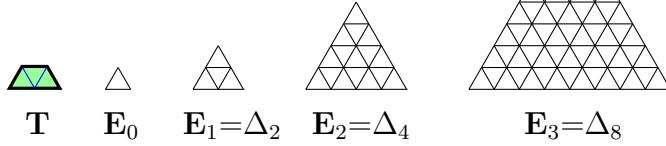


Zoids

J.L.F. King

Tessellations. Voici example figures:



Notation. Use *zilable* for “zoid-tilable”. Use *little-triangle* to mean a copy of E_0 .

For F a figure, have $|F|=5$ mean that F comprises 5 little-triangles. So $|T|=3$ and $|E_k|=4^k$ and $|\Delta_k|=k^2$.

Use T_n for the bottom 2^n rows of E_{n+1} . Thus $T_n = E_{n+1} \setminus E_n$, whence $|T_n|=4^n \cdot 3$. And $T_0=T$. More generally, the “ n -band” of height H ” is

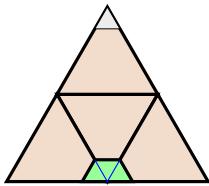
$${}_{\text{H}}\mathbf{B}_n := \Delta_{H+n} \setminus \Delta_n. \quad \text{Thus,} \\ |{}_{\text{H}}\mathbf{B}_n| = [H+n]^2 - n^2 = 2nH + H^2.$$

The widths of the top/bottom edges of ${}_{\text{H}}\mathbf{B}_n$ are n and $H+n$, respectively.

1: Theorem. *Each \widetilde{E}_n is zilable.* \diamond

Pf of (1). Base case: Since \widetilde{E}_0 is empty, it admits the empty tiling.

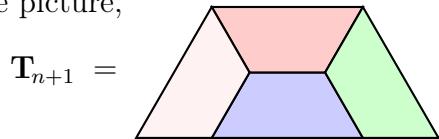
Our \widetilde{E}_{n+1} has an \widetilde{E}_n upstairs,



and three copies of E_n downstairs. The bottom row has a central zoid [since the row-length, 2^{n+1} , is even]. Removing it punctures the three downstairs figures, giving four \widetilde{E}_n total, each zilable. \diamond

2: Trap Lemma. *Each T_n is zilable.* \diamond

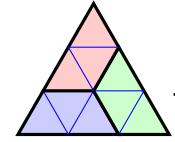
Proof. Base case: By defn, T_0 is zilable. This recursive picture,



shows that 4 copies of T_n tile T_{n+1} . Consequently, $[T_n \text{ zilable}] \implies [T_{n+1} \text{ zilable}]$. \diamond

Alt Pf of (1). Observe that \widetilde{E}_{n+1} is a \widetilde{E}_n on top of a T_n . The Trap Lemma asserts that T_n is zilable. \diamond

3: Band Lemma. *Figures Δ_3 and ${}_1\mathbf{B}_{1+3n}$ and ${}_2\mathbf{B}_{2+3n}$ are zilable.* \diamond



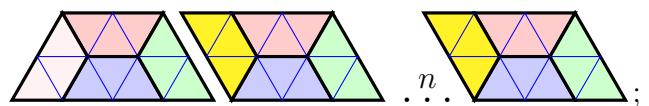
Proof. A zoid-tiling of Δ_3 is

Pf. Band ${}_1\mathbf{B}_{1+3n}$ can be constructed by interleaving n many *down*-zoids [their short edge is down], with $n+1$ *up*-zoids. The band’s top edge thus has

An $n=2$ example:

length $[n \cdot 2] + [n+1] \cdot 1 \stackrel{\text{note}}{=} 1 + 3n$. \diamond

Pf. A zoid-tiling of ${}_2\mathbf{B}_{2+3n}$ is



one trapezoid followed by n parallelograms. \diamond

Note. Below, \equiv means “mod-3 congruent to”. \square

4: Thm. *Triangle Δ_k is zilable IFF $k \equiv 0$.* \diamond

Pf. Necessarily, $k^2 = |\Delta_k| \equiv 0$. The primeness of 3 forces $k \equiv 0$. CONVERSELY: In Δ_n replace each little-triangle by the zilable Δ_3 , to produce Δ_{3n} . \diamond

5: Thm. *Punct. $\widetilde{\Delta}_k$ is zilable IFF $k \equiv +1$ or $k \equiv -1$.* \diamond

Proof. Necessarily, $k^2 - 1 = |\widetilde{\Delta}_k| \equiv 0$, so $k \equiv \pm 1$.

CONVERSELY: Empty $\widetilde{\Delta}_1$ is zilable. Arguing inductively, suppose Δ_{1+3n} has been shown zilable. Placing it atop band ${}_1\mathbf{B}_{1+3n}$, shows $\widetilde{\Delta}_{2+3n}$ zilable, courtesy our beloved Band Lemma.

Placing $\widetilde{\Delta}_{2+3n}$ atop ${}_2\mathbf{B}_{2+3n}$ proves (Band Lemma) that $\widetilde{\Delta}_{4+3n}$ is zilable. And $4+3n = 1+3[n+1]$, so we’ve inducted from n to $n+1$. \diamond