

Class Notes for PROBABILITY & POTENTIAL THEORY: Probability

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 2 April, 2019 (at 18:35)

Notation. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOF: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning ‘end of proof’. r.var, or r.v.: ‘random variable’

Prolegomenon

Our probability space is $\Omega := (\Omega, \mathcal{F}, \mathbb{P})$. A r.v.seq \vec{S} is **Cauchy in probability**, written \mathbb{P} -Cauchy, if: $\forall \varepsilon, \exists \delta$ so that for all large j and k :

$$\dagger: \quad \mathbb{P}(|S_j - S_k| > \varepsilon) \leq \delta.$$

1: Prop'n. A r.v.seq \vec{S} is \mathbb{P} -Cauchy IFF there exists a r.v. Z such that $\mathbb{P}\text{-lim}(\vec{S}) = Z$. \diamond

Proof of (\Rightarrow). Take an index-sequence \vec{N} so that

$$\ddagger: \quad \mathbb{P}(|S_{N_j} - S_{N_{j+1}}| > 1/3^j) \leq 1/5^j.$$

Since $j \mapsto 1/5^j$ is summable, Borel-Cantelli allows us to delete a nullset so that: $\forall \omega, \forall_{\text{large } j} : |S_{N_j}(\omega) - S_{N_{j+1}}(\omega)| \leq 1/3^j$. Thus

$$Z(\omega) := \lim_j S_{N_j}(\omega) \text{ exists in } \mathbb{R}.$$

Consequently $S_{N_j} \xrightarrow{\mathbb{P}} Z$, as $j \rightarrow \infty$. Now (\ddagger) yields $\mathbb{P}\text{-lim}(\vec{S}) = Z$. \spadesuit

Fixing an $\varepsilon \geq 0$, notice that

$$|\mathbb{Y}|_\varepsilon := \mathbb{P}(|\mathbb{Y}| \geq \varepsilon)$$

is a pseudo-norm.

2: PIMZ Lemma (Pairwise-indep mean-zero). We have \vec{X} , a pairwise-independent list of mean-zero r.vars. For each N , then,

$$\mathbb{E}\left(\left[\sum_1^N X_j\right]^2\right) = \sum_1^N \mathbb{E}(X_j^2). \quad \diamond$$

3: Lemma. \vec{X} a pairwise-independent process of mean-zero r.vars. Let $S_k := \sum_{j=1}^k X_j$ be the partial sums. If $\sum_1^\infty \mathbb{E}(X_j^2) < \infty$, then $\mathbb{P}\text{-lim}(\vec{S})$ exists. **Proof.** PIMZ and Chebyshev and (1). \diamond

Observe. A sequence \mathbf{s} of reals is Cauchy if $\text{Diam}(\mathbf{s}_{(A.. \infty)}) \rightarrow 0$ as $A \rightarrow \infty$. So if \mathbf{s} not Cauchy then $\exists \varepsilon$ with the diameter always strictly exceeding 2ε . Hence $\forall A, \exists j > A$ with $|s_j - s_A| \geq \varepsilon$.

Apply this to a r.v.seq \vec{S} which fails to a.s.-converge. There is then an ε so that $\cap_{A=1}^\infty G_A$ has positive probability; say, exceeding a particular $\delta > 0$. Here

$$G_A := \left\{ \sup_{j \in (A.. \infty)} |S_j - S_A| \geq \varepsilon \right\}.$$

For each A , then, $\mathbb{P}(G_A) > \delta$. Fixing A , let $H^B := \{\sup_{j \in (A.. B)} |S_j - S_A| \geq \varepsilon\}$ and observe that these sets $H^B \nearrow G_A$ as $B \nearrow \infty$. \square

The above yields the following useful condition.

4: Proposition. Suppose a r.v.seq \vec{S} fails to a.e.-converge. Then there exist $\varepsilon, \delta > 0$ so that

$\forall A, \exists B \in (A.. \infty)$ for which

$$\mathbb{P}\left(\sup_{j \in (A.. B)} |S_j - S_A| \geq \varepsilon\right) > \delta. \quad \diamond$$

5: Skorokhod sup Lemma. (Breiman: 3.21 P.45)

With \vec{Y} an independent process, let $S_k := \sum_{j=1}^k Y_j$ be the partial sums. For each posreal ε , and each N :

$$\mathbb{P}\left(\sup_{j \in [1.. N]} |S_j| \geq 2\varepsilon\right) \leq \frac{\mathbb{P}(|S_N| > \varepsilon)}{1 - \mathbf{c}},$$

as long as the number

$$\mathbf{c} := \sup_{j \in [1.. N]} \mathbb{P}(|S_N - S_j| \geq \varepsilon)$$

is strictly less than 1. \diamond

6: *Remark.* Translating where we start the partial sums gives the following. For all natnums $A < B$:

$$P\left(\sup_{j \in (A..B]} |S_j - S_A| \geq 2\varepsilon\right) \leq \frac{P(|S_B - S_A| \geq \varepsilon)}{1 - \sup_{j \in (A..B]} P(|S_B - S_j| \geq \varepsilon)}.$$

(Well, as long as the denominator supremum is less than 1.) Suppose \vec{S} is P -Cauchy. As $A, B \rightarrow \infty$, then, the RhS tends to $\frac{0}{1} = 0$. This together with (4) the following nifty corollary. \square

7: *Theorem.* Suppose \vec{S} is the process of partial sums of an independent process. If \vec{S} converges in probability to a r.var Z , then \vec{S} converges **almost surely** to Z . \diamond

Proof of Skorokhod. Fix $\varepsilon, N, \mathbf{c}$ from (5) and let

$$V := \left\{ \sup_{j \in [1..N]} |S_j| \geq 2\varepsilon \right\}.$$

(V for Very big.) Define a **stopping time** $\tau: V \rightarrow [1..N]$ by letting $\tau(j)$ be *smallest* such that $|S_j| \geq 2\varepsilon$. On $\Omega \setminus V$ let $\tau := +\infty$.

Consider a $j \in [1..N]$; say $j = 5$. The event $\{|S_N - S_5| \leq \varepsilon\}$ lies in $\text{Fld}(Y_6, \dots, Y_N)$, whereas event $\{\tau() = 5\} \in \text{Fld}(Y_1, \dots, Y_5)$. So these two events are independent. Thus

$$\begin{aligned} P\left(\left|S_N - S_5\right| \leq \varepsilon \text{ and } \tau() = 5\right) &= P(|S_N - S_5| \leq \varepsilon) \cdot P(\tau = 5) \\ &\geq [1 - \mathbf{c}] \cdot P(\tau = 5). \end{aligned}$$

Now note that $|S_5| \geq 2\varepsilon$ and $|S_N - S_5| \leq \varepsilon$ together imply that $|S_N| \geq \varepsilon$. Consequently

$$P\left(\left|S_N\right| \geq \varepsilon \text{ and } \tau() = 5\right) \geq [1 - \mathbf{c}] \cdot P(\tau = 5).$$

Replace “5” by “ j ” and sum, to conclude that

$$\begin{aligned} P\left(\{|S_N| \geq \varepsilon\} \cap V\right) &= \sum_{j \in [1..N]} P\left(\left|S_N\right| \geq \varepsilon \text{ and } \tau() = j\right) \\ &\geq [1 - \mathbf{c}] \cdot \sum_{j \in [1..N]} P(\tau() = j) \\ &= [1 - \mathbf{c}] \cdot P(V). \end{aligned}$$

Consequently $P(|S_N| \geq \varepsilon) \geq [1 - \mathbf{c}] \cdot P(V)$, as desired. \diamond