)

as Det(M − xI)]

16: Lemma. For a B×B matrix B,

Ker(B) is trivial ⇐⇒ ℘B(0) 6= 0 ,

i.e, IFF ℘B() has a [non-zero] constant term. ♦

Suppose A,B ⊂ H is a lin-indep pair of sub-
spaces, which jointly span H. Indicate this by
writing

A⊕B = H .

Let ProjAB be projection, parallel to A, from H
onto B. Said differently, put an inner-product
on H making A ⊥ B. Then ProjAB is simply the
orthogonal projection ProjB.

An arbitrary linear trn T:H � gives a composi-
tion

B
ProjAB←− H

T←− H∗:

Let “ TA
B ” denote the restriction of (∗) to B, i.e,

the mapping B � by

TA
B := [ProjAB ◦ T]�B .

17: Block-UT-matrix Lemma. Consider an upper-
triangular partitioned matrix

M =

[
AA×A GA×B
0B×A BB×B

]
18:

Then Det(M) = Det(A) ·Det(B). In consequence,
the char-poly ℘M factors as

℘M = ℘A · ℘B .18′:

Restated, suppose T:H � has subspaces A,B st.

H = A ⊕ B .19:

with subspace A being T-invariant. Then

℘T = ℘T�A · ℘TA
B
.19′: ♦

Proof of Det(M) = Det(A) ·Det(B). Since Det(M)
is a sum of products taken over all transversals
of M, ISTS that a transversal straying from the
A,B blocks necessarily has product zero.

WLOG this misguided transversal hits G. It
therefore misses some row of A hence (since A is
square) some column of A. In this column, then,
the transversal must hit the 0B×A block.

Exer: Why do the signs of the permutations
work out correctly? �

Proof of (19′). Let B = (((a1, . . . , aA, b1, . . . ,bB)))
be a basis for H, with each ai ∈ A and bj ∈ B.
Then M, the B-matrix of T, has form (18). Fur-
thermore, the (((a1, . . . , aA)))-matrix of T�A is A
and the (((b1, . . . ,bB)))-matrix of TA

B is B. Hence
(18′)⇒(19′). �

Recall from (2) the defn of nilpotent and Nil(T).

20: Lemma. Consider a nilpotent S:FA � . Then

℘S(x) = [x− 0]A . ♦

Pf. The char-poly of a eVal=0 Jordan-Block (5) is
xD. By the Block-UT-matrix Lemmma, the char-
poly of Diag

(
JB(D1), . . . , JB(DE)

)
is the product

xD1 · · ·xDE . i.e xD1+...+DE . �

21: Multiplicity Theorem. Let A := Nil(T). Then
A := Dim(A) is the multiplicity of 0 in the char-
acteristic poly ℘T, i.e,

℘T(x) = [x− 0]A · g(x) ,

where g is a poly with a constant term. ♦

Proof. Let B be a complementary subspace
B⊕A = H. Then (19′) and (20) tell us that

℘T(x) = [x− 0]A · ℘TA
B

(x) .
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Consequently, courtesy (16), ISTProve that TA
B

has no kernel. So fix a v ∈ B sent to 0 by TA
B.

Decompose its image as T(v) = b + a, with
b ∈ B and a ∈ A. Then 0 = TA

B(v)
note
=== b. Hence

T(v) = a. So T(v) is nilpotent. Thus v too is
nilpotent. So v ∈ A ∩B and is therefore 0. �

§3 Using all the eigenvalues
For λ ∈ C, we now return to using “λ-eVec” to
mean an eigenvector with eigenvalue λ, and we
extend our defns to other evals.

An λ-Jordan Block is a D×D matrix

λ-JB(D) :=


λ 1
λ 1
λ 1
. . .

. . .
λ 1
λ

 .22:

Generalizing, a downtup
−→
D = (((D1, . . . , DE))) en-

genders an λ,
−→
D-Jordan-Block-System

λ-JB(
−→
D) := Diag

(
λ-JB(D1), . . . , λ-JB(DE)

)
23:

24: Jordan Canonical Form Theorem. Suppose
that T:F×H � has all of its eigenvalues λ1, . . . , λL
in F. Then there is a unique list of downtups,−→
D 1,
−→
D 2, . . . ,

−→
DL, so that

Diag
(
λ1-JB(

−→
D 1), . . . , λL-JB(

−→
DL)

)
25:

is the matrix of T relative to some basis.
In particular, Size(

−→
D `) = S`, where

℘T(x) = [x− λ1]S1 · [x− λ2]S2 · · · [x− λL]SL .

is the F-factorization of the char-poly of T. ♦

26: Partial-form JCF Theorem. Given lin-
ear T:F×H � , factor its char-poly over F as

℘T(x) = [x− λ1]S1 · · · [x− λL]SL · g(x) ,

where g is an F-poly with no roots in F. (And
λ1, . . . , λL ∈ F are distinct.) Then there is a unique
list of downtups,

−→
D 1, . . . ,

−→
DL, Unfinished: as

of 9Nov2023 ♦

For α ∈ F, let Tα abbreviate the T− αI trans-
formation, and let E〈d〉α comprise the vectors of
Tα-depth at most d. Evidently

E〈d〉α = Ker(Tα
◦d)

is a subspace, and E〈1〉α is the eigenspace (when α

is an eigenvalue). Certainly

{0} = E〈0〉α ⊂ E〈1〉α ⊂ E〈2〉α ⊂ E〈3〉α ⊂ . . .⊂ Lα ,27:

where Lα :=
⋃∞
d=0E

〈d〉
α is the nilspace.

28: Lemma. Fix α, β ∈ C. For each d = 0, 1, . . . ,
the subspace E〈d〉α is forward-invariant under Tβ.
Therefore Lα is Tβ-forward-invariant. ♦

Proof. WLOG α = 0 (replace T by T−αI and β

by β−α). Fix an order d, say d=3, and fix a vector
v ∈ E〈3〉. Automatically T(v) ∈ E〈2〉 ⊂ E〈3〉.
Hence [T−βI]v = T(v)−βv ∈ E〈3〉, as desired.�

29: Lemma. Consider distinct scalars α 6= β. For
d = 0, 1, 2, . . . , the restricted operator[

T− βI
]
�E〈d〉α

has trivial kernel and so is a (linear) automorphism
of E〈d〉α (since E

〈d〉
α is finite-dim’al). Taking a union,

then,
[
T− βI

]
�Lα is an automorphism of Lα. ♦
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Proof. WLOG α = 0; so β 6= 0. By the preceding
lemma, Tβ maps E〈d〉 into E〈d〉. So FTSOContra-
diction we may suppose that there is a non-zero
v ∈ E〈d〉 which is sent to 0 by Tβ.

Evidently T � Tβ. For j = 0, 1, 2, . . . , conse-
quently, the vector Tj(v) is also in Ker(Tβ). Con-
sider the value of j for which Tj(v) is in E〈1〉r{0}.
Redefining v to be this Tj(v), we now have that

v is a non-zero vector simultaneously
in Ker(T) and Ker(Tβ).

But then 0 = Tβ(v) = T(v)− βv = −βv. And
this latter is not zero, since β 6= 0. �

30: Prop’n. Let λ1, . . . , λL be the distinct eigen-
values of T. Then the collection Lλ1 , . . . ,LλL of
nilspaces is linearly independent. ♦

Proof. Consider a sum v1+· · ·+vL = 0, with each
v` ∈ Lλ`. ISTShow that v1 = 0. So ISTCon-
struct a linear Λ:H � sending each of v2, . . . ,vL
to 0, so that Λ�Lλ1 is an automorphism of Lλ1 .

To this end, pick a number D large enough that[
Tλ`

]◦D
(v`) = 0, for each ` = 2, 3, . . . , L.

Since all the operators (((Tα)))α∈C commute, it fol-
lows that the composition

Λ :=
[
Tλ2 ◦ Tλ3 ◦ · · · ◦ TλL

]◦D
sends each of v2, . . . ,vL to 0. And Lemma 29 as-
sures us that Λ is an automorphism of Lλ1 . �

Proof of JCF, (24). Apply the Nilpotent JCF
to Tλ` on Lλ` to get a basis B` for Lλ` against
which T has a matrix-block of form λ`-JB(

−→
D `).

Then
⊔L
`=1B` is a basis against which T looks

like (25). That the downtup sequence is unique
follows from the uniqueness in Nilpotent thm and
that T uniquely determines its nilspaces. �

End Notes

See cayley_hamilton.latex for several applica-
tions of JCF, and the minimum polynomial of a
matrix.

Transposes. Let J be a jordan block. Its trans-
pose Jt is conjugate to J simply by reversing the
order of the vectors in the basis. It follows that

JCF (Tt) = JCF (T)

for an arbitrary square matrix T. �

Remark. Fix a square matrix T. Given a
scalar λ, let

−→
DT(λ) be the corresponding downtup

in JCF (T); if λ is not a T-eVal, then the downtup
is empty.

The complex-conjugate of a JCF is a JCF. So
JCF (T) = J. This gives the (⇒) direction below.

31: JCF-of-real Theorem. A complex JCF B is the
JCF of some real matrix IFF

−→
DB(λ) =

−→
DB(λ) ,

for each complex number λ. ♦

Proof of (⇐). ISTProve this when B consists
of a jordan block and its complex-conjugate. For
specificity suppose that each jordan block has di-
mension D=3.

Fix reals c and s, and let

λ+ := c+ is and λ− := c− is.

We show that B := Diag
(
λ+-JB(3), λ--JB(3)

)
is

conjugate to a real matrix by producing a basis

{uj,wj}3j=132:

for C×6, against which B acts using only real co-
efficients.

For each choice of “+” and “−”, let {e±j }3j=1 be
the std basis for λ±-JB(3). Thus for j ∈ [1 .. 3],

B(e±j ) = λ± · e±j + 1 · e±j−1 ,33:
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where e±0 are two other names for 0.
Define new vectors

uj := 1 · e+j + i · e−j ;

wj := i · e+j + 1 · e−j ;

so u0 and w0 are each 0. Check that

1
2
· [uj ∓ iwj] = e±j ,

so (32) spans all the e’s. Thus (32) indeed is a
basis for C×6.

The B-images of vectors. Verify that

cuj + swj = λ+e+j + iλ−e−j and
suj + cwj = iλ+e+j + λ−e−j .

From (33) we compute:

B(uj) = 1 ·
[
λ+ · e+j + 1 · e+j−1

]
+

i ·
[
λ− · e−j + 1 · e−j−1

]
.

Grouping terms by subscript, our B(uj) equals[
λ+e+j + iλ−e−j

]
+
[
1 · e+j−1 + i · e−j−1

]
.

This, together with similar elbow grease, yields

B(uj) = [cuj + swj] + uj−1 ;

B(wj) = [ suj + cwj] + wj−1 .

Since all the coefficients are real, we get that B is
conjugate to a real matrix. �

Cyclic decompositions. The (forward) cyclic sub-
space generated by v is

Spn(v,Tv,T2v,T3v, . . . ) .

And T is a cyclic operator if there is a v whose
cyclic subspace is all of V.

Easily, a jordan-block is a cyclic operator on its
space. So the jordan decomposition of T yields a
T-cyclic decomposition of the vectorspace.

Yo! Look in source file, here. �
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