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Prof. JLF King

Entrance. [L()ok ahead to Shorthands on P] For
each defn to follow, know several examples where the
objects fulfill the defn, and several examples where
the objects fail the defn. [E.g, exhibit a set of vectors that
is not LI. What is an example of a pair of VSes and a map T
between them that: is linear? fails to be linear? —what specific

axiom fails?]

Defn: Group. A commutative group is a triple
(V,+,0) where V is a set, + is a binary operation
VXV =V, and 0 € V, satisfying the following ax-
ioms for all x,y,z € V:

CG1: Element 0 is an identity element for “+7, i.e,
x+0=x=0+x.

CG2: Addition is associative: x+[y+z] = [x+y|+z.

CG3: Every element x has an additive inverse x’

satisfying: x+x' = 0 = x' + x.

CG4: Addition is commutative: x +y = y + x.

[Note: A group (V,+,0), but which is not necessarily com-
mutative, is required to satisfy (CG 1-3) but is not required to
satisfy (CG4).| ([l

It is an easy theorem that 0 is the unique identity
element for “+” and that additive inverses are unique.
The additive inverse of x is usually written as “-x”.

OUTLINE
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Defn: VS. A vectorspace is a four-tuple
(V,+,0,F),

where V is a set [of vectors|, with 0 € V, where F is
a field (e.g, R or Q or C), and where the scalar-vector
multiplication operation - is a map FxV— V.
Using SVM to abbreviate scalar-vector multi-
plication [usually called “scalar multiplication”], the four-
tuple must satisfy the following.
For all o,f € F and x,y € V:

SV1: Triple (V,+,0) is a commutative group.

SV2: The SVM distributes over wector addition:
ax+y]=ax+ay.
Also, SVM distributes over scalar addition:
[a+ B]x = ax + Bx.

SV3: Multiplication associates with SVM, i.e
la- Blx = - [Bx].

SV4: Scalars 1 and 0 act as follows: 1-x = x and
0x = 0.

A consequence of these axioms is that -1u L
is the additive-inverse of u. Ol
Trivial VS.  For the zero-vector in VS X, use Ox

or 0. For the zero-dim’al VS (or VSubSp) {0}, I will
sometimes use 0 for {0}, and Ox for {Ox } if there are
several spaces under discussion.

Use Ogwn for the KxN matriz of all zeros; if the
dimensions are understood, use Oy,:. For the zero-
lin.map V—X which sends each V-vector to Ox, use
Oryn Or Ov.,x. |[Of course, this O, is the zero-vector in
vector space LIN(V%X)A] ]
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Shorthands. VS(es), vector space(s). VSubSp, vector sub-
space. trn, transformation. lin.trn; linear trn. colvec, column-
vector. rowvec, row-vector. LI, Linearly Independent. LD,
Linearly Dependent. €Vec, eigenvector. €Val, eigenvalue. €Space,

eigenspace. |

Nomenclature. Our symbols and our textbook’s.

SVM = scalar-vector multiplication = scalar mul-
tiplication.

Dim(W) = diIn(W) = [Dimension of VS W]

Nul(T) = N(T) = [Nullspace, i.e, Kernel of map T].
Nullity(T) = nullity(T) = Dim(Nul(T)).

RallgC(T) = R(T) = [Range of T].
Rank(T) = rank(T) = Dim(Range(T)).

1\~’IATK><L(@) = MKXL(Q) — [Space of K><L—matrices]
with rational entries.

LIN(V—>X) = ,C(V, X) = [Space of linear maps V—>X];
may also be written LIN(X<«+V). Space LIN(V—V)
will be written as LIN(V) or, for emphasis, LIN(VO).

VS = vector space. VSes = vector spaces.
VSS = vector-subspace.

We'll typically using lowercase greek letters for
scalars; «, 3,7, ..., and often use script B, &, U, R for
bases; our textbook uses (ugh!) . O

Convention. We use map or mapping for a fnc going
from one set to a (possibly different) set. E.g,
OwnerOf : BIKES—PEOPLE.

In contrast, let’s use transformation (abbreviated
as trn) as a map from a set to itself. In these notes,
“transformation” (unless explicitly stated otherwise) is a
“linear transformation”. O

Filename: Classwork/LinearAlg/study-linalg.latex
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Subset-sum. Thw “sum of subsets” 51,..., 5y C 'V,

written Z,‘,‘\:1 S or Sp+ ...+ Sy, is the set of all
sums u; + ...+ uy with each u; € ;. In general

N N
£t >5 < semlU_, )

If each S; is a subspace, then there is equality in (x).[]

Linear-independence of subspaces. Consider a collec-
tion U of subspaces of VS V. This U is linearly inde-
pendent (LI) if each finite subset {W;,..., Wy} C U
satisfies: The only tuple (uy,...,uy) of vectors hav-
ing each u; € W;, and satisfying Zj»vzl u; = 0, is the
0= u; = ...=uy trivial soln.

If no subspace in U is the trivial subspace 0 then:
Collection U is LI IFF no W € U can be deleted with-

out reducing the span:

VW e U: Spn(U~ {W}) &

S Spn(U). O

ASIDE: The negation of Linearly Independent (LI) is
Linearly Dependent (LD).

Defn: Span. A linear combination (lin-comb) of
a finite list uy,...,uy of vectors, is a sum of form
Z;VZI aju;, where each o is a scalar.

Given a |finite or infinite| set € of vectors, Spn(C) is
the set of all (finite) linear combinations of vectors
from C.

Collection € is span-minimal if no member can
be deleted without reducing the span. I.e each u € €
has Spn(C ~\ {u}) & Spn(C).

In vectorspace V, collection € ‘“generates” or
“is spanning” or “spans V” or “spans the VS” if
Spn(C) = V. Our C is generating-minimal if C
spans the VS and is span-minimal.

Our V is finite dimensional if V admits a finite
generating-set C. O

Linear-independence of vectors. Vector-collection
C is linearly independent (L1) if each finite
subset {uj,...,uyx} C C satisfies: The only tuple
(c1,...,an) of scalars satisfying Zév:l aju; = 0 is
0=ay =...=ay; the trivial soln.

An LI collection B which generates, is called a basts

for the VS. O

OUTLINE
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1: Proposition. Subset C C V is span-minimal IFF C
is linearly independent. O

Pf (=). Were € not LI then WLOG we have C-vectors
and scalars s.t Zi\le aju; = 0, with some scalar

non-zero. WLOG «; #0. Letting §; :==-a;/a1,
then, N
note
u; = Zﬁjuj € Spn(ug,...,uy).
j=2
So € is not span-minimal. ¢

Pf («). Supposing € not span-minimal, there exists a
C-vector w and other C-vectors uy, ..., ur, and scalars
{aj};, satisfying w = Zf:l aju;. Thus

-1w + aquyg + ...+ apuyg,

is a non-trivial way of writing 0. [Le, our €is LD.] 4
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Defn: Support. Consider a fnc h: Q5" —R where R is
a field (or ring). The “support of h” is

Supp(h) = {we Q| h(w) #0}.

Consider a VS V over field F. A FSSF (Finitely-
Supported Scalar Function) is a map h: V—F such that
Supp(h) is finite. Thus, given a collection € C 'V,

Spn(G) = {Zue(i h(u)u ’ his a FSSF} -

Use FFS(C— F) for the set of Fncs-of-Finite-
Support from € to F. O

2: Uniqueness Lemma. Given a linearly-independent

collection © C 'V and w € Spn(C), there is a unique

h € FFS(C—F) with [ Y h(u)u] = w. O
ueC

Pf. Suppose > f(u)u = w =} g(u)u for two FFS.

ucC uel
Thus

LB S [f—gl(w)-u

uel

0 =w-—w

As, Supp(f — g) C Supp(f) USupp(g), our f — g is
a FFS. Thus LI of € forces f — g “omict¥ R

3: Basis Jdence. Fach finite dim’al VS has a finite
basis. O

Proof. Fix a finite generating-set C. If no u € C lies
in Spn(C \ {u}), then € is LI; done.
Else: Remove u from €. Wash, rinse, repeat.... ¢

OUTLINE
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4a: Vec-replacement thm. Fix a set G generat-
ing 'V, with I" := |G| finite. Then each Ll-set L satisfies
that A .= |L| <T. Further, there exists a cardinality
I — A subset H C G such that L U H generates V. {

Pf. For A=0, let H := G. Assuming the proposition
for natnum A, we establish it for A+1.

Fix Ll-set L = {vy,...,vA,Va41}. Automatically
L= {vi,...,va} is LI, whence the induc.hyp gives

. Letting D =1 — A be the difference, there

exists a cardinality-D subset H = {g1,...,8p} C G
with L U H generating V. In particular,

A D
T: VA+L = [Z Oéjvj} + [Z 5kgk},
j=1 k=1
for some scalars aq,...,an, f1,...,8p. Thus some

B is non-zero [else vaii lies in Spn(L), 3¢|, whence
D > 1 and WLOG 1 # 0. Happily, then, A+1 <T
since D > 1.

Let H :={g2, g3,...,8p}. Rewriting (}) as

A

VAL — [ZO@'V;} - [é/@kgkﬂ

Jj=1

1
i-gl—a

shows that g, € Spn(L U H). Thus

Spn(LUH) = Spn(LUH) > Spn(LU H),

since L O L. Hence, [Spn(L U H) equals V.j ¢

4b: Corollary. In finite dim’al VS 'V, all bases have the
same (finite) cardinality. O

Proof. Courtesy , our V has a finite basis, hence
has a basis B of minimum cardinality.

Consider another (possbily infinite) basis €. Since B
generates, and € is LI, our @ [the Vec-replacement thm|
applies to say that |E] < |B|.

Reversing roles shows || = |B|. ¢

5: Gen. Basis thm.  Assuming the Axiom oF CHOICE,
every VS (whether finite-dim’al or not) admits a basis,
and each two bases have the same cardnality. O
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Defn: Linear and Affine maps
(Here)

Defn. Over F, the affine-span of vector-set
{vi,..,vn}is

N Each «; € F with
AffSpn(vy,...,vy) = {E ;v ‘ =N OJ[J} _ }
Jj=1

j=1
To emphasise that a (affine-)span is wrt a particular
field F, I might write, e.g, AffSpn¢ or Spng or Spny, .

The affine-span of just a pair of vectors is
Line(u,w) = {ou + [1 —oJw | @ € F}.

The “dimension of an affine-subspace ACV?” is
the dimension of the vector-subspace were A trans-
lated to pass through the origin. That is, picking any
vector u € A: Dim(A) := Dim(A — u).

A flat is another name for an affine-subspce.

A map A:V—X between VSes is affine if it re-
spects averages. That is, for all Zg\:l a;vj, we have

that N N
A(Zajvj) = > ajA(v))
j=1 j=1
N
whenever [ijl aj] = 1. 0

6: Lemma. Suppose A: V—X is affine. Then A is linear
IFF A(Oy) = Ox. O

Proof. For scalar 8 and vector v, note

A(pv) = A(Bv 4= [l = 5]'6V)
£ BAV) + [1- BLA@Y)
= BA(vV) + [1—8]-0x = BA(v).

For vector sums, note

lA(u 4 W) by above

5 A(%[u+w]) — A(%u + %w)

affine
sA) + 3A(W).

Doubling shows that A(u+w) = A(u) +A(w). ¢

Filename: Classwork/LinearAlg/study-linalg.latex
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Nullspace and Range

We examine forward /backward-images of subspaces.
Below T:V—X is a lin.map

7: Lemma. For each subspace U C V, its forward-
image forward/inverse-image
T(U) = {T(u) | u € U}

is a vector-subspace (VSS) of X.

For each subspace Y C X, its tnverse-image
TYY) = {veV|Tw) €Y}

is a vector-subspace of V. Proof. Exercise. O

Nullity, Rank. The kernel or nullspace of T is the
inverse-image .
Nul(T) == T*({0x}) = T (0x).
And  Nullity(T) = Dim(Nul(T)).
So the nullity of T is a cardinality.
The rank of T is cardinality
Rank(T) := Dim(Range(T)), where
Range(T) = T(V). O

Filename: Classwork/LinearAlg/study-linalg.latex
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8: R+N Theorem. Over field F, a linear T:V—X has
Rank(T) 4+ Nullity(T) = Dim(Dom(T)) 2= Dim(V))

[Many textbooKks call this the Rank+Nullity thm. Our text
calls it the Dimension thm, 2.3.]

Fix a basis U C V for U := Nul(T) e V,

note

and a basis R C X for R := Range(T) C X.
For each xR, pick [possibly using AC, if R is co-dim ’al]

a vector vy € V such that . Let

Q = {vx’xeﬁ}.

Prelim.

As T|q is a bijection, |Q| = |R|. To establish
» Dim(V) = |Q] + U

is our goal.

If some vector vy € Q also lay in U-basis U, then

o d:ef'r(vx) — Ox; 3¢, as x is part of a basis [for RJ,

hence is not the zero-vector. Thus [ONU = T |

So () will follow from showing Q LU is a V-basis. []

Nullspace and Range
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Pf: QU U is LI. Consider FSSFs g:Q—F and h:U—F
st.

T Oy = [Zg(vx) vx} + Z h(u)u.

vx€Q ucl

Applying T to both sides, B
=0x

ik Ox = [Zg(vx) x} + Z h(u) T(u).

xER uel

Thus Ox =Y. g(vx)x. But R is LI, whence g = 0.

xER
Courtesy (1), Oy =Y yey h(u) u. Our U is linearly
independent; consequently / = 0. )

Pf: Q UU generates V.Fix an arbitrary vector w € V.
Since T(w) € R, there exists a FSSF p: R—F st.

T(w) = Z(p(x)x. Define
xER
v = Y (x) vk '€ Spn(Q).

v €9Q

Difference w — vy, is in Nul(T), since T(w — vy)
equals

T(w) = T(vw) = |2 e®)x] = 3 ex)x.

xXER xER

As w equals vy + [w — vy |, it follows that w lies
in Spn(QUU), as claimed. ¢
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Matrices from vectors & lin.maps

Consider linear-maps W L VE U where the
VSes have ordered bases W = (wy,...,wy),
V={(vy,...,v7), U= (uy,..,u3), respectively. A
vector q € U has a unique description q = 213:1 a;u;
Let [q]" be the colvec of g w.r.t 10, i.e

(" = FQ] .

a3

Our text uses a subscript, [qly, rather than a super-
script; please use the superscript in your essays.

Use [Sﬂz for the 7x3 matrix M whose lefthand-
action, Ly, equals S. Thus:

For j =1,2,3: The j"-column of M is [S(u;)]".
ITOf scalars ¢ j, writing S(u;) = ST @ jVi gives

a1 o122 Q13
hY% Q2,1 @22 Q23 Nota
[sly = |3 % ° o)

Q7,1 Q@72 Q73

9: Lemma. Using the above notation,

[S(@)]” =
And [[T o S]],E)

[[S]]z . [q]u , for each q € U.
[77 - [S]y-

Proof. Exercise: Chase definitions. O

Remark. For lin.maps, henceforth, I’ll typically write
TS rather than ToS. A consequence of the above

lemma is that  [[TS](q)]" = HT]]W- [S] [q]u O
5 \TX% \-7\></3§ T

Matrices from vectors & lin.maps
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Inverses. On a set (2, the identity map Idg: Q—)
is defined by /do(z) = x, for each xc().

The identity map on a VS V is a lin.trn, so I'll
usually write it as either Idv or Iy,

The “nxn tdentity matriz” , written I, or I,
or [if n is understood| as just I, is

1 0 ... O

0 1 0
In><n = [ . ;

0 0 ... 1

all zeros, except for ones down the main diagonal.

Consider a lin.maps T:V—=W and L, R:W—V.
This R is a Rlnverse [righthand inverse] of T, if
TR =1Iw. And Ris a Linverse of T, if LT = Iy.

Multiple one-sided inverses. Let X := RN, the VS
of seqs. X = (g, x1,...). The left-shift and right-
shift lin.trns are

Si(

c ) and
SR(Q) = (05 aOaal7a27a37"-)

= ((",I ,C2,C3,C4,C5, ...

>

As S;Sgp = Ix, our Sy is a RInverse of S;. Indeed, S;
has ooly-many RlInverses; another one is

a — (8(!7 — bas, ag, a1, a,as, . . ) .
Our Sy has coly many Llnverses; S, but also, e.g

C — ((‘,] +4cg, co, c3 —b6c¢cg, 4, C5, .. ) L]

Filename: Classwork/LinearAlg/study-linalg.latex
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10a: Observation. Suppose T:V—W has at least one
LInverse L, and at least one RInverse R. Then L = R,
and there are no other one-sided inverses. O

Pf. Note L =LIw =L[TR] == [LTIR=IyR=R.
Were A another Llnverse of T, then A =R = L. ¢

10b: Aside: The above argument applies to an ar-
bitrary associative binary-operator [a binop| with a
2-sided identity element.

[Such a structure is called a

monoid.] U

10c: Matriz inverse. A 2-sided (multiplicative)-
inverse of nxn matrix M, is an nxn matrix U s.t
MU =1 = UM. The forgoing shows that this U is
unique; we write M for the matrix-inverse of M.

For the next example, we define the determinant
of 2x2-matrix M := [¢ %] as Det(M) :== ad — be. O

10d: Fact.  Matrix M := [¢ Z} is invertible exactly
when A = Det(M) is non-zero. When that occurs,

1 _ 1 [d -b] _ [d/a -bA
M= = A [*c a} - LC/A a/A} ’
Proof. Multiply and check. O

Matrices from vectors & lin.maps
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2 5
3 4

nant Det(T) = 2.4 — 5:3 = -7. Whence

-|——1 _ % [4 —5] note {—4/7 5/7}. O

Matriz-inv 1. Real-matrix T = [ } has determi-

-3 2 37 -2/7

Matriz-inv 2. We now work over field F := Z1;, and
let = mean =;;. The Zj; reciprocal-table is

z | (o) || = | 1/z)n
+1 +1

+2 =i=5) +4 +3
+3 +4 +5 F2

Now Zii-matrix M := B S’J has

Det(M) = 24 — 53 =-7T = 4.

Hence (1/Det(M)),, = 3.
Thus
M = 3.{4 —5} _ {12 —15] _ [1 4}‘

-3 2 -9 6 2 -5

Note: APPENDIX B in these notes has reciprocal-
tables for various primes. And... you can al-
ways compute mod-N reciprocals yourself, using
LiGHTNING-BoLT (the Euclidean algorithm). ]
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Change-of-basis matrix

The common case is two bases € and B on V. A ueV
engenders a colvec [u]®, but we need u written ITOf
basis B. What we need is the change-of-basis [CoB|

matrix H = [[dﬂ?, since

[]® =[] [ = H- [,

Similarly,  consider VEV and its ma-
trix M := [Sﬂi Alas, we need S w.r.t B. And
indeed

B = B
o Islp = uMHL = [ [SIE [l

Conjugating M by H

[HdoSo 1], = [S];-

Change-of-basis matrix

Page 11 of

CoB example. On R?, consider (ordered-)bases

el - CIED

and matrix M = We seek to understand

12 7
the lefthand action of M, the lin.trn S := L, and some
nice person has told us that S’s mapping is clearer in
the B basis.

As (x) gives B ITOf €, e.g, ba = [-1]e; + 2eg, the
easy matrix to compute is C := [[Id]];. Why? The
first column of C is

1
71 °
1 -1

C- [§] 222 [, [baf” = [H(b)]° =
e = B 2 1
C= [[Id]]B = [1 2] whence C! = [[Id]]g = ll 1],
since Det(C) =1. {
Applying (1), our [Sﬂi = C'MC, i.e,

PR R -

a shear in the by direction. Specifically, S(bs) = by
and S(bl) = b1 + 3bs.

Later, we’ll call be an S-eigenvector with eigenvalue 1.]

It follows that

[So by is a Fized-point of S.

Checking! using S and by,bo, all expressed in the &
basis:

[S(b2)]8 = M- [;] = [;1 = [bg]e7 and

- ] = 4

which indeed equals [b; + 3bs]°. So that v's out. [J
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CoB generalized. A less common usage of CoB

o . -5 3 . L . T
...continuing. Given vector 9| = [u]”, we can write  matrices is comes from a lin.map W <V and ordered-
bases W, W' for W, as well as ordered-bases V,V’

this same vector in basis B as:
for V.
B e 2 1 -5 -8
[)® = [ - [u] :l ]-[]:[].D . W . w
[[C]Je L] 2] T | M= [T]Y and W= [T

If we know the bases and M, you can compute M’ as
product

M= [y me[a]y, = [y - TR [l
— [EoTom]) = [T] .
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Examples of Subspaces Eigenspaces. Fix an element A € F. We have this
important defn: The “\-etgenspace of T” is

{yeX|T(y) = Ay}.

Over of field F, consider a lin.map S: X—V and sub-
spaces Xy C X and Vy C V. Then

Forward-image S(Xg) is a V-subspace. And
inverse-image S~ (Vo) = {y eX ‘ S(y) € V(,} is
an X-subspace.

In particular, Nul(S):=S"'(0y) is a subspace
of Dom(S).

We now consider a lin.trn T:X.O mapping a space
to itself.

Invariant subspaces of T: X—X. Subspace UCX
is T-invariant if T(U) C U. This allows the defn of
restriction R = T|{; which is a lin.trn R: U—U.

If T(U) =U, well say that U is “precisely-T-

invariant®. [T(‘XH)()UI{S differ in terminology for Hli&]

11: Lemma. Suppose € is a collection (possibly infinite)
of T-invariant subspaces. Then

Ne = Nu

Uet

is a T-invariant subspace.  Proof. Exercise. O

Ex: Range. Set Uy = X, and U, = T(U,).
[So Range(T) dof Ul.] Then Uy D U; DU; D -+, and
each U, is T-invariant. Moreover,

Uy, = ﬂ U,
n=0

is also T-invariant. Evidently, if X is finite dim’al
then Uy, is precisely-T-invariant. (POSTING DECATHLON.
Prove or give CEX: “Even when Dim(X) = oo, intersection U

must be precise]y—T—invariant.”)

Fixed-pt subspace. For an arbitrary map h:(20 on
an arbitrary set, define

Fix(h) = {a € Q| h(a) = a},
the set of “fixed-points of h”.
When T:XO is linear, then Fix(T) is the (full)
“fixed-point subspace of T”. This will later be
called: “The eigenspace of T with eigenvalue 1.”

Each subspace U C Fix(T) is a “T-fixed-pt sub-
space”
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Examples of transformations

[Before starting, consider a map h:Q2—(2 on a set Q2. Then “h
is an tnvolution” if ho h = Idg. In contrast, “h is idempo-
tent” if hoh = h.]

2-dim rotations. On RxR, rotation matrix

RG . [cos(@)

sin(0) 7Sin(0)} ’

cos(0)

rotates the plane CCW by angle 6. Note R(;l =Ry.

As examples, [R,,/G]m =1= [Rw/ﬂ?

Projections, Reflections, Shears. Consider
a direct-sum decomposition X G U = V. [Le,
X,U are transverse subspaces (XNU=0) whose

union generates V.|  When spaces are finite dim’al,
r = Dim(X) and n := Dim(U), we’ll use ordered-
bases X := (x1,...,%,) and U := (uy,...,u,) and

¥: Vi= (X1, Xp, U1, ..., Up).

Each projection, reflection, shear (see below) fizes X
pointwise; so X is a pointwise-fiXed subspace, a sub-
space of Fix(T).

A projection P:VO uses that each veV has a
unique description as v = x + u with xeX and ueU.
Define projection-onto-X-parallel-to-U by
T P(v) = P(x+u) = x.
I: H(v) = Hx+4+u) = x — u

In contrast

is reflection-across-X-parallel-to-U.

12: Obs. Suppose lin.trn P:VO is idempotent. Then P
is projection onto X := Range(P), projecting parallel
to U := Nul(P).

Pf Union X U U generates V.  Fix veV and define
x =P(v) € X and u:=v —x. Since v = x + u, we
need but show that u is in Nul(P). Well. ..
P(u) 22 P(v) - P(x) £ P(v) — P(P(v))
dempy)—P(v) L §. ¢

Examples of transformations
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PFXNU=0. Fix x e XNU; so there exists veV
with P(v) = x. Thus

0 =2 P(x) def P(P(v)) fdom P(v) L

As a corollary, suppose X and U are finite dim’al.
Then, wrt basis (¥), the projection and reflection ma-
trices are diagonal. Specifically,

ITXT‘
l Onxn] and

Irxr
7Ian )

A shear S:VO is determined by X ® U = V, to-
gether with a linear map M: U—X. Each veV has a
unique decomposition v = x + u with xe X and ueU.
The corresponding shear, S, is

IEE [[Proj P]]g =

Txe [[Reﬂ H]]z =

A m
=~

in X in U
t: S(v) == v+M@u) 2 [x +M(u)] + .

Let M,.,, denote matrix [I\/I]]ﬁ Then

[IW

Exercise: Prove that shear S is invertible, and

Tix: [Shear S]]z = MTX"] .

Ian

SHv) == v—M(u) = [x — M(u)] +‘\u/.
in X in U

Letting P be projection of V onto U parallel to X,

our shear can be written as 'S = I + [Mo P] ‘
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Nilpotent trns & matrices. An nxn matrix M is
nilpotent if there exists natnum k with M* = 0,5,
(the 0-matrix). The smallest such k is the nilpotency
degree of M, written NilDeg(M).

Analogously lin.trn T:VO is nilpotent if there ex-
ists natnum k with TF = Oryp, ete.

13: Lem. Suppose T:VO is nilpotent, and
N = Dim(V) is finite. Then NilDeg(T) < N. |Ditto
for NxN matrices.] O

Proof. Set Up:=V and, for j = 1,2,..., define
U1 = T(U;). Automatically U; C Uy. Hence

---C Uy CcU; C U,

since inclusion U; cU;_4 implies that
T(U]) C T(Uj_l), i.e that Uj+1 C Uj.
Suppose, for 7 =1,2,3,... up to some k, we have

proper inclusion Uj; ; U;_1. Then each
Dim(U;) < Dim(Uj;_;1) -1,

so Dim(Ug) < Dim(Up) —k = N — k. Thus £ < N.
And T is nilpotent IFF U, = 0. ¢
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Gauss-Jordan, RREF

The Gauss—Jordan@ algorithm does row-ops to con-
vert a matrix into Reduced Row-Echelon-Form.

Row operations. Below, i and g are row-indices,
and j and h are column-indices, and «, p are F-scalars.
The three elementary row-operations are:

Aia:g: Add [row-i times a| to row-g. Inverse: A ..

P, : Permute the rows according to permutation v.
Inverse: P,-1.

This is usually used to...

...exchange row-i and row-g. Inverse: 7..,.

Pl<—>g :

Ui, : Multiply rowi by non-zero p. Inverse: I/, |/,:

14: RREF algorithm. With M € MATgy9(F), use m;;
for the entry in row-i and column-j. I’ll use the term
pivot column and, for a non-pivot column, a free
column.

Init: Initialize row-counter R :=1 and column-
counter C :=1. Then ...

NewCol: Is there an index i€ [R..6] with m;c
non-zero?

IF “no” |[so column-C is free|] then Increment(C) and
goto (NewCol).

ELSE, exchange one such row with row-R, us-
ing Posr.  Now mpc is not zero, so let p be
the reciprocal-in-F of mgrc. Apply Ur;

. And (R,C) is a pivot position.

ZeroizeCol: For each row-index i # R [greater or
less than R| with « = —m; ¢ non-zero, apply Agr q:i.

now

[So pivot-position (R,C) now has the only non-zero entry in
column—C.] Now Increment(R) and Increment(C), then
goto (NewCol). ]

“LA version of Gaussian elimination was described by
Wilhelm Jordan in 1888; —not to be confused with Camille
Jordan, who stated Jordan Canonical Form thm in 1870.

Gauss-Jordan, RREF
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When is a matriz in RREF? In a B = {bhj] _ matrix,
i

row-i being NorAZ means it is Not-All-Zero; let Col(i)
be the column-index of its leftmost non-zero entry;
thus b; Col(i) is the leftmost non-zero entry in row-i.

Our B is in RREF (reduced row—eche]on-form) if
1: The NoTAZ rows are above the ALL-ZERO rows.

7: With P denoting the number of NoTAZ rows, we

have
Col(l) < Col(?) < ...

< Col(P).

wi: For i = 1,..., P, the only non-zero entry in col-
umn Col(i) is at position (i, Col(i)). Moreover
bi,cm(i) =1

For i = 1,2,...,P, we call row-i a pivot row,
column Col(i) a pivot column, and position
(i, col(i)) a pivot position.

The RREF of a matrix is unique. However, remov-
ing “reduced” gives row-echelon-form, and different
textbooks have slightly varying definitions of REF.
While RREF is unique, REF is not unique. Nonethe-
less, useful properties can be read-off from an REF of
a matrix. (]
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Row/Column Ops. Say that two NxK matrices
A and B are row-equivalent, written A ~ B, if we
can get from A to B by a sequence of elem.row-ops.

Analogous, if we can get from A to B by elem.col-
ops, then A~ B, and the matrices are column-
equivalent.

An elem.row-op can be realized by multiplying
from the left by a NxN matrix; to get this matrix,
simply apply the row-op to Inxy.

Similarly, an elem.col-op can be realized by multi-
plying from the right by a KxK matrix; etc.

Row-op invariants. Suppose A ~ B. Then

RowSpn(A) = RowSpn(B)

LNul(A) = LNul(B)
Rank(A) = Rank(B),

where LNul means the nullspace of the lefthand-
action of A. [Statement LNul(A) = LNul(B) says that row-

ops preserve the linear relations among columns.]

Row-ops. . .
... Preserve linear-relations among columns
and preserve the span of rows [rowspan|.

... Alter linear-relations among rows and
alter the span of columns [colspan|.

Gauss-Jordan, RREF
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Obtaining bases. For NxK matrix M over field F,
let rq, ..., ry denote the rowvecs, and have cq,...,cx
denote the colvecs.

In M= RREF(M), use ri,...,ry and €1,...,Cx
for the row and column vectors. Let P [< Min(N, K)|
denote the number of pivot-rows in M. Then

a: Rank(M) = Rank(M) = P.

b: Rowvec-set {ri,...,rp} is a basis for

RowSpn(M) = RowSpn(l\7I) .

c: Let Col(1), ..., Col(P) denote the column-indices of

o~

the pivot-cols in M. Then

{CC01(1)7 Ccai(2)s -+ - Cal(P)> }

is a basis for ColSpn(M).

~

d: A basis for LNul(M) = LNul(M) is obtained via the
method of back substitution.

Basis for RNul(M). Here, let e; be the IxK
rowvec which is all-zero, except for a 1 at position j.
E.g eo =[010...0].

Our M looks like

P many pivot
rows

N—P many
all-zero rows

105
17

Consequently, a basis for RNul(M) is the set of
rowvecs e;, for j € (P .. NJ.

Let L be the NxN invertible matrix that RREFs M
to M, i.e, LM = M.

15: Lemma. With notation from above: This set
. [ The bottom-most
*: {e(i'L‘JE(P"N]} - {NfProwsofL }
of rowvecs is a basis for RNul(M). O
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LinA Equivalence relations. (Repeating some mate-
rial): Two 5X7 matrices Xand Y are row equivalent,
written X ~ Y, if X can be transformed to Y via ele-
mentary row-ops. Equivalently, 3Ls«5 invertible such
that LX =Y.

Matrices XY are column equivalent, X ~ Y, if
column-ops carry X to Y; equivalently, dRv7«7 invert-
ible such that XR =Y.

Two NxN matrices P,Q are similar , or conju-

sim

gate to each other,, written, P ~ Q if there exists
invertible Cxy with CPC™! = Q.

Looking ahead. Applied to a square matrix G,
operation A does not affect determinant, and opera-
tion 7., only multiplies it by -1. Use “ G 7 H” to
indicate that, using only row-ops A and P, one can
alter G to become H.
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RREF example

4x6
Over field Zi3 we have matrices M and “target”
4x1 4x1
colvecs S and U . We seek to find bases for:

RowSpn(M), ColSpn(M), LNul(M), RNul(M),

and describe the
5X MX =S and MX =U.
set of solns X , to

Our given M, S, U matrices are

-2 -5 16 11 0 -23 29 0
-25 26 6 -13 31 -17 3 4
-1 -23 -15 1 18 -17|’ [-30(’ |25
19 -31 12 29 30 -27 -31 -2

Step 1. Produce an augmented matrix. . .
(setq A (mat-Horiz-concat M S U))
-2 -5 16 11 0 -23 29 0
-25 26 6 -13 31 -17 3 4
-1 23 -15 1 18 -17 -30 25
19 -31 12 29 30 -27 31 -2

...and reduce A mod-13. Non-negative residues re-
duces A to

11 8 3 11 0 3 3 0
1 0 6 0 5 9 3 4
12 3 11 1 5 9 9 12
6 8 12 3 4 12 8 11

whereas symmetric-residues reduces A to

2 5 3 2 0 3 3 0

1 0 6 05 4 3 4
-1 3 2 15 H4 -4 -1
6 5 -1 3 4 -1 -5 2

which has form [M | S U]J.

symmetric-residues.

In the sequel, I use

RREF example
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Step 2. Compute RREF(A). Extract submatrices:

(setq Tableau (rref-mtab-beforecol A))
JK: Found 4 pivots before the eighth column.

x0 x1 x2 x3 x4 x5 hatS hatU Row operations
R e |
/1 o 6 0 5 -4 3 ol -6 5 6 -6
lo 1 -3 0 4 5| -6 ol 6 5 -3 5
lo o o 1 -2 3| 4 ol -3 2 -5 0
lo o O O O Ol o 1] -5 -1 5 -5

(setq L (MTB-ROM Tableau) hatA (MTB-Alt Tableau) )

[-6 5 6 -61 [1 0 6 0 5 -4 3 01
[ 6 5 -3 51 [0O01 -3 0 4 5 -6 01
[-3 2 -5 01, [0 0O O 1 -2 3 4 01
[-5 -1 5 -51] [0OO OO O O 0 11

Matrix L describes the row-ops that were done on A
to produces A. And indeed (mat-mul L A) produces

1 0 6 0 5 4 3 O
01 -3 0 4 5 -6 0
0o o0 o0 1 -2 3 4 0
o o0 0 0 0o 0 0 1

which is indeed A.
Looking ahead, the U column is a pivot column, so
there are no solns X to MX = U; the soln-set is empty.
So we only need to extract M and S:

(setq hatM (extract-cols hatA 0 6)
hatS (extract-cols hatA 6 1) )

To T1 T2 T3 T4 T Target
1 0 6 0 5 -4 3
0O 1 -3 0 -6
0 0 1 -2 '
0 0 0 0
pe —
M S

Step 3. Use row/col-info from M to obtain bases for

row/col span of M. The pivot rows of M form a basis
of RowSpn(M) = RowSpn(M). This basis is

{[1,0,6,0,5,-4],[0,1,-3,0,4,5],[0,0,0,1,-2,3] } .

The pivot-cols of M are cols 0,1,3. The correspond-
ing columns of M thus form a basis for ColSpn(M).
This basis is

21 [-5] [2
1 0 0

{ 1030 |1 }
6] L[5 3
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Step 4. Give names “a,b,c,...” to the free-cols.
Use back-substition to describe the set of X satify-
ing MX =S, which is the same set of X satifying

, since row-ops preserve lin-rels among cols.

We use matrix [M | S| as follows.

To X1 a x3 b ¢ S
1 0 6 0 5 4| 3
0 1 3 0 4 5 | 6
0 0 0 1 -2 3 | 4
00 0 0 0 0| 0

Put in the appropriate identity matrix.

xo
1
a=x2 — a- 1 +b 0 +c- 0 +
x3
b=ux4 0 1 0
c=ux5 0 0 1

Insert the back-substitution values, for zg. ..

xo

1
a=ux2 _ Nt |1 0 ] 0

e =27 0 +b| o e 5l T
b=ux4 0 1 0
c=u5 0 0 1

...and for the rest of the variables:

zo —6 -5 4 3

T 3 -4 -5 -6
a=xo| 1 0 0

zs| — 270 +b- of TS|l T |
b=ux4 0 1 0
c=ux5 0 0 1

Step 5. Matrix M acts from the right on rowvecs
of length 4. As Rank(M) = Rank(M) = 3, it follows
that the RNul(M) [nullspace of the righthand action of M|
is4—3=1dim’al.

Courtesy Lemma , singleton {[75,*1, 5,*5]} is a

basis for RNul(M)
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Know the following terms: The cardinality of
a set S is the number of elements in S, and writ-
ten |S|, or sometimes #S. A subspace of a vector-
space. [Recall that the trivial subspace {0} is the unique
0-dimensional subspace. Recall that the emptyset, @ = {}, is
not a vectorspace, because it has no identity element.]

A linear combination of a set of vectors. The
span of a set of vectors. [Recall that the span of a
set of vectors in V is always a subspace of V. Recall that
Spn(@) = {0}.] Recall that a collection S C V is
linearly independent if the only linear combination
of vectors in S which equals 0, is the trivial com-
bination, that is, the combination where all scalars
are 0. A basis for V is a linearly independent subset
of V which spans V.

Some important theorems. In a vectorspace V:

16: Theorem.  Every vectorspace has a basis. Fach
linearly-independent set can be extended to (i.e, is a
subset of ) a basis. Fach generating set can be cut down
to (i.e, is a superset of ) a basis. O

17: Theorem. The cardinality of every spanning
set is greater-equal the cardinality of every linearly-
independent set. In particular, each two bases have
the same cardinality; this number is called the di-
mension of V. O

Terms and algorithms. Know the definitions of
the following terms, and how to perform the following
algorithms:

“Algorithm”. “Augmented matrix”. Know the three
“elementary row operations”, and what “row equiva-
lence” is. Be able to precisely describe the Gaussian
Elimination algorithm. “Reduced row-echelon form”.
A “pivot” position. “Free column”.
system of linear equations. Know how to compute
the “solution set” to a system of linear equations or
to a vector equation Ax = b |where A is a kxn matrix,
b € F* is known, and x € F™ is the unknown], and how to
describe the solution set parametrically. Recall that
such a solution set is either empty, or is a translated
vector subspace of F", ie “an affine subspace” or “a

flat”.

A “consistent”

RREF example
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The “column-span” and “row-span” of a matrix, as
well as the “column-rank” and “row-rank”, and know
how to compute these four things.

“Linear transformation”. The “inverse” of a linear
transformation. The “inverse of an invertible square
matrix”, and how to compute it. Know how to com-
pute the matrix corresponding to a given linear trans-
formation.

“Change-of-basis matrix” and how to compute
such.
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Eigen Ideas

Below is a linear transformation.

The simplest kind of T-invariant subspace E C X,
is where T|g a dilation, u+ Au for some fixed
scalar A\. Each X\ determines a subspace

E, = E\7 = {zeX|Tz=)\z}.

When E) 1 is not the trivial space 0, then we call E) 1
the “\-eigenspace of T, and X\ is a T-eigenvalue.
Each non-zero vector in E) 1 is an eigenvector of T.

[eSp::xce:eigenspace7 eVal=eigenvalue, eVec:eigenvector]

18: Eigenspace LI theorem. The collection, C, of
T-eigenspaces is linearly independent. O

Proof. FTSOC, suppose 3N > 1 and eVecs satisfying

t: 0 =2z +2+...+2n

with distinct eVals Aj, ..., Ay, and choose (T) to min-
tmize IN. Necessarily, N>2 since eVecs are non-0.

Applying T to (f) yields

0 = TO0) = T(z) + T(z2) + ...+ T(zn)
= M\N2Z1 + XNozZo + ...+ ANZN .

Subtracting product Ay- (1) from (f) produces
_ N4
*3 0 = Z [)‘j - )\N]-Zj .
j=1

As the eVals are distinct, each \; — Ay # 0, so
[\; — Ay]-z; # 0. Equation (x) writes 0 as a sum of
N—1 eigenvectors with distinct eigenvalues, contra-
dicting the minimality of . ¢

Defn.  Consider two fncs f,g:Q20 on a set 2. We
say “f commutes with g” if f o g = go f, and write
this as [ = ¢. O

19a: Lemma. Suppose linear transformations
S, T:XO commute with each other. Then S maps each
T-eigenspace E into itself; S(E) C E. O

Eigen Ideas
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Proof. WLOG, fix a vector z € EsT. [We seek to show
that Sz is also in E5 1] Computing,

T(Sz) LS §(Ty) = S(bz) = 5Sz.

Hence Sz lies in E5 7. ¢

19b: Coro.  Linear T:XO has eigenbasis B; let \p,
denote the T-eigenvalue of b € B. Suppose also
the T-eVals are distinct [i.e Ab = A\e implies b = ¢ for
all b,c € B|.

Then linear S commutes with T IFF B is an eigen-
basis of S. O

Proof of (=). Each T-eSpace is 1-dim’al, and the
foregoing lemma shows S maps this 1-dim’al subspace
to itself. The only lin-trn of a 1-dim’al space is mul-
tiplying by a scalar, hence this T-eSpace is also an
S-eSpace. [Of course, the T and S eVals may be different,
and S need not have distinct €Vals,] ¢

Pf of («<=). To show two lin-trns commute, ISTShow
they commute on each vector of a basis. Since multi-
plication of scalars is commutative, and each b € B
is an eigenvector for both S and T, we have that
TSb = STh. ¢

Diagonalizability. A trn is diagonalizable (most often
applied to a matrix) if it admits an eigenbasis.

A family F of lin-trns is stmultaneously diago-
nalizable if there is an basis B which is an eigenbasis
for each trn in F. A corollary of the above proof is

If trn-family & is simultaneously diagonal-

izable, then each S,T € F commute. =

19c:
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Eigenvalues of rotations. Fix an angle ¢ {0, 7}.
[Our final result, (1), will be valid for those angles too,] With
C = cos(f) and S := sin(0), note

vi=e? =C+iS and T =¥ =(C—iS.

We seek to diagonalize rotation

_ g, el [C =S
b R_Rg—[s c}‘

Easily Det(R) = 1, since rotations preserve area and
orientation. [Or ¢ + S* = 17.] For CharPoly h = pg,
we could compute Det(R — ¢tI), but more elegant and
quicker is

h(t) = t* — Tr(R)-t + Det(R)

=t2—- 20t + 1.

So Discr(h) = [2C)2 — 4-1-1 = 22[C? — 12] 22L& [25]2.42.

hus
' {26 + y/Discr(h) ]

= tcx2si| = {v, 7}

Roots(h) =

Sl

is the set of R-eVals.
Diagonalizing R over C. As T # v (recall § # 0,7)

our R [viewed as acting on C?] has two 1-dim’al
eigenspaces. We thus know that R is similar (') to

-

THE PLAN: To diagonalize R we seek a v-eVec |||,

diagonal matrix

and a 7-eVec [2}. Then matrix M := [¢ 5] will give
us the sought M'RM = D equality.

COMPUTING: Looking ahead, C — v = -i§ so

C—v .
o = .

S

An v-eVec is a non-0 vector in LNul(R — vI). Matrix
R — p] 2ot {C s

S C—v
S C—-v v 1 C*T" by (+) | 1 i
C—v -S C—v -S C—v -S|

} is row-equiv to

Eigen Ideas
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14
Thus R — vI ~ lo 01] , as the v-eSpace is 1-dim’al.
Hence [ﬂ is a v-eVec for R.

Field-automorphism z — Z leaves R invariant, car-
ries v to 7, and consequently carries v-eVec {” to
v-eVec []]. 1 prefer to multiply this by i, so I'll use
[ } } as my v-eVec. My conjugating matrix is thus
1wt = 3]

1

1

i
M._[ i

yielding M7TRM = [V 7]
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Duality ideas
Setting. We explore the C-IPS V := C" equipped
with dot-product. The vectors in V are colvecs.
For colvecs u,w € V, their outer product is NxN-
matrix 1-w*.

Consider a direct-sum decomposition V= A © B
with A 1 B. (I.e7 At = B and Bt = A.) With Proj
denoting orthogonal projection, note

x:  Projy + Projg = Id = Orthg + Projg,

where Id is the identity operator.
Orthp = Proju ‘, and vice versa.

Consequently

It follows that (orthogonal) reflection across B is

Projg — Orthg = [Id — Projs| — Proju
= Id — 2Projp .

k%

We now consider when Dim(A) = 1.

Ortho-projection matrix. Given a non-zero col-
umn vector § [a “direction” vector|, use 8= for the ortho-
complement of Spn(d). Let D denote the matrix [w.r.t
the std basis| of ortho-projection on Spn(d).

Use P for the matrix of ortho-projection on 5+, and
employ R for reflection across §.

20: Lemma. When the § from above is a unit vector,
f: D=266% P =1-66% R =1 256".

Hence, the action of these matrices on an arbitrary
vector v satisfy

Dv = Projs(v)
Ir Pv = Projsi(v) =

= (0,v)v;
v — (0,v)v; O

Rv = [ld —Projsi](v) = v —2(,v)v.
Proof.  First consider projecting on Spn(e;). That
maps a general vector

o1 ] 6%}
s 0
—
an 0

The matrix whose lefthand action realizes this

1 0
0

0
0 0 note %

A e - € .
N AR N~
0 0 .- 0f Nx1 1xN

Duality ideas
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Change of coordinates. Let U be unitary matrix
(Which preserves the IP) and carries of 0 to e;. Note

e;-e; = Ud-[US]*F = U -6*UF
since U is unitary us - (S*U{ '

To project a vector v on §, we carry v to Uv, project
on e, then carry the result back via U™. So
Dv = U? eef - Uv

= U1 Us6%U - Uv = 6% v.

This holds for all v, hence D = §5*. ¢
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Dual spaces in general

A VS, V, over an arbitrary field F has a dual space
V* := {L | Map L:V—F is linear} .

So V¥ is the VS of “linear functionals on V” with
pointwise addition, and pointwise scalar-multiplica-
tion.

A linear map A:S—V between F-VSes has an ad-
joint operator A*:V*—S*, defined by

A*(L) == [s = L(A(s))] 2 LoA.

Double dual. VS V has a canonical embedding
into its double-dual. It is the F-linear map

Ve V** which sends u+— [L+— L(u)].

If the canonical embedding is a bijection, then it is
a linear isomorphism and we say V and V** are
“canonically” or “naturally” isomorphic, In this case,
Vis called a reflexive space. [Well. .., the term is usually
reserved for the category of topological VSes.]

Duality in IPSes. Fix a complex VS V.
21a: Defn. For v € V, define linear fnc’al L, by

Ly(w) = (v,w). O

21b: Lemma. For all vectors ug,uy, if Ly, = Ly, then

ug = uj.
When V is finite dimensional: For each linear func-
tional A, there exists a vector v st. L, = A. O

Pf. With v := ug — uy, difference Ly = Ly, — L“L is
the zero-fnc’al. Thus 0 = Ly (v) = (v,v), so v = 0.
Fix an ortho-normal basis by,...,by. Lin fnc’al
A gives values A\; = A(b;). With v = ij\;lijj
note <V, b5> = <>\5b5, b5> = )\5<b57 b5> = )\5. Simi-
larly, (v,bj) = A;. Thus L, = A. ¢

Henceforth. ‘All VSes are finite dim’al. ‘ The inner
product on V allows us to identify V* with V, by
identifying each lin fnc’al (v,-) with v. Using a blue
- for scalar-vector mult, then a-(v,-) = (av,-). O

Dual spaces in general
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Consider a linear A: V—S. The identification allows
us to interpret A* as mapping S—V, by

2lc:  VreS,VueV, (A*r,u) = (r Au).

21d: Prop'n. Eqn (21c|) uniquely defines a linear
operator A*:S—V. Moreover, A** = A, O

Pf (existence/uniqueness). Composition <1“, . > oA is
linear, so Lemma ([21Db)) asserts a unique vector v with
(v, ) = (r,A()). Define A*r := v. ¢

Pf (linearity). As (A*(r+s),u) = (r+s, Au), additive-
linearity gives
(A*(r+s),u) = (r.Au) + (s, Au)
= (A*r,u) + (A*s,u)
= (A*r + A%s, u).

This holds for all Vu, so A" (r+s) = A'r 4+ A's.
Similarly, for scalar «,

(A*(ar),u) = (ar,Au) = (r,A(@u))
= (A*r,aqu) = (aA¥r,u).

This holds for all u, whence A*(ar) = aA*r. ¢

Pf (Involution). The complex-conjugate of (21¢) is
VreS,vueV, (u,A*r) = (Au,r),

showing that A** is A. ¢
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The Adjoint involution.
operators V—V.

We now consider (linear)

22.1: Lemma. W.r.t an ortho-normal basis, let A =
[aij] be the matrix of S:VO, and B = [#;;] the matrix

of S¥. Then B = At 22 At O

Pf. The 1x1 matrix |05 2] = efBesy = [(e5, S¥es)]. So

[ﬁ5,2] = [<5e5,e2>] = egﬂt.ez

= [} -Aes]" = € -Aes,

as the transpose of a 1x1 is itself. Thus 52 = a2 5.4

Defn.  On a C-VS, operator U: V=V is unitary if
it preserves the unit-sphere: VxeV: ||Ux|| = ||x|. We
say that U is norm-preserving. It turns out norm-
preserving implies the seeming stronger property,

22.2: vx,y € V: (Ux,Uy) = (x,y),

of preserving the IP.

On an R-VS, a U satisfying preserves orthog-
onality; hence it is called an orthogonal operator.

For an operator satisfying : On a R-VS it
called orthogonal, but on a C-VS we say unitary;
this is just a convention. [Norm/IP-preserving forces U to
be injective. The above definitions will apply to an operator
on an 0O-dim’al IPS, once we adjoin the requirement that U
be surjective; hence, is an invertible operator. (Surjectivity is

automatic on a finite-dim’al space.)]

Operator A is self-adjoint if A* = A. O

22.3: Lemma. Operator U is unitary IFF U™l = U*.{

Pf (=) For all v,w:

(U¥Uv, w) = (Uv,Uw) = (v,w) = (U Uv, w).

Holds Vw, so U*Uv = U 'Uv. Holds Vv, so
U*U = U'U. Last U is invertible, so. ...

The reverse direction is left as an exercise. ¢
22.4: Lemma. Suppose self-adjoint A satisfies

(y,Ay) =0 for each y € V. Then A is the zero-
operator. O

Dual spaces in general
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Pf. Fix x € V. Then

0 = (x+Ax, A(x+Ax)) = (x+Ax, Ax+A%x)
= (%, Ax) + (x, A’x) + (Ax, Ax) + (Ax, A’x)
=0 =0
= (x, A"Ax) + (Ax, Ax) 2= 2| Ax||*.

Hence |[since our field is not char=2| Ax = 0. )

22.5: Theorem. A norm-preserving T:VO automati-
cally preserves the inner-product. O

Proof. Note that A := T*T —1 is self-adjoint.
By (22.4), ISTEstablish that A is the zero-operator,
hence that (y, [T*T —I]y) is zero. Computing

(v,[T*T = Ty) = (y, T"Ty) — (y,¥)
= (Ty, Ty) = (y,y)
v,v)-(ry) = 0. ¢

norm

preserving
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§A  Appendix

23.1: S\V/Buried Treasure Problem [BTP].  Floating in
the ocean you spy a bottle containing a pirate’s map
to fabulous treasure. You sell your possessions, pur-
chase a robot-crewed ocean-catamaran, and sail to the
island, discovering it is a vast plateau. The map says:

Arrigh, Matey! Count your paces from the gallows
to the a quartz boulder, turn Left 90° and walK_ the
same distance; hammer a spike into the ground.

Count your paces from the gallows to the giant oak,
turn Right 90° and walk the counted distance; hammer
a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau [with the treasure
you can say bye bye to annoying Math classes!| and immedi-
ately spot the giant oak, and quartz boulder. But the
gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? O

[Hint: Using B, K, w for the Bolder’s, 0aK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tz x(w)

by using C addition and multiplication.| Alphabetic-order
mnemonic: Boulder Left old
oall Right silver
SOI‘\'EQZ Matthew C, Junhao Z., Hani S., 2020t. ~ Nathan T., 2021t
(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

Are we rich, yet? In C, multiplication by + and -i
rotates the plane by 90° (counter-)clockwise. In C, our
gold and silver spikes are

(turned Left) ¢ = B + i[B —w];
S

(turned Right) = K — i[K = w] . Averaging,
t:g+81&93+[(+i.3_[§7.
2 2 2

For convenience, we can WLOG orient C relative
to the plateau so as have B = -K and thus t = -i-K.

The boring case is when the oak is growing out of
the boulder, giving 0=K=B=t.

The interesting case is when B # K. Now we can
orient C so that K :=1i and thus t = -ii = 1. So
the treasure is the right-angle vertex of an isosceles
right-triangle, whose other vertices are the oaK and
Boulder, in appropriate order. ¢
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§B  Z, Reciprocal /Multiplication tables MULTIPLICATION
71 2 3
RECIPROCALS S P
. 2] -3
Modulo 2: ~2 | {1/%2 sl
1 1
T <1/x>3 111 2 3 4 5
Modulo 3: — S
+1 | +1 S .
(1/2) (1/a) (1 5o
T 1/z)5 T 1/x)5 4] -3 1 5
Modulo 5: ] T ; = 51 -1 a4 -2 3

43| ¥4 || 6| F2

7 <1/x>7 T <1/x>7 13 | 2 3 4 5 6
Modulo 7: £1 | =1 S
+2 =3 +3 F2 3] 6 -4
4] -5 -1 3
z | (I/x)u || z | (I/x)n 51 -3 2 -6 -1
) ) 61 -1 5 -2 4 -3
Modulo 11: 19 5 14 13
13| 44 | 5| 2 s s e e e
| 4
a8 <1/x>13 x <1/x>13 | 6 -8
| 8 -5 -1
Modulo 13: ++| TL | F| 3 | 7 2 3 8
|
|
|

2
3
4
+2 | =6 +5| =5 2
7
8

x <1/ZL‘>17 x <1/:L‘>17
+1 +1 +5 +7 19
Modulo 17:  £2 T8 +6 +3 s===

+3 | 46 +7| 45 g .
+4 ¥4 +8 F2 8 -7 -3

x | (/z)19 || = | (1/x)19 7 -1 5 -8 -2
+1 +1
+2 9 +6 F3
SEQ) F6 SE F8
4| 45 || £8| 7 -
+5 +4 +9 T2 S

-3 5 -6 2 -9 -1 7

Modulo 19: -1 8 -2 7 -3 6 -4 5

|
|
2] 4
z | (1/z)s || = | (1/2)23 Z : 213 .
+1 +1 5] 10 -8 -3 2
== F11 +7 +10 61 -11 -5 1 7 -10
Modulo 23: +3 +8 +8 3=3) 71 -9 -2 5-11 -4 3

il s R S A S A
+5 F9 +10 =7 101 -3 7 -6 4 -9 1 11 -2 8
+6 +4 *11 F2 11 ] -1 10 -2 9 -3 8 -4 T -5 6
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§Index, with symbols and abbrevs at the End

additive inverse, identity, [9]

nilpotent,
b, amﬁaomuga‘ce,
binop, monoid,

nilpotency degree,
nullity, [7
nullspace of a map, @

commutative group,

eigen-stuff,

rank, [7

finite dimensional, right-shift, [g
Finitely-Supported Scalar Fnc, [5] righthand inverse, [9
fixed-point,

flat, see affine subspace

. . scalar multiplication, see scalar-
forward /inverse-image, 7

vector multiplication

FSSE, [3 scalar-vector multiplication,
span-minimal,

generates a VS, [{] sum of subsets, [4]

generating-minimal, support of a function, [5]

group, SVM, see scalar-vector mult.

idempotent, trivial soln,

identity element,

identity map, [9

identity matrix, [9

index of a square matrix,
involution,

vectorspace, [2
VSS, i.e: vector-subspace

Jordan, Camille: Canonical form,
Jordan, Wilhelm: Gauss=Jordan, @

kernel of a map, [

left-shift, [9

lin-comb, see linear combination
linear combination, [

linear dependence,

linear independence, [/

Matrices
determinant,
diagonalizable, 22]
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Tﬁat s /“Zl[[/ _‘]"O[k‘}'/ —Bugs Bunny
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