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Entrance. [Look ahead to Shorthands on P.3.] For
each defn to follow, know several examples where the
objects fulfill the defn, and several examples where
the objects fail the defn. [E.g, exhibit a set of vectors that
is not LI. What is an example of a pair of VSes and a map T

between them that: is linear? fails to be linear? –what specific
axiom fails?]

Defn: Group. A commutative group is a triple
(((V,+,0))) where V is a set, + is a binary operation
V×V→ V, and 0 ∈ V, satisfying the following ax-
ioms for all x,y,z ∈ V:

CG1: Element 0 is an identity element for “+”, i.e,

x + 0 = x = 0 + x .

CG2: Addition is associative: x+[y+z] = [x+y]+z.

CG3: Every element x has an additive inverse x′

satisfying: x + x′ = 0 = x′ + x.

CG4: Addition is commutative: x + y = y + x.

[Note: A group (((V,+,0))), but which is not necessarily com-
mutative, is required to satisfy (CG1–3) but is not required to
satisfy (CG4).] �

It is an easy theorem that 0 is the unique identity
element for “+” and that additive inverses are unique.
The additive inverse of x is usually written as “ x”.

Defn: VS. A vectorspace is a four-tuple(
V,+, ~0, F

)
,

where V is a set [of vectors], with ~0 ∈ V, where F is
a field (e.g, R or Q or C), and where the scalar-vector
multiplication operation · is a map F×V→V.

Using SVM to abbreviate scalar-vector multi-
plication [usually called “scalar multiplication”], the four-
tuple must satisfy the following.

For all α,β ∈ F and x,y ∈ V:

SV1: Triple (((V,+, ~0))) is a commutative group.

SV2: The SVM distributes over vector addition:
α[x + y] = αx + αy.

Also, SVM distributes over scalar addition:
[α+ β]x = αx + βx.

SV3: Multiplication associates with SVM, i.e
[α · β]x = α · [βx].

SV4: Scalars 1 and 0 act as follows: 1·x = x and
0·x = ~0.

A consequence of these axioms is that 1u
notation
====== u

is the additive-inverse of u. �

Trivial VS. For the zero-vector in VS X, use ~0X
or ~0. For the zero-dim’al VS (or VSubSp) {~0}, I will
sometimes use 000 for {~0}, and 000X for {~0X} if there are
several spaces under discussion.

Use 0K×N for the K×N matrix of all zeros; if the
dimensions are understood, use 0Mat. For the zero-
lin.map V→X which sends each V-vector to ~0X, use
0Trn or 0V→X. [Of course, this 0Trn is the zero-vector in
vector space Lin(V→X).] �
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Shorthands. VS(es), vector space(s). VSubSp, vector sub-

space. trn, transformation. lin.trn, linear trn. colvec, column-

vector. rowvec, row-vector. LI, Linearly Independent. LD,
Linearly Dependent. eVec, eigenvector. eVal, eigenvalue. eSpace,
eigenspace. �

Nomenclature. Our symbols and our textbook’s.

SVM = scalar-vector multiplication = scalar mul-
tiplication.

Dim(W) = dim(W) = [Dimension of VS W].

Nul(T) = N(T) = [Nullspace, i.e, Kernel of map T].
Nullity(T) = nullity(T) = Dim

(
Nul(T)

)
.

Range(T) = R(T) = [Range of T].
Rank(T) = rank(T) = Dim

(
Range(T)

)
.

MatK×L(Q) = MK×L(Q) = [Space of K×L-matrices]
with rational entries.

Lin(V→X) = L(V,X) = [Space of linear maps V→X];
may also be written Lin(X←V). Space Lin(V→V)
will be written as Lin(V) or, for emphasis, Lin

(
V �

)
.

VS = vector space. VSes = vector spaces.
VSS = vector-subspace.

We’ll typically using lowercase greek letters for
scalars; α, β, γ, . . ., and often use script B,E,U,R for
bases; our textbook uses (ugh!) β. �

Convention.We usemap ormapping for a fnc going
from one set to a (possibly different) set. E.g,

OwnerOf : Bikes→People .

In contrast, let’s use transformation (abbreviated
as trn) as a map from a set to itself. In these notes,
“transformation” (unless explicitly stated otherwise) is a
“linear transformation”. �
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Subset-sum.Thw “sum of subsets ” S1, . . . , SN ⊂ V,
written

∑N
j=1 Sj or S1 + . . .+ SN , is the set of all

sums u1 + . . .+ uN with each uj ∈ Sj . In general∑N

j=1
Sj ⊂ Spn

(⋃N

j=1
Sj
)

∗:

If each Sj is a subspace, then there is equality in (∗).�

Linear-independence of subspaces. Consider a collec-
tion U of subspaces of VSV. This U is linearly inde-
pendent (LI) if each finite subset {W1, . . . ,WN} ⊂ U

satisfies: The only tuple (((u1, . . . ,uN))) of vectors hav-
ing each uj ∈Wj , and satisfying

∑N
j=1 uj = ~0, is the

~0 = u1 = . . . = uN trivial soln.
If no subspace in U is the trivial subspace 000 then:

Collection U is LI IFF noW ∈ U can be deleted with-
out reducing the span:

∀W ∈ U: Spn
(
Ur {W}

)
$ Spn

(
U
)
. �

Aside: The negation of Linearly Independent (LI) is
Linearly Dependent (LD).

Defn: Span. A linear combination (lin-comb) of
a finite list u1, . . . ,uN of vectors, is a sum of form∑N
j=1 αjuj , where each αj is a scalar.
Given a [finite or infinite] set C of vectors, Spn(C) is

the set of all (finite) linear combinations of vectors
from C.

Collection C is span-minimal if no member can
be deleted without reducing the span. I.e each u ∈ C

has Spn
(
Cr {u}

)
$ Spn

(
C
)
.

In vectorspace V, collection C “generates ” or
“ is spanning ” or “spans V” or “spans the VS” if
Spn(C) = V. Our C is generating-minimal if C

spans the VS and is span-minimal.
Our V is finite dimensional if V admits a finite

generating-set C. �

Linear-independence of vectors. Vector-collection
C is linearly independent (LI) if each finite
subset {u1, . . . ,uN} ⊂ C satisfies: The only tuple
(((α1, . . . , αN))) of scalars satisfying

∑N
j=1 αjuj = ~0 is

0 = α1 = . . . = αN ; the trivial soln.
An LI collection B which generates, is called a basis

for the VS. �

1: Proposition. Subset C ⊂ V is span-minimal IFF C

is linearly independent. ♦

Pf (⇒). Were C not LI then WLOG we have C-vectors
and scalars s.t

∑N
j=1 αjuj = ~0, with some scalar

non-zero. WLOG α1 6= 0. Letting βj := αj/α1,
then,

u1 =
N∑
j=2

βjuj
note
∈ Spn(u2, . . . ,uN ) .

So C is not span-minimal. �

Pf (⇐). Supposing C not span-minimal, there exists a
C-vector w and other C-vectors u1, . . . ,uL and scalars
{αj}j , satisfying w =

∑L
j=1 αjuj . Thus

1w + α1u1 + . . .+ αLuL

is a non-trivial way of writing ~0. [I.e, our C is LD.] �
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Defn: Support. Consider a fnc h:ΩSet→R where R is
a field (or ring). The “support of h” is

Supp(h) := {ω ∈ Ω | h(ω) 6= 0} .

Consider a VS V over field F. A FSSF (Finitely-
Supported Scalar Function) is a map h:V→F such that
Supp(h) is finite. Thus, given a collection C ⊂ V„

Spn(C) =
{∑

u∈C
h(u)u

∣∣∣ h is a FSSF
}
.

Use FFS(C→ F) for the set of Fncs-of-Finite-
Support from C to F. �

2: Uniqueness Lemma. Given a linearly-independent
collection C ⊂ V and w ∈ Spn(C), there is a unique
h ∈ FFS(C→F) with

[ ∑
u∈C

h(u)·u
]

= w. ♦

Pf. Suppose
∑
u∈C

f(u)u = w =
∑
u∈C

g(u)u for two FFS.

Thus
~0 = w −w

steps
====

∑
u∈C

[
f − g

]
(u) · u

As, Supp(f − g) ⊂ Supp(f) ∪ Supp(g), our f − g is
a FFS. Thus LI of C forces f − g identically

======== 0. �

3: Basis ∃ence. Each finite dim’al VS has a finite
basis. ♦

Proof. Fix a finite generating-set C. If no u ∈ C lies
in Spn

(
Cr {u}

)
, then C is LI; done.

Else: Remove u from C. Wash, rinse, repeat. . . . �

4a: Vec-replacement thm. Fix a set G generat-
ingV, with Γ := |G| finite. Then each LI-set L satisfies
that Λ := |L| ≤ Γ. Further, there exists a cardinality
Γ− Λ subset H ⊂ G such that L ∪H generates V. ♦

Pf. For Λ=0, let H := G. Assuming the proposition
for natnum Λ, we establish it for Λ+1.

Fix LI-set L = {v1, . . . ,vΛ,vΛ+1}. Automatically
L̂ = {v1, . . . ,vΛ} is LI, whence the induc.hyp gives�� ��Λ ≤ Γ . Letting D := Γ− Λ be the difference, there
exists a cardinality-D subset Ĥ := {g1, . . . ,gD} ⊂ G
with L̂ ∪ Ĥ generating V. In particular,

vΛ+1 =
[ Λ∑
j=1

αjvj
]

+
[ D∑
k=1

βkgk
]
,†:

for some scalars α1, . . . , αΛ, β1, . . . , βD. Thus some
βk is non-zero [else vΛ+1 lies in Spn(L̂), ### ], whence
D ≥ 1 and WLOG β1 6= 0. Happily, then, Λ+1 ≤ Γ
since D ≥ 1.

Let H := {g2 , g3, . . . ,gD}. Rewriting (†) as

g1 =
1

β1

[
vΛ+1 −

[ Λ∑
j=1

αjvj
]
−
[ D∑
k=2

βkgk
]]

‡:

shows that g1 ∈ Spn(L ∪H). Thus

Spn(L ∪H) = Spn(L ∪ Ĥ) ⊃ Spn(L̂ ∪ Ĥ) ,

since L ⊃ L̂. Hence,
�� ��Spn(L ∪H) equals V. �

4b: Corollary. In finite dim’al VS V, all bases have the
same (finite) cardinality. ♦

Proof. Courtesy (3), our V has a finite basis, hence
has a basis B of minimum cardinality.

Consider another (possbily infinite) basis E. Since B

generates, and E is LI, our (4a) [the Vec-replacement thm]
applies to say that |E| ≤ |B|.

Reversing roles shows |E| = |B|. �

5: Gen. Basis thm. Assuming the Axiom of Choice,
every VS (whether finite-dim’al or not) admits a basis,
and each two bases have the same cardnality. ♦

Filename: Classwork/LinearAlg/study-linalg.latex
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Defn: Linear and Affine maps

(Here)

Defn. Over F, the affine-span of vector-set
{v1, ...,vN} is

AffSpn(v1, . . . ,vN ) :=
{ N∑
j=1

αjvj
∣∣∣ Each αj ∈ F with[∑N

j=1 αj

]
= 1

}
.

To emphasise that a (affine-)span is wrt a particular
field F, I might write, e.g, AffSpnC or SpnQ or SpnZ5

.
The affine-span of just a pair of vectors is

Line(u,w) :=
{
αu + [1− α]w

∣∣ α ∈ F
}
.

The “dimension of an affine-subspace A⊂V ” is
the dimension of the vector-subspace were A trans-
lated to pass through the origin. That is, picking any
vector u ∈ A: Dim(A) := Dim(A− u).

A flat is another name for an affine-subspce.
A map A:V→X between VSes is affine if it re-

spects averages. That is, for all
∑N
j=1 αjvj , we have

that

A
( N∑
j=1

αjvj
)

=
N∑
j=1

αj A(vj)

whenever
[∑N

j=1 αj
]
= 1. �

6: Lemma. Suppose A:V→X is affine. Then A is linear
IFF A(~0V) = ~0X. ♦

Proof. For scalar β and vector v, note

A(βv) = A
(
βv + [1− β]·~0V

)
affine
==== βA

(
v
)

+ [1− β]·A
(
~0V
)

= βA
(
v
)

+ [1− β] · ~0X = β A
(
v
)
.

For vector sums, note

1
2A(u + w)

by above
======= A

(
1
2 [u + w]

)
= A

(
1
2u + 1

2w
)

affine
==== 1

2A(u) + 1
2A(w) .

Doubling shows that A(u + w) = A(u) + A(w). �
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Nullspace and Range

We examine forward/backward-images of subspaces.
Below T:V→X is a lin.map

7: Lemma. For each subspace U ⊂ V, its forward-
image forward/inverse-image

T(U) := {T(u) | u ∈ U}

is a vector-subspace (VSS) of X.
For each subspace Y ⊂ X, its inverse-image

T 1(Y) := {v ∈ V | T(v) ∈ Y}

is a vector-subspace of V. Proof. Exercise. ♦

Nullity, Rank. The kernel or nullspace of T is the
inverse-image

Nul(T) := T 1({~0X}) = T 1(000X

)
.

And Nullity(T) := Dim
(
Nul(T)

)
.

So the nullity of T is a cardinality.
The rank of T is cardinality

Rank(T) := Dim
(
Range(T)

)
, where

Range(T) := T(V) . �
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8: R+N Theorem. Over field F, a linear T:V→X has

Rank(T) + Nullity(T) = Dim
(
Dom(T)

) note
==== Dim(V).♦

[Many textbooks call this the Rank+Nullity thm. Our text
calls it the Dimension thm, 2.3.]

Prelim. Fix a basis U ⊂ V for U := Nul(T)
note
⊂ V,

and a basis R ⊂ X for R := Range(T)
note
⊂ X.

For each x∈R, pick [possibly using AC, if R is∞-dim’al]
a vector vx ∈ V such that

�� ��T(vx) = x . Let

Q :=
{
vx
∣∣∣ x ∈ R

}
.

As T�Q is a bijection, |Q| = |R|. To establish

Dim(V)
?
= |Q|+ |U|∗:

is our goal.
If some vector vx ∈ Q also lay in U-basis U, then

x
def
== T(vx) = ~0X; ### , as x is part of a basis [for R],

hence is not the zero-vector. Thus
�� ��Q ∩ U = ∅ .

So (∗) will follow from showing Q t U is a V-basis.�

Pf: Q t U is LI. Consider FSSFs g:Q→F and h:U→F
st.

~0V =
[∑
vx∈Q

g(vx)vx
]

+
∑
u∈U

h(u)u .†:

Applying T to both sides,

~0X =
[∑
x∈R

g(vx)x
]

+
∑
u∈U

h(u)

=~0X︷ ︸︸ ︷
T(u) .‡:

Thus ~0X =
∑
x∈R

g(vx)x. But R is LI, whence g ≡ 0.

Courtesy (†), ~0V =
∑

u∈U h(u)u. Our U is linearly
independent; consequently h ≡ 0. �

Pf: Q t U generates V.Fix an arbitrary vectorw ∈ V.
Since T(w) ∈ R, there exists a FSSF ϕ:R→F st.

T(w) =
∑
x∈R

ϕ(x)x . Define

vw :=
∑
vx∈Q

ϕ(x)vx
note
∈ Spn(Q) .

Difference w − vw is in Nul(T), since T
(
w − vw

)
equals

T
(
w
)
− T

(
vw
)

=
[∑
x∈R

ϕ(x)x
]
−
∑
x∈R

ϕ(x)x .

As w equals vw + [w − vw], it follows that w lies
in Spn

(
Q ∪ U

)
, as claimed. �
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Matrices from vectors & lin.maps

Consider linear-maps W
T← V

S← U where the
VSes have ordered bases W = (((w1, ...,w4))),
V = (((v1, ...,v7))), U = (((u1, ...,u3))), respectively. A
vector q ∈ U has a unique description q =

∑3
i=1 αiui

Let [[[q]]]U be the colvec of q w.r.t U, i.e

[[[q]]]U :=

[
α1

α2

α3

]
.

Our text uses a subscript, [q]U, rather than a super-
script; please use the superscript in your essays.

Use
q
S
yV
U

for the 7×3 matrix M whose lefthand-
action, LM, equals S. Thus:

For j = 1, 2, 3: The jth-column of M is [[[S(uj)]]]
V.

ITOf scalars αi,j, writing S(uj) =
∑7

i=1 αi,jvi gives

q
S
yV
U

=


α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

...
...

...
α7,1 α7,2 α7,3

 Nota
====

[
αi,j

]
i=1,...,7
j=1,...,3

.

9: Lemma. Using the above notation,

[[[S(q)]]]V =
q
S
yV
U
· [[[q]]]U , for each q ∈ U.

And
q
T ◦ S

yW
U

=
q
T

yW
V
·
q
S
yV
U
.

Proof. Exercise: Chase definitions. ♦

Remark. For lin.maps, henceforth, I’ll typically write
TS rather than T ◦ S. A consequence of the above
lemma is that [[[[TS](q)]]]W︸ ︷︷ ︸

4×1

=
q
T

yW
�V︸ ︷︷ ︸

4×7

·
q
S
y�V
AU︸ ︷︷ ︸

7×3

· [[[q]]]AU︸︷︷︸
3×1

. �

Inverses. On a set Ω, the identity map IdΩ:Ω→Ω
is defined by IdΩ(x) = x, for each x∈Ω.

The identity map on a VS V is a lin.trn, so I’ll
usually write it as either IdV or IV

The “n×n identity matrix ” , written In×n or In
or [if n is understood] as just I, is

In×n :=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ;

all zeros, except for ones down the main diagonal.

Consider a lin.maps T:V→W and L,R:W→V.
This R is a RInverse [righthand inverse] of T, if
TR = IW. And R is a LInverse of T, if LT = IV.

Multiple one-sided inverses. Let X := RN, the VS
of seqs. ~x = (((x0, x1, . . .))). The left-shift and right-
shift lin.trns are

SL(~c) := (((c1, c2, c3, c4, c5, . . .))) and

SR(~a) := ((( 0, a0, a1, a2, a3, . . .)))

As SLSR = IX, our SR is a RInverse of SL. Indeed, SL
has ∞ly-many RInverses; another one is

~a 7→ (((8a7 − 5a3, a0, a1, a2, a3, . . .))) .

Our SR has ∞ly many LInverses; SL, but also, e.g

~c 7→ (((c1 +4c0, c2, c3−6c0, c4, c5, . . .))) . �

Filename: Classwork/LinearAlg/study-linalg.latex



Prof. JLF King Matrices from vectors & lin.maps Page 10 of 30

10a: Observation. Suppose T:V→W has at least one
LInverse L, and at least one RInverse R. Then L = R,
and there are no other one-sided inverses. ♦

Pf. Note L = L IW = L [TR]
assoc.
==== [LT]R = IVR = R.

Were Λ another LInverse of T, then Λ = R = L. �

10b: Aside: The above argument applies to an ar-
bitrary associative binary-operator [a binop] with a
2-sided identity element. [Such a structure is called a
monoid.] �

10c: Matrix inverse. A 2-sided (multiplicative)-
inverse of n×n matrix M, is an n×n matrix U s.t
MU = I = UM. The forgoing shows that this U is
unique; we write M 1 for the matrix-inverse of M.

For the next example, we define the determinant
of 2×2-matrix M :=

[
a b
c d

]
as Det(M) := ad− bc. �

10d: Fact. Matrix M :=
[
a b
c d

]
is invertible exactly

when ∆ := Det(M) is non-zero. When that occurs,

M 1 = 1
∆ ·

[
d b
c a

]
=
[
d/∆ b/∆
c/∆ a/∆

]
.

Proof. Multiply and check. ♦

Matrix-inv 1. Real-matrix T :=
[

2 5
3 4

]
has determi-

nant Det(T) = 2·4 − 5·3 = 7. Whence

T 1
= 1

7 ·
[

4 5
3 2

]
note
===

[
4/7 5/7
3/7 2/7

]
. �

Matrix-inv 2. We now work over field F := Z11, and
let ≡ mean ≡11 . The Z11 reciprocal-table is

x 〈1/x〉11 x 〈1/x〉11

±1 ±1
±2 ∓5 ±4 ±3
±3 ±4 ±5 ∓2

Now Z11-matrix M :=
[

2 5
3 4

]
has

Det(M) ≡ 2·4 − 5·3 = 7 ≡ 4 .

Hence
〈
1/Det(M)

〉
11
≡ 3.

Thus

M 1 ≡ 3 ·
[

4 5
3 2

]
=
[
12 15
9 6

]
≡
[
1 4
2 5

]
.

Note: AppendixB in these notes has reciprocal-
tables for various primes. And . . . you can al-
ways compute mod-N reciprocals yourself, using
Lightning-Bolt (the Euclidean algorithm). �
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Change-of-basis matrix

The common case is two bases E and B on V. A u∈V
engenders a colvec [[[u]]]E, but we need u written ITOf
basis B. What we need is the change-of-basis [CoB]
matrix H :=

q
Id

yB
E
, since

[[[u]]]B =
q
Id

yB
�E
· [[[u]]]�E = H · [[[u]]]E.

Similarly, consider V
S←V and its ma-

trix M :=
q
S
yE
E
. Alas, we need S w.r.t B. And

indeed
q
S
yB
B

= H M H 1︸ ︷︷ ︸
Conjugating M by H

=
q
Id

yB
�E
·
q
S
y�E
AE
·
q
Id

yAE
B

†:

=
q
Id ◦S◦ Id

yB
B

=
q
S
yB
B
.

CoB example. On R2, consider (ordered-)bases

E =
((( e1︷︸︸︷[

1
0

]
,

e2︷︸︸︷[
0
1

])))
and B =

((( b1︷ ︸︸ ︷[
1
1

]
,

b2︷ ︸︸ ︷[
1
2

])))
,∗:

and matrix M :=

[
5 3

12 7

]
. We seek to understand

the lefthand action ofM, the lin.trn S := LM, and some
nice person has told us that S’s mapping is clearer in
the B basis.

As (∗) gives B ITOf E, e.g, b2 = [ 1]e1 + 2e2, the
easy matrix to compute is C :=

q
Id

yE
B
. Why? The

first column of C is

C ·
[

1
0

] meaning
======

q
Id

yE
�B
· [[[b1]]]

�B = [[[Id(b1)]]]E =

[
1
1

]
.

It follows that

C =
q
Id

yE
B

=

[
1 1
1 2

]
whence C 1 =

q
Id

yB
E

=

[
2 1
1 1

]
,

since Det(C) = 1 .
Applying (†), our

q
S
yB
B

= C 1MC, i.e,

[
2 1
1 1

] [
5 3

12 7

][
1 1
1 2

]
=

[
2 1
1 1

] M·C︷ ︸︸ ︷[
2 1
5 2

]

=

[
1 0
3 1

]
,

a shear in the b2 direction. Specifically, S(b2) = b2

and S(b1) = b1 + 3b2. [So b2 is a Fixed-point of S.
Later, we’ll call b2 an S-eigenvector with eigenvalue 1.]

Checking! using S and b1,b2, all expressed in the E
basis:

[[[S(b2)]]]E = M ·
[

1
2

]
=

[
1
2

]
= [[[b2]]]

E , and

[[[S(b1)]]]E = M ·
[

1
1

]
=

[
2
5

]
note
===

[
1
1

]
+ 3

[
1
2

]

which indeed equals [[[b1 + 3b2]]]
E. So that Xs out. �

Filename: Classwork/LinearAlg/study-linalg.latex



Prof. JLF King Change-of-basis matrix Page 12 of 30

...continuing. Given vector

[
5
2

]
= [[[u]]]E, we can write

this same vector in basis B as:

[[[u]]]B =
q
Id

yB
E︸ ︷︷ ︸

C 1

· [[[u]]]E =

[
2 1
1 1

]
·
[

5
2

]
=

[
8
3

]
. �

CoB generalized. A less common usage of CoB
matrices is comes from a lin.mapW

T←Vand ordered-
bases W,W′ for W, as well as ordered-bases V,V′

for V.

M :=
q
T

yW
V

and M′ :=
q
T

yW′
V′
.

If we know the bases and M, you can compute M′ as
product

M′ =
q
Id

yW′
W
·M ·

q
Id

yV
V′

=
q
Id

yW′
�W
·
q
T

y�W
AV
·
q
Id

yAV
V′

=
q
Id ◦T◦ Id

yW′
V′

=
q
T

yW′
V′
.
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Examples of Subspaces

Over of field F, consider a lin.map S:X→V and sub-
spaces X0 ⊂ X and V0 ⊂ V. Then

Forward-image S(X0) is a V-subspace. And
inverse-image S 1(V0) :=

{
y ∈ X

∣∣∣ S(y) ∈ V0

}
is

an X-subspace.

In particular, Nul(S) := S 1(000V) is a subspace
of Dom(S).

We now consider a lin.trn T:X � mapping a space
to itself.

Invariant subspaces of T:X→X. Subspace U⊂X
is T-invariant if T(U) ⊂ U. This allows the defn of
restriction R := T�U which is a lin.trn R:U→U.

If T(U) = U, we’ll say that U is “precisely-T-
invariant” . [Textbooks differ in terminology for this.]

11: Lemma. Suppose C is a collection (possibly infinite)
of T-invariant subspaces. Then⋂

(C)
def
==

⋂
U∈C

U

is a T-invariant subspace. Proof. Exercise. ♦

Ex: Range. Set U0 := X, and Un+1 := T(Un).
[So Range(T)

def
== U1.] Then U0 ⊃ U1 ⊃ U2 ⊃ · · · , and

each Un is T-invariant. Moreover,

U∞ :=
∞⋂
n=0

Un

is also T-invariant. Evidently, if X is finite dim’al
thenU∞ is precisely-T-invariant. (Posting decathlon.
Prove or give CEX: “Even when Dim(X) =∞, intersection U∞

must be precisely-T-invariant.”)

Fixed-pt subspace. For an arbitrary map h:Ω � on
an arbitrary set, define

Fix(h) := {α ∈ Ω | h(α) = α} ,

the set of “fixed-points of h” .
When T:X � is linear, then Fix(T) is the (full)

“fixed-point subspace of T” . This will later be
called: “The eigenspace of T with eigenvalue 1.”

Each subspace U ⊂ Fix(T) is a “T-fixed-pt sub-
space ”

Eigenspaces. Fix an element λ ∈ F. We have this
important defn: The “λ-eigenspace of T” is{

y ∈ X
∣∣ T(y) = λ·y

}
.
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Examples of transformations

[Before starting, consider a map h:Ω→Ω on a set Ω. Then “h
is an involution ” if h ◦ h = IdΩ. In contrast, “h is idempo-
tent ” if h ◦ h = h.]

2-dim rotations. On R×R, rotation matrix

Rθ :=
[

cos(θ) sin(θ)
sin(θ) cos(θ)

]
.

rotates the plane CCW by angle θ. Note R 1
θ = R θ .

As examples,
[
Rπ/6

]12
= I =

[
Rπ/4

]8.
Projections, Reflections, Shears. Consider
a direct-sum decomposition X⊕U = V. [I.e,
X,U are transverse subspaces (X ∩U = 000 ) whose
union generates V.] When spaces are finite dim’al,
r := Dim(X) and n := Dim(U), we’ll use ordered-
bases X := (((x1, . . . ,xr))) and U := (((u1, . . . ,un))) and

V := (((x1, . . . ,xr,u1, . . . ,un))) .U:

Each projection, reflection, shear (see below) fixes X
pointwise; so X is a pointwise-fiXed subspace, a sub-
space of Fix(T).

A projection P:V � uses that each v∈V has a
unique description as v = x + u with x∈X and u∈U.

Define projection-onto-X-parallel-to-U by

P(v) = P(x + u) := x . In contrast†:
H(v) = H(x + u) := x − u‡:

is reflection-across-X-parallel-to-U.

12: Obs. Suppose lin.trn P:V � is idempotent. Then P
is projection onto X := Range(P), projecting parallel
to U := Nul(P). ♦

Pf Union X ∪U generates V. Fix v∈V and define
x := P(v) ∈ X and u := v − x. Since v = x + u, we
need but show that u is in Nul(P). Well. . .

P(u)
linearity
====== P(v)− P(x)

def
==P(v)− P

(
P(v)

)
idem
==== P(v)− P(v)

def
== ~0 . �

Pf X ∩U = 000. Fix x ∈ X∩U; so there exists v∈V
with P(v) = x. Thus

~0
x∈U
==== P(x)

def
== P

(
P(v)

) idem
==== P(v)

def
== x . �

As a corollary, suppose X and U are finite dim’al.
Then, wrt basis (U), the projection and reflection ma-
trices are diagonal. Specifically,

q
Proj P

yV
V

=

[
Ir×r

0n×n

]
and†∗:

q
Refl H

yV
V

=

[
Ir×r

In×n

]
.‡∗:

A shear S:V � is determined by X⊕U = V, to-
gether with a linear map M:U→X. Each v∈V has a
unique decomposition v = x + u with x∈X and u∈U.
The corresponding shear, S, is

S(v) := v + M(u)
note
===

in X︷ ︸︸ ︷
[x + M(u)] +

in U︷︸︸︷
u .‡‡:

Let Mr×n denote matrix
q
M

yX
U
. Then

q
Shear S

yV
V

=

[
Ir×r Mr×n

In×n

]
.‡‡∗:

Exercise: Prove that shear S is invertible, and

S 1(v) := v −M(u) = [x−M(u)]︸ ︷︷ ︸
in X

+ u︸︷︷︸
in U

.

Letting P be projection of V onto U parallel to X,
our shear can be written as S = I + [M ◦ P] .
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Nilpotent trns & matrices. An n×n matrix M is
nilpotent if there exists natnum k with Mk = 0n×n
(the 0-matrix). The smallest such k is the nilpotency
degree of M, written NilDeg(M).

Analogously lin.trn T:V � is nilpotent if there ex-
ists natnum k with Tk = 0Trn, etc.

13: Lem. Suppose T:V � is nilpotent, and
N := Dim(V) is finite. Then NilDeg(T) ≤ N . [Ditto
for N×N matrices.] ♦

Proof. Set U0 := V and, for j = 1, 2, . . ., define
Uj+1 := T(Uj). Automatically U1 ⊂ U0. Hence

· · · ⊂ U2 ⊂ U1 ⊂ U0 ,

since inclusion Uj ⊂ Uj−1 implies that
T(Uj) ⊂ T(Uj−1), i.e that Uj+1 ⊂ Uj .

Suppose, for j = 1, 2, 3, . . . up to some k, we have
proper inclusion Uj $ Uj−1. Then each

Dim(Uj) ≤ Dim(Uj−1)− 1 ,

so Dim(Uk) ≤ Dim(U0)− k = N − k. Thus k ≤ N .
And T is nilpotent IFF Uk = 000. �
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Gauss-Jordan, RREF

The Gauss-Jordan♥1 algorithm does row-ops to con-
vert a matrix into Reduced Row-Echelon-Form.

Row operations. Below, i and g are row-indices,
and j and h are column-indices, and α, ρ are F-scalars.
The three elementary row-operations are:

Ai,α:g : Add [ row-i times α ] to row-g. Inverse: Ai,−α:g.

Pν : Permute the rows according to permutation ν.
Inverse: Pν 1 .

This is usually used to ...
Pi↔g : ... exchange row-i and row-g. Inverse: Pi↔g.

Ui,ρ : Multiply row i by non-zero ρ. Inverse: Ui, 1/ρ :

14: RREF algorithm. With M ∈Mat6×9(F), use mi,j

for the entry in row-i and column-j. I’ll use the term
pivot column and, for a non-pivot column, a free
column.

Init: Initialize row-counter R := 1 and column-
counter C := 1. Then ...

NewCol: Is there an index i ∈ [R .. 6] with mi,C
non-zero?

If “no ” [so column-C is free] then Increment(C) and
goto (NewCol).

Else, exchange one such row with row-R, us-
ing Pi↔R. Now mR,C is not zero, so let ρ be
the reciprocal-in-F of mR,C . Apply UR,ρ; now�� ��mR,C = 1 . And (((R, C))) is a pivot position.

ZeroizeCol: For each row-index i 6= R [greater or
less than R] with α := −mi,C non-zero, apply AR,α: i.
[So pivot-position (((R, C))) now has the only non-zero entry in
column-C.] Now Increment(R) and Increment(C), then
goto (NewCol). �

♥1A version of Gaussian elimination was described by
Wilhelm Jordan in 1888; —not to be confused with Camille
Jordan, who stated Jordan Canonical Form thm in 1870.

When is a matrix in RREF? In a B =
[
bi,j
]
i,j
matrix,

row-i being NotAZ means it is Not-All-Zero; let Col(i)
be the column-index of its leftmost non-zero entry;
thus b i,Col(i) is the leftmost non-zero entry in row-i.

Our B is in RREF (reduced row-echelon-form) if

i : The NotAZ rows are above the All-Zero rows.

ii : With P denoting the number of NotAZ rows, we
have

Col(1) < Col(2) < . . . < Col(P ) .

iii : For i = 1, . . . , P , the only non-zero entry in col-
umn Col(i) is at position (((i, Col(i)))). Moreover
bi,Col(i) = 1.

For i = 1, 2, . . . , P , we call row-i a pivot row ,
column Col(i) a pivot column , and position
(((i, Col(i)))) a pivot position .

The RREF of a matrix is unique. However, remov-
ing “reduced” gives row-echelon-form, and different
textbooks have slightly varying definitions of REF.
While RREF is unique, REF is not unique. Nonethe-
less, useful properties can be read-off from an REF of
a matrix. �
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Row/Column Ops. Say that two N×K matrices
A and B are row-equivalent , written A

r∼ B, if we
can get from A to B by a sequence of elem.row-ops.

Analogous, if we can get from A to B by elem.col-
ops, then A

c∼ B, and the matrices are column-
equivalent.

An elem.row-op can be realized by multiplying
from the left by a N×N matrix; to get this matrix,
simply apply the row-op to IN×N .

Similarly, an elem.col-op can be realized by multi-
plying from the right by a K×K matrix; etc.

Row-op invariants. Suppose A
r∼ B. Then

RowSpn(A) = RowSpn(B)

LNul(A) = LNul(B)

Rank(A) = Rank(B) ,

where LNul means the nullspace of the lefthand-
action of A. [Statement LNul(A) = LNul(B) says that row-
ops preserve the linear relations among columns.]

Row-ops. . .
. . .Preserve linear-relations among columns

and preserve the span of rows [rowspan].
. . .Alter linear-relations among rows and

alter the span of columns [colspan].

Obtaining bases. For N×K matrix M over field F,
let r1, . . . , rN denote the rowvecs, and have c1, . . . , cK
denote the colvecs.

In M̂ := RREF (M), use r̂1, . . . , r̂N and ĉ1, . . . , ĉK
for the row and column vectors. Let P [≤ Min(N,K)]
denote the number of pivot-rows in M̂. Then

a: Rank(M) = Rank(M̂) = P .

b: Rowvec-set
{
r̂1, . . . , r̂P

}
is a basis for

RowSpn(M) = RowSpn
(
M̂
)
.

c: Let Col(1), . . . ,Col(P ) denote the column-indices of
the pivot-cols in M̂. Then{

cCol(1), cCol(2), . . . , cCol(P ),
}

is a basis for ColSpn(M).

d: A basis for LNul(M) = LNul(M̂) is obtained via the
method of back substitution.

Basis for RNul(M). Here, let ej be the 1×K
rowvec which is all-zero, except for a 1 at position j.
E.g e2 = [010 . . . 0].

Our M̂ looks like
P many pivot
rows

{

N−P many
all-zero rows

{


1 0 5
1 7 ···

...
...
...

1 ··· ···
0 0 ··· 0
...
... ···

...
0 0 ··· 0


.

Consequently, a basis for RNul(M̂) is the set of
rowvecs ej , for j ∈ (P ..N ].

Let L be the N×N invertible matrix that RREFs M
to M̂, i.e, LM = M̂.

15: Lemma. With notation from above: This set{
ej · L

∣∣∣ j ∈ (P ..N ]
}

=
{
The bottom-most
N−P rows of L

}
∗:

of rowvecs is a basis for RNul(M). ♦
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LinA Equivalence relations. (Repeating some mate-

rial): Two 5×7 matrices X andY are row equivalent ,
written X

r∼ Y, if X can be transformed to Y via ele-
mentary row-ops. Equivalently, ∃L5×5 invertible such
that LX = Y.

Matrices X,Y are column equivalent , X c∼ Y, if
column-ops carry X to Y; equivalently, ∃R7×7 invert-
ible such that XR = Y.

Two N×N matrices P,Q are similar , or conju-
gate to each other,, written, P

sim∼ Q if there exists
invertible CN×N with CPC 1 = Q.

Looking ahead. Applied to a square matrix G,
operation A does not affect determinant, and opera-
tion Pi↔g only multiplies it by 1. Use “ G AP∼ H” to
indicate that, using only row-ops A and P, one can
alter G to become H.
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RREF example

Over field Z13 we have matrices
4×6
M and “target”

colvecs
4×1
S and

4×1
U . We seek to find bases for:

RowSpn(M), ColSpn(M), LNul(M), RNul(M),
and describe the
set of solns

6×1

X , to
MX = S and MX = U .

Our given M,S,U matrices are 2 5 16 11 0 23
25 26 6 13 31 17
1 23 15 1 18 17

19 31 12 29 30 27

,
 29

3
30
31

,
 0

4
25
2

 .
Step 1. Produce an augmented matrix. . .
(setq A (mat-Horiz-concat M S U)) 2 5 16 11 0 23 29 0

25 26 6 13 31 17 3 4
1 23 15 1 18 17 30 25

19 31 12 29 30 27 31 2


. . . and reduce Amod-13. Non-negative residues re-

duces A to 11 8 3 11 0 3 3 0
1 0 6 0 5 9 3 4

12 3 11 1 5 9 9 12
6 8 12 3 4 12 8 11


whereas symmetric-residues reduces A to

2 5 3 2 0 3 3 0
1 0 6 0 5 4 3 4
1 3 2 1 5 4 4 1
6 5 1 3 4 1 5 2


which has form

[
M | S U

]
. In the sequel, I use

symmetric-residues.

Step 2. Compute RREF (A). Extract submatrices:
(setq Tableau (rref-mtab-beforecol A))

JK: Found 4 pivots before the eighth column.

x0 x1 x2 x3 x4 x5 hatS hatU Row operations
|----------------------------------|
| 1 0 6 0 5 -4 | 3 0 | -6 5 6 -6
| 0 1 -3 0 4 5 | -6 0 | 6 5 -3 5
| 0 0 0 1 -2 3 | 4 0 | -3 2 -5 0
| 0 0 0 0 0 0 | 0 1 | -5 -1 5 -5
|----------------------------------|

(setq L (MTB-ROM Tableau) hatA (MTB-Alt Tableau) )
[ -6 5 6 -6 ] [ 1 0 6 0 5 -4 3 0 ]
[ 6 5 -3 5 ] [ 0 1 -3 0 4 5 -6 0 ]
[ -3 2 -5 0 ], [ 0 0 0 1 -2 3 4 0 ]
[ -5 -1 5 -5 ] [ 0 0 0 0 0 0 0 1 ]

Matrix L describes the row-ops that were done on A
to produces Â. And indeed (mat-mul L A) produces1 0 6 0 5 4 3 0

0 1 3 0 4 5 6 0
0 0 0 1 2 3 4 0
0 0 0 0 0 0 0 1


which is indeed Â.

Looking ahead, the Û column is a pivot column, so
there are no solns X to MX = U; the soln-set is empty .

So we only need to extract M̂ and Ŝ:

(setq hatM (extract-cols hatA 0 6)
hatS (extract-cols hatA 6 1) )



x0 x1 x2 x3 x4 x5

1 0 6 0 5 4

0 1 3 0 4 5

0 0 0 1 2 3

0 0 0 0 0 0


︸ ︷︷ ︸

M̂

,



Target

3

6

4

0


︸ ︷︷ ︸

Ŝ

Step 3. Use row/col-info from M̂ to obtain bases for
row/col span of M. The pivot rows of M̂ form a basis
of RowSpn(M) = RowSpn(M̂). This basis is{[

1, 0, 6, 0, 5, 4
]
,
[
0, 1, 3, 0, 4, 5

]
,
[
0, 0, 0, 1, 2, 3

]}
.

The pivot-cols of M̂ are cols 0,1,3. The correspond-
ing columns of M thus form a basis for ColSpn(M).
This basis is { 2

1
1
6

,
 5

0
3
5

,
 2

0
1
3

}
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Step 4. Give names “a,b,c,. . . ” to the free-cols.
Use back-substition to describe the set of X satify-
ing M̂ X = Ŝ, which is the same set of X satifying
MX = S , since row-ops preserve lin-rels among cols.

We use matrix
[
M̂ | Ŝ

]
as follows.



x0 x1 a x3 b c Ŝ

1 0 6 0 5 4 3

0 1 3 0 4 5 6

0 0 0 1 2 3 4

0 0 0 0 0 0 0


Put in the appropriate identity matrix.

x0

x1

a = x2

x3

b = x4

c = x5

 = a ·

 1

0
0

 + b ·

 0

1
0

 + c ·

 0

0
1

 +

 0

0
0

 .
Insert the back-substitution values, for x3. . .

x0

x1

a = x2

x3

b = x4

c = x5

 = a ·

 1
0
0
0

 + b ·

 0
2
1
0

 + c ·

 0
3
0
1

 +

 0
4
0
0


. . . and for the rest of the variables:

x0

x1

a = x2

x3

b = x4

c = x5

 = a ·


6
3
1
0
0
0

 + b ·


5
4
0
2
1
0

 + c ·


4
5
0
3
0
1

 +


3
6
0
4
0
0

 .

Step 5. Matrix M acts from the right on rowvecs
of length 4. As Rank(M) = Rank(M̂) = 3, it follows
that the RNul(M) [nullspace of the righthand action of M]
is 4− 3 = 1 dim’al.

Courtesy Lemma (15), singleton
{

[ 5, 1, 5, 5]
}
is a

basis for RNul(M)
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Know the following terms: The cardinality of
a set S is the number of elements in S, and writ-
ten |S|, or sometimes #S. A subspace of a vector-
space. [Recall that the trivial subspace {~0} is the unique
0-dimensional subspace. Recall that the emptyset, ∅ = {}, is
not a vectorspace, because it has no identity element.]

A linear combination of a set of vectors. The
span of a set of vectors. [Recall that the span of a
set of vectors in V is always a subspace of V. Recall that
Spn(∅) = {~0}.] Recall that a collection S ⊂ V is
linearly independent if the only linear combination
of vectors in S which equals ~0, is the trivial com-
bination, that is, the combination where all scalars
are 0. A basis for V is a linearly independent subset
of V which spans V.

Some important theorems. In a vectorspace V:

16: Theorem. Every vectorspace has a basis. Each
linearly-independent set can be extended to (i.e, is a
subset of ) a basis. Each generating set can be cut down
to (i.e, is a superset of ) a basis. ♦

17: Theorem. The cardinality of every spanning
set is greater-equal the cardinality of every linearly-
independent set. In particular, each two bases have
the same cardinality; this number is called the di-
mension of V. ♦

Terms and algorithms. Know the definitions of
the following terms, and how to perform the following
algorithms:

“Algorithm”. “Augmented matrix”. Know the three
“elementary row operations”, and what “row equiva-
lence” is. Be able to precisely describe the Gaussian
Elimination algorithm. “Reduced row-echelon form”.
A “pivot” position. “Free column”. A “consistent”
system of linear equations. Know how to compute
the “solution set” to a system of linear equations or
to a vector equation Ax = b [where A is a k×n matrix,
b ∈ Fk is known, and x ∈ Fn is the unknown], and how to
describe the solution set parametrically. Recall that
such a solution set is either empty, or is a translated
vector subspace of Fn, ie “an affine subspace” or “a
flat”.

The “column-span” and “row-span” of a matrix, as
well as the “column-rank” and “row-rank”, and know
how to compute these four things.

“Linear transformation”. The “inverse” of a linear
transformation. The “inverse of an invertible square
matrix”, and how to compute it. Know how to com-
pute the matrix corresponding to a given linear trans-
formation.

“Change-of-basis matrix” and how to compute
such.
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Eigen Ideas
Below T:X � is a linear transformation.

The simplest kind of T-invariant subspace E ⊂ X,
is where T�E a dilation, u 7→ λu for some fixed
scalar λ. Each λ determines a subspace

Eλ = Eλ,T := {z ∈ X | Tz = λz} .

When Eλ,T is not the trivial space 000, then we call Eλ,T
the “λ-eigenspace of T” , and λ is a T-eigenvalue.
Each non-zero vector in Eλ,T is an eigenvector of T.
[eSpace=eigenspace, eVal=eigenvalue, eVec=eigenvector]

18: Eigenspace LI theorem. The collection, C, of
T-eigenspaces is linearly independent. ♦

Proof. FTSOC, suppose ∃N ≥ 1 and eVecs satisfying

~0 = z1 + z2 + . . .+ zN†:

with distinct eVals λ1, . . . , λN , and choose (†) to min-
imize N . Necessarily, N≥2 since eVecs are non-~0.

Applying T to (†) yields

~0 = T(~0) = T(z1) + T(z2) + . . .+ T(zN )

= λ1z1 + λ2z2 + . . .+ λNzN .
‡:

Subtracting product λN · (†) from (‡) produces

~0 =
N−1∑
j=1

[λj − λN ]·zj .∗:

As the eVals are distinct, each λj − λN 6= 0, so
[λj − λN ]·zj 6= ~0. Equation (∗) writes ~0 as a sum of
N−1 eigenvectors with distinct eigenvalues, contra-
dicting the minimality of N . �

Defn. Consider two fncs f,g:Ω � on a set Ω. We
say “f commutes with g” if f ◦ g = g ◦ f , and write
this as f � g. �

19a: Lemma. Suppose linear transformations
S,T:X � commute with each other. Then S maps each
T-eigenspace E into itself; S(E) ⊂ E. ♦

Proof. WLOG, fix a vector z ∈ E5,T. [We seek to show
that Sz is also in E5,T.] Computing,

T(Sz)
commutes
======== S(Tz) = S(5z) = 5·Sz .

Hence Sz lies in E5,T. �

19b: Coro. Linear T:X � has eigenbasis B; let λb
denote the T-eigenvalue of b ∈ B. Suppose also
the T-eVals are distinct [i.e λb = λc implies b = c for
all b,c ∈ B].

Then linear S commutes with T IFF B is an eigen-
basis of S. ♦

Proof of (⇒). Each T-eSpace is 1-dim’al, and the
foregoing lemma shows S maps this 1-dim’al subspace
to itself. The only lin-trn of a 1-dim’al space is mul-
tiplying by a scalar, hence this T-eSpace is also an
S-eSpace. [Of course, the T and S eVals may be different,
and S need not have distinct eVals.] �

Pf of (⇐). To show two lin-trns commute, ISTShow
they commute on each vector of a basis. Since multi-
plication of scalars is commutative, and each b ∈ B

is an eigenvector for both S and T, we have that
TSb = STb. �

Diagonalizability. A trn is diagonalizable (most often
applied to a matrix) if it admits an eigenbasis.

A family F of lin-trns is simultaneously diago-
nalizable if there is an basis B which is an eigenbasis
for each trn in F. A corollary of the above proof is

If trn-family F is simultaneously diagonal-
izable, then each S,T ∈ F commute.19c: �
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Eigenvalues of rotations. Fix an angle θ /∈ {0,π}.
[Our final result, (‡), will be valid for those angles too.] With
C := cos(θ) and S := sin(θ), note

ν := eiθ = C + iS and ν = e iθ = C − iS .

We seek to diagonalize rotation

R = Rθ
recall
====

[
C S
S C

]
.†:

Easily Det(R) = 1, since rotations preserve area and
orientation. [Or C2 + S2 = 12.] For CharPoly h := ℘R,
we could compute Det(R− tI), but more elegant and
quicker is

h(t) = t2 − Tr(R)·t+ Det(R)

= t2 − 2C · t + 1 .

So Discr(h) = [2C]2 − 4·1·1 = 22[C2 − 12]
note
=== [2S]2·i2.

Thus
Roots(h) = 1

2

[
2C ±

√
Discr(h)

]
= 1

2

[
2C ± 2S i

]
=
{
ν, ν

}
is the set of R-eVals.

Diagonalizing R over C. As ν 6= ν (recall θ 6= 0,π)
our R [viewed as acting on C2] has two 1-dim’al
eigenspaces. We thus know that R is similar (sim∼ ) to
diagonal matrix

D :=

[
ν

ν

]
.

The Plan: To diagonalize R we seek a ν-eVec [ ac ],
and a ν -eVec

[
b
d

]
. Then matrix M :=

[
a b
c d

]
will give

us the sought M 1RM = D equality.

Computing: Looking ahead, C − ν = iS so

C − ν

S
= i .∗:

An ν-eVec is a non-~0 vector in LNul(R− νI). Matrix

R− νI
note
===

[
C − ν S
S C − ν

]
is row-equiv to

[
S C − ν

C − ν S

]
r∼
[

1 C−ν
S

C − ν S

]
by (∗)
=====

[
1 i
C − ν S

]
.

Thus R− νI
r∼
[

1 i
0 0

]
, as the ν-eSpace is 1-dim’al.

Hence

[
i
1

]
is a ν-eVec for R.

Field-automorphism z 7→ z leaves R invariant, car-
ries ν to ν , and consequently carries ν-eVec

[ i
1

]
to

ν -eVec
[ i

1

]
. I prefer to multiply this by i, so I’ll use[

1
i

]
as my ν -eVec. My conjugating matrix is thus

M :=
[
i 1
1 i

]
and M 1 = 1

2

[
i 1
1 i

]

yielding M 1 RM =
[
ν

ν

]
.

‡:
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Duality ideas

Setting. We explore the C-IPS V := CN equipped
with dot-product. The vectors in V are colvecs.
For colvecs u,w ∈ V, their outer product is N×N -
matrix u·w>.

Consider a direct-sum decomposition V = A⊕B
with A ⊥ B. (I.e, A⊥ = B and B⊥ = A.) With Proj
denoting orthogonal projection, note

ProjA + ProjB = Id = OrthB + ProjB ,∗:

where Id is the identity operator. Consequently
OrthB = ProjA , and vice versa.
It follows that (orthogonal) reflection across B is

ProjB −OrthB =
[
Id− ProjA

]
− ProjA

= Id − 2ProjA .
∗∗:

We now consider when Dim(A) = 1.

Ortho-projection matrix. Given a non-zero col-
umn vector δ [a “direction” vector], use δ⊥ for the ortho-
complement of Spn(δ). Let D denote the matrix [w.r.t
the std basis] of ortho-projection on Spn(δ).

Use P for the matrix of ortho-projection on δ⊥, and
employ R for reflection across δ⊥.

20: Lemma. When the δ from above is a unit vector,

D = δ·δ>, P = I− δδ>, R = I − 2δδ>.†:

Hence, the action of these matrices on an arbitrary
vector v satisfy

Dv = Projδ(v) = 〈δ,v〉v ;

Pv = Projδ⊥(v) = v − 〈δ,v〉v ;

Rv =
[
Id− Projδ⊥

]
(v) = v − 2〈δ,v〉v .

‡: ♦

Proof. First consider projecting on Spn(e1). That
maps a general vector

α1

α2

...
αN

 7→

α1

0
...
0

 .
The matrix whose lefthand action realizes this1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 note
=== e1︸︷︷︸

N×1

· e>1︸︷︷︸
1×N

.

Change of coordinates. Let U be unitary matrix
(which preserves the IP) and carries of δ to e1. Note

e1 · e>1 = Uδ · [Uδ]> = Uδ · δ>U>

since U is unitary
============= Uδ · δ>U 1 .

To project a vector v on δ, we carry v to Uv, project
on e1, then carry the result back via U 1. So

D·v = U 1 · e1e
>
1 · Uv

= U 1 · Uδδ>U 1 · Uv = δδ>·v.

This holds for all v, hence D = δδ>. �
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Dual spaces in general

A VS, V, over an arbitrary field F has a dual space

V> :=
{
L
∣∣ Map L:V→F is linear

}
.

So V> is the VS of “ linear functionals on V” , with
pointwise addition, and pointwise scalar-multiplica-
tion.

A linear map A:S→V between F-VSes has an ad-
joint operator A>:V>→S>, defined by

A>(L) := [s 7→ L
(
A(s)

)
]
note
=== L ◦ A .

Double dual. VS V has a canonical embedding
into its double-dual. It is the F-linear map

V↪→V>> which sends u 7→
[
L 7→ L(u)

]
.

If the canonical embedding is a bijection, then it is
a linear isomorphism and we say V and V>> are
“canonically” or “naturally” isomorphic, In this case,
V is called a reflexive space. [Well. . . , the term is usually
reserved for the category of topological VSes.]

Duality in IPSes. Fix a complex VS V.

21a: Defn. For v ∈ V, define linear fnc’al Lv by

Lv(w) := 〈v,w〉 . �

21b: Lemma. For all vectors u0,u1, if Lu0 = Lu1 then
u0 = u1.

When V is finite dimensional: For each linear func-
tional Λ, there exists a vector v st. Lv = Λ. ♦

Pf. With v := u0 − u1, difference Lv = Lu0 − Lu1 is
the zero-fnc’al. Thus 0 = Lv(v) = 〈v,v〉, so v = ~0.

Fix an ortho-normal basis b1, . . . ,bN . Lin fnc’al
Λ gives values λj := Λ(bj). With v :=

∑N
j=1λjbj

note 〈v,b5〉 = 〈λ5b5,b5〉 = λ5〈b5,b5〉 = λ5. Simi-
larly, 〈v,bj〉 = λj . Thus Lv = Λ. �

Henceforth. All VSes are finite dim’al. The inner
product on V allows us to identify V> with V, by
identifying each lin fnc’al 〈v, ·〉 with v. Using a blue
··· for scalar-vector mult, then α···〈v, ·〉 = 〈αv, ·〉. �

Consider a linear A:V→S. The identification allows
us to interpret A> as mapping S→V, by

∀r∈S,∀u∈V,
〈
A>r,u

〉
=
〈
r,Au

〉
.21c:

21d: Prop’n. Eqn (21c) uniquely defines a linear
operator A>:S→V. Moreover, A>> = A. ♦

Pf (existence/uniqueness). Composition
〈
r, ·

〉
◦ A is

linear, so Lemma (21b) asserts a unique vector v with〈
v, ·

〉
=
〈
r, A(·)

〉
. Define A>r := v. �

Pf (linearity). As
〈
A>(r+s),u

〉
=
〈
r+s,Au

〉
, additive-

linearity gives〈
A>(r+s),u

〉
=
〈
r,Au

〉
+
〈
s,Au

〉
=
〈
A>r,u

〉
+
〈
A>s,u

〉
=
〈
A>r + A>s, u

〉
.

This holds for all ∀u, so A>(r+s) = A>r + A>s.
Similarly, for scalar α,〈
A>(αr),u

〉
=
〈
αr,Au

〉
=
〈
r,A(αu)

〉
=
〈
A>r, αu

〉
=
〈
αA>r,u

〉
.

This holds for all u, whence A>(αr) = αA>r. �

Pf (Involution). The complex-conjugate of (21c) is

∀r∈S,∀u∈V,
〈
u,A>r

〉
=
〈
Au, r

〉
,

showing that A>> is A. �
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The Adjoint involution. We now consider (linear)
operators V→V.

22.1: Lemma. W.r.t an ortho-normal basis, let A =
[αi,j] be the matrix of S:V �, and B = [βi,j] the matrix
of S>. Then B = At note

=== A t. ♦

Pf. The 1×1 matrix [β5,2] = et5Be2 =
[
〈e5, S

>e2〉
]
. So

[β5,2] =
[
〈Se5, e2〉

]
= et5 A

t · e2

=
[
et2 · Ae5

]t
= et2 · Ae5 ,

as the transpose of a 1×1 is itself. Thus β5,2 = α2,5.�

Defn. On a C-VS, operator U:V→V is unitary if
it preserves the unit-sphere: ∀x∈V: ‖Ux‖ = ‖x‖. We
say that U is norm-preserving. It turns out norm-
preserving implies the seeming stronger property,

∀x,y ∈ V:
〈
Ux,Uy

〉
= 〈x,y〉 ,22.2:

of preserving the IP.
On an R-VS, a U satisfying (22.2) preserves orthog-

onality; hence it is called an orthogonal operator.
For an operator satisfying (22.2): On a R-VS it

called orthogonal, but on a C-VS we say unitary ;
this is just a convention. [Norm/IP-preserving forces U to
be injective. The above definitions will apply to an operator
on an ∞-dim’al IPS, once we adjoin the requirement that U

be surjective; hence, is an invertible operator. (Surjectivity is

automatic on a finite-dim’al space.)]
Operator A is self-adjoint if A> = A. �

22.3: Lemma. Operator U is unitary IFF U 1 = U>.♦

Pf (⇒ ). For all v,w:

〈U>Uv,w〉 = 〈Uv,Uw〉 = 〈v,w〉 = 〈U 1Uv,w〉.

Holds ∀w, so U>Uv = U 1Uv. Holds ∀v, so
U>U = U 1U. Last U is invertible, so. . . .

The reverse direction is left as an exercise. �

22.4: Lemma. Suppose self-adjoint A satisfies
〈y,Ay〉 = 0 for each y ∈ V. Then A is the zero-
operator. ♦

Pf. Fix x ∈ V. Then

0 = 〈x+Ax,A(x+Ax)〉 = 〈x+Ax, Ax+A2x〉
= 〈x,Ax〉︸ ︷︷ ︸

=0

+ 〈x,A2x〉+ 〈Ax,Ax〉+ 〈Ax,A2x〉︸ ︷︷ ︸
=0

= 〈x, A>Ax〉+ 〈Ax,Ax〉 note
=== 2·‖Ax‖2.

Hence [since our field is not char=2] Ax = ~0. �

22.5: Theorem. A norm-preserving T:V � automati-
cally preserves the inner-product. ♦

Proof. Note that A := T>T− I is self-adjoint.
By (22.4), ISTEstablish that A is the zero-operator,
hence that 〈y, [T>T− I]y〉 is zero. Computing

〈y, [T>T− I]y〉 = 〈y,T>Ty〉 − 〈y,y〉
= 〈Ty,Ty〉 − 〈y,y〉

norm
========
preserving

〈y,y〉 − 〈y,y〉 = 0 . �
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§A Appendix

23.1:SVBuried Treasure Problem [BTP]. Floating in
the ocean you spy a bottle containing a pirate’s map
to fabulous treasure. You sell your possessions, pur-
chase a robot-crewed ocean-catamaran, and sail to the
island, discovering it is a vast plateau. The map says:

Arrrgh, Matey! Count your paces from the gallows
to the a quartz boulder, turn Left 90◦ and walk the
same distance; hammer a gold spike into the ground.

Count your paces from the gallows to the giant oak,
turn Right 90◦ and walk the counted distance; hammer
a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau [with the treasure
you can say bye bye to annoying Math classes! ] and immedi-
ately spot the giant oak, and quartz boulder. But the
gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? ♦

[Hint: Using B, K, w for the Bolder’s, oaK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tB,K(w)
by using C addition and multiplication.] Alphabetic-order
mnemonic: Boulder Left gold

oaK Right silver
Solved

by: Matthew C, Junhao Z., Hani S., 2020t. Nathan T., 2021t.

(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

Are we rich, yet? In C, multiplication by i and i
rotates the plane by 90◦ (counter-)clockwise. In C, our
gold and silver spikes are

(turned Left) g := B + i[B − w] ;

(turned Right) s := K − i[K − w] . Averaging,

t =
g + s

2
note
===

B +K

2
+ i·B −K

2
.

For convenience, we can WLOG orient C relative
to the plateau so as have B = K and thus t = i·K.

The boring case is when the oak is growing out of
the boulder, giving 0=K=B=t.

The interesting case is when B 6= K. Now we can
orient C so that K := i and thus t = i·i = 1. So
the treasure is the right-angle vertex of an isosceles
right-triangle, whose other vertices are the oaK and
Boulder, in appropriate order. �
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§B Zp Reciprocal/Multiplication tables

Reciprocals

Modulo 2:
x 〈1/x〉2
1 1

Modulo 3:
x 〈1/x〉3
±1 ±1

Modulo 5:
x 〈1/x〉5 x 〈1/x〉5
±1 ±1 ±2 ∓2

Modulo 7:
x 〈1/x〉7 x 〈1/x〉7
±1 ±1
±2 ∓3 ±3 ∓2

Modulo 11:

x 〈1/x〉11 x 〈1/x〉11

±1 ±1
±2 ∓5 ±4 ±3
±3 ±4 ±5 ∓2

Modulo 13:

x 〈1/x〉13 x 〈1/x〉13

±1 ±1 ±4 ∓3
±2 ∓6 ±5 ∓5
±3 ∓4 ±6 ∓2

Modulo 17:

x 〈1/x〉17 x 〈1/x〉17

±1 ±1 ±5 ±7
±2 ∓8 ±6 ±3
±3 ±6 ±7 ±5
±4 ∓4 ±8 ∓2

Modulo 19:

x 〈1/x〉19 x 〈1/x〉19

±1 ±1
±2 ∓9 ±6 ∓3
±3 ∓6 ±7 ∓8
±4 ±5 ±8 ∓7
±5 ±4 ±9 ∓2

Modulo 23:

x 〈1/x〉23 x 〈1/x〉23

±1 ±1
±2 ∓11 ±7 ±10
±3 ±8 ±8 ±3
±4 ±6 ±9 ∓5
±5 ∓9 ±10 ±7
±6 ±4 ±11 ∓2

Multiplication

7 | 2 3
----|--------

2 | -3
3 | -1 2

11 | 2 3 4 5
----|-----------------

2 | 4
3 | -5 -2
4 | -3 1 5
5 | -1 4 -2 3

13 | 2 3 4 5 6
----|---------------------

2 | 4
3 | 6 -4
4 | -5 -1 3
5 | -3 2 -6 -1
6 | -1 5 -2 4 -3

17 | 2 3 4 5 6 7 8
----|-----------------------------

2 | 4
3 | 6 -8
4 | 8 -5 -1
5 | -7 -2 3 8
6 | -5 1 7 -4 2
7 | -3 4 -6 1 8 -2
8 | -1 7 -2 6 -3 5 -4

19 | 2 3 4 5 6 7 8 9
----|---------------------------------

2 | 4
3 | 6 9
4 | 8 -7 -3
5 | -9 -4 1 6
6 | -7 -1 5 -8 -2
7 | -5 2 9 -3 4 -8
8 | -3 5 -6 2 -9 -1 7
9 | -1 8 -2 7 -3 6 -4 5

23 | 2 3 4 5 6 7 8 9 10 11
----|-----------------------------------------

2 | 4
3 | 6 9
4 | 8 -11 -7
5 | 10 -8 -3 2
6 | -11 -5 1 7 -10
7 | -9 -2 5 -11 -4 3
8 | -7 1 9 -6 2 10 -5
9 | -5 4 -10 -1 8 -6 3 -11

10 | -3 7 -6 4 -9 1 11 -2 8
11 | -1 10 -2 9 -3 8 -4 7 -5 6
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additive inverse, 2

basis, 4
binop, 10

commutative group, 2

eigen-stuff, 22

finite dimensional, 4
Finitely-Supported Scalar Fnc, 5
fixed-point, 13
flat, see affine subspace
forward/inverse-image, 7
FSSF, 5

generates a VS, 4
generating-minimal, 4
group, 2

idempotent, 14
identity element, 2
identity map, 9
identity matrix, 9
index of a square matrix, 10
involution, 14

Jordan, Camille: Canonical form, 16
Jordan, Wilhelm: Gauss=Jordan, 16

kernel of a map, 7

left-shift, 9
lin-comb, see linear combination
linear combination, 4
linear dependence, 4
linear independence, 4

Matrices
determinant, 10
diagonalizable, 22

identity, 9
nilpotent, 15
similar/conjugate, 18

monoid, 10

nilpotency degree, 15
nullity, 7
nullspace of a map, 7

rank, 7
right-shift, 9
righthand inverse, 9

scalar multiplication, see scalar-
vector multiplication

scalar-vector multiplication, 2
span-minimal, 4
sum of subsets, 4
support of a function, 5
SVM, see scalar-vector mult.

trivial soln, 4

vectorspace, 2
VSS, i.e: vector-subspace
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That’s All, Folks! –Bugs Bunny
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